1,376 research outputs found

    Simplicial simple-homotopy of flag complexes in terms of graphs

    Get PDF
    International audienceA flag complex can be defined as a simplicial complex whose simplices correspond to complete subgraphs of its 1-skeleton taken as a graph. In this article, by introducing the notion of s-dismantlability, we shall define the s-homotopy type of a graph and show in particular that two finite graphs have the same s-homotopy type if, and only if, the two flag complexes determined by these graphs have the same simplicial simple-homotopy type. This result is closely related to similar results established by Barmak and Minian [J.A. Barmak, E.G. Minian, Simple homotopy types and finite spaces, Adv. Math. 218 (1) (2008) 87-104. doi:10.1016/j.aim.2007.11.019] in the framework of posets and we give the relation between the two approaches. We conclude with a question about the relation between the s-homotopy and the graph homotopy defined in [B. Chen, S.-T. Yau, Y.-N. Yeh, Graph homotopy and Graham homotopy, Selected papers in honor of Helge Tverberg, Discrete Math. 241 (1-3) (2001) 153-170. doi:10.1016/S0012-365X(01)00115-7.

    Hom complexes and homotopy theory in the category of graphs

    Get PDF
    We investigate a notion of ×\times-homotopy of graph maps that is based on the internal hom associated to the categorical product in the category of graphs. It is shown that graph ×\times-homotopy is characterized by the topological properties of the \Hom complex, a functorial way to assign a poset (and hence topological space) to a pair of graphs; \Hom complexes were introduced by Lov\'{a}sz and further studied by Babson and Kozlov to give topological bounds on chromatic number. Along the way, we also establish some structural properties of \Hom complexes involving products and exponentials of graphs, as well as a symmetry result which can be used to reprove a theorem of Kozlov involving foldings of graphs. Graph ×\times-homotopy naturally leads to a notion of homotopy equivalence which we show has several equivalent characterizations. We apply the notions of ×\times-homotopy equivalence to the class of dismantlable graphs to get a list of conditions that again characterize these. We end with a discussion of graph homotopies arising from other internal homs, including the construction of `AA-theory' associated to the cartesian product in the category of reflexive graphs.Comment: 28 pages, 13 figures, final version, to be published in European J. Com

    Neighborhood complexes and Kronecker double coverings

    Full text link
    The neighborhood complex N(G)N(G) is a simplicial complex assigned to a graph GG whose connectivity gives a lower bound for the chromatic number of GG. We show that if the Kronecker double coverings of graphs are isomorphic, then their neighborhood complexes are isomorphic. As an application, for integers mm and nn greater than 2, we construct connected graphs GG and HH such that N(G)≅N(H)N(G) \cong N(H) but χ(G)=m\chi(G) = m and χ(H)=n\chi(H) = n. We also construct a graph KGn,k′KG_{n,k}' such that KGn,k′KG_{n,k}' and the Kneser graph KGn,kKG_{n,k} are not isomorphic but their Kronecker double coverings are isomorphic.Comment: 10 pages. Some results concerning box complexes are deleted. to appear in Osaka J. Mat

    Homotopy types of box complexes

    Full text link
    In [MZ04] Matousek and Ziegler compared various topological lower bounds for the chromatic number. They proved that Lovasz's original bound [L78] can be restated as \chr G \geq \ind (\B(G)) +2. Sarkaria's bound [S90] can be formulated as \chr G \geq \ind (\B_0(G)) +1. It is known that these lower bounds are close to each other, namely the difference between them is at most 1. In this paper we study these lower bounds, and the homotopy types of box complexes. Some of the results was announced in [MZ04].Comment: 11 page

    Generalization of neighborhood complexes

    Full text link
    We introduce the notion of r-neighborhood complex for a positive integer r, which is a natural generalization of Lovasz neighborhood complex. The topologies of these complexes give some obstructions of the existence of graph maps. We applied these complexes to prove the nonexistence of graph maps about Kneser graphs. We prove that the fundamental groups of r-neighborhood complexes are closely related to the (2r)-fundamental groups defined in the author's previous paper.Comment: 8 page

    Clique complexes and graph powers

    Full text link
    We study the behaviour of clique complexes of graphs under the operation of taking graph powers. As an example we compute the clique complexes of powers of cycles, or, in other words, the independence complexes of circular complete graphs.Comment: V3: final versio
    • …
    corecore