749 research outputs found

    Structurally Tractable Uncertain Data

    Full text link
    Many data management applications must deal with data which is uncertain, incomplete, or noisy. However, on existing uncertain data representations, we cannot tractably perform the important query evaluation tasks of determining query possibility, certainty, or probability: these problems are hard on arbitrary uncertain input instances. We thus ask whether we could restrict the structure of uncertain data so as to guarantee the tractability of exact query evaluation. We present our tractability results for tree and tree-like uncertain data, and a vision for probabilistic rule reasoning. We also study uncertainty about order, proposing a suitable representation, and study uncertain data conditioned by additional observations.Comment: 11 pages, 1 figure, 1 table. To appear in SIGMOD/PODS PhD Symposium 201

    Benchmarks for Parity Games (extended version)

    Full text link
    We propose a benchmark suite for parity games that includes all benchmarks that have been used in the literature, and make it available online. We give an overview of the parity games, including a description of how they have been generated. We also describe structural properties of parity games, and using these properties we show that our benchmarks are representative. With this work we provide a starting point for further experimentation with parity games.Comment: The corresponding tool and benchmarks are available from https://github.com/jkeiren/paritygame-generator. This is an extended version of the paper that has been accepted for FSEN 201

    Provenance Circuits for Trees and Treelike Instances (Extended Version)

    Full text link
    Query evaluation in monadic second-order logic (MSO) is tractable on trees and treelike instances, even though it is hard for arbitrary instances. This tractability result has been extended to several tasks related to query evaluation, such as counting query results [3] or performing query evaluation on probabilistic trees [10]. These are two examples of the more general problem of computing augmented query output, that is referred to as provenance. This article presents a provenance framework for trees and treelike instances, by describing a linear-time construction of a circuit provenance representation for MSO queries. We show how this provenance can be connected to the usual definitions of semiring provenance on relational instances [20], even though we compute it in an unusual way, using tree automata; we do so via intrinsic definitions of provenance for general semirings, independent of the operational details of query evaluation. We show applications of this provenance to capture existing counting and probabilistic results on trees and treelike instances, and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1

    Biases in human behavior

    Get PDF
    The paper shows that biases in individual’s decision-making may result from the process of mental editing by which subjects produce a “representation” of the decision problem. During this process, individuals make systematic use of default classifications in order to reduce the short-term memory load and the complexity of symbolic manipulation. The result is the construction of an imperfect mental representation of the problem that nevertheless has the advantage of being simple, and yielding “satisficing” decisions. The imperfection origins in a trade-off that exists between the simplicity of representation of a strategy and his efficiency. To obtain simplicity, the strategy’s rules have to be memorized and represented with some degree of abstraction, that allow to drastically reduce their number. Raising the level of abstraction with which a strategy’s rule is represented, means to extend the domain of validity of the rule beyond the field in which the rule has been experimented, and may therefore induce to include unintentionally domains in which the rule is inefficient. Therefore the rise of errors in the mental representation of a problem may be the "natural" effect of the categorization and the identification of the building blocks of a strategy. The biases may be persistent and give rise to lock-in effect, in which individuals remain trapped in sub-optimal strategies, as it is proved by experimental results on stability of sub-optimal strategies in games like Target The Two. To understand why sub-optimal strategies, that embody errors, are locally stable, i.e. cannot be improved by small changes in the rules, it is considered Kauffman’ NK model, because, among other properties, it shows that if there are interdependencies among the rules of a system, than the system admits many sub-optimal solutions that are locally stable, i.e. cannot be improved by simple mutations. But the fitness function in NK model is a random one, while in our context it is more reasonable to define the fitness of a strategy as efficiency of the program. If we introduce this kind of fitness, then the stability properties of the NK model do not hold any longer: the paper shows that while the elementary statements of a strategy are interdependent, it is possible to achieve an optimal configuration of the strategy via mutations and in consequence the sub-optimal solutions are not locally stable under mutations. The paper therefore provides a different explanation of the existence and stability of suboptimal strategies, based on the difficulty to redefine the sub-problems that constitute the building blocks of the problem’s representation

    Biases in human behavior

    Get PDF

    Pure Nash Equilibria: Hard and Easy Games

    Full text link
    We investigate complexity issues related to pure Nash equilibria of strategic games. We show that, even in very restrictive settings, determining whether a game has a pure Nash Equilibrium is NP-hard, while deciding whether a game has a strong Nash equilibrium is SigmaP2-complete. We then study practically relevant restrictions that lower the complexity. In particular, we are interested in quantitative and qualitative restrictions of the way each players payoff depends on moves of other players. We say that a game has small neighborhood if the utility function for each player depends only on (the actions of) a logarithmically small number of other players. The dependency structure of a game G can be expressed by a graph DG(G) or by a hypergraph H(G). By relating Nash equilibrium problems to constraint satisfaction problems (CSPs), we show that if G has small neighborhood and if H(G) has bounded hypertree width (or if DG(G) has bounded treewidth), then finding pure Nash and Pareto equilibria is feasible in polynomial time. If the game is graphical, then these problems are LOGCFL-complete and thus in the class NC2 of highly parallelizable problems

    Dagstuhl News January - December 2008

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    • …
    corecore