1,132 research outputs found

    Random Graph-Homomorphisms and Logarithmic Degree

    Get PDF
    A graph homomorphism between two graphs is a map from the vertex set of one graph to the vertex set of the other graph, that maps edges to edges. In this note we study the range of a uniformly chosen homomorphism from a graph G to the infinite line Z. It is shown that if the maximal degree of G is `sub-logarithmic', then the range of such a homomorphism is super-constant. Furthermore, some examples are provided, suggesting that perhaps for graphs with super-logarithmic degree, the range of a typical homomorphism is bounded. In particular, a sharp transition is shown for a specific family of graphs C_{n,k} (which is the tensor product of the n-cycle and a complete graph, with self-loops, of size k). That is, given any function psi(n) tending to infinity, the range of a typical homomorphism of C_{n,k} is super-constant for k = 2 log(n) - psi(n), and is 3 for k = 2 log(n) + psi(n)

    Isotropic random walks on affine buildings

    Get PDF
    In this paper we apply techniques of spherical harmonic analysis to prove a local limit theorem, a rate of escape theorem, and a central limit theorem for isotropic random walks on arbitrary thick regular affine buildings of irreducible type.Comment: To appear in Annales de l'Institut Fourie

    The Complexity of Counting Homomorphisms to Cactus Graphs Modulo 2

    Full text link
    A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class parity-P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.Comment: minor change

    Sampling random graph homomorphisms and applications to network data analysis

    Full text link
    A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph FF into a large network G\mathcal{G}. We propose two complementary MCMC algorithms for sampling a random graph homomorphisms and establish bounds on their mixing times and concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neigborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut distance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also apply our framework for network clustering and classification problems using the Facebook100 dataset and Word Adjacency Networks of a set of classic novels.Comment: 51 pages, 33 figures, 2 table

    Statistics and compression of scl

    Full text link
    We obtain sharp estimates on the growth rate of stable commutator length on random (geodesic) words, and on random walks, in hyperbolic groups and groups acting nondegenerately on hyperbolic spaces. In either case, we show that with high probability stable commutator length of an element of length nn is of order n/lognn/\log{n}. This establishes quantitative refinements of qualitative results of Bestvina-Fujiwara and others on the infinite dimensionality of 2-dimensional bounded cohomology in groups acting suitably on hyperbolic spaces, in the sense that we can control the geometry of the unit balls in these normed vector spaces (or rather, in random subspaces of their normed duals). As a corollary of our methods, we show that an element obtained by random walk of length nn in a mapping class group cannot be written as a product of fewer than O(n/logn)O(n/\log{n}) reducible elements, with probability going to 1 as nn goes to infinity. We also show that the translation length on the complex of free factors of a random walk of length nn on the outer automorphism group of a free group grows linearly in nn.Comment: Minor edits arising from referee's comments; 45 page

    Graph homomorphisms between trees

    Get PDF
    In this paper we study several problems concerning the number of homomorphisms of trees. We give an algorithm for the number of homomorphisms from a tree to any graph by the Transfer-matrix method. By using this algorithm and some transformations on trees, we study various extremal problems about the number of homomorphisms of trees. These applications include a far reaching generalization of Bollob\'as and Tyomkyn's result concerning the number of walks in trees. Some other highlights of the paper are the following. Denote by hom(H,G)\hom(H,G) the number of homomorphisms from a graph HH to a graph GG. For any tree TmT_m on mm vertices we give a general lower bound for hom(Tm,G)\hom(T_m,G) by certain entropies of Markov chains defined on the graph GG. As a particular case, we show that for any graph GG, exp(Hλ(G))λm1hom(Tm,G),\exp(H_{\lambda}(G))\lambda^{m-1}\leq\hom(T_m,G), where λ\lambda is the largest eigenvalue of the adjacency matrix of GG and Hλ(G)H_{\lambda}(G) is a certain constant depending only on GG which we call the spectral entropy of GG. In the particular case when GG is the path PnP_n on nn vertices, we prove that hom(Pm,Pn)hom(Tm,Pn)hom(Sm,Pn),\hom(P_m,P_n)\leq \hom(T_m,P_n)\leq \hom(S_m,P_n), where TmT_m is any tree on mm vertices, and PmP_m and SmS_m denote the path and star on mm vertices, respectively. We also show that if TmT_m is any fixed tree and hom(Tm,Pn)>hom(Tm,Tn),\hom(T_m,P_n)>\hom(T_m,T_n), for some tree TnT_n on nn vertices, then TnT_n must be the tree obtained from a path Pn1P_{n-1} by attaching a pendant vertex to the second vertex of Pn1P_{n-1}. All the results together enable us to show that |\End(P_m)|\leq|\End(T_m)|\leq|\End(S_m)|, where \End(T_m) is the set of all endomorphisms of TmT_m (homomorphisms from TmT_m to itself).Comment: 47 pages, 15 figure
    corecore