7,637 research outputs found

    Cloud Enabled Emergency Navigation Using Faster-than-real-time Simulation

    Full text link
    State-of-the-art emergency navigation approaches are designed to evacuate civilians during a disaster based on real-time decisions using a pre-defined algorithm and live sensory data. Hence, casualties caused by the poor decisions and guidance are only apparent at the end of the evacuation process and cannot then be remedied. Previous research shows that the performance of routing algorithms for evacuation purposes are sensitive to the initial distribution of evacuees, the occupancy levels, the type of disaster and its as well its locations. Thus an algorithm that performs well in one scenario may achieve bad results in another scenario. This problem is especially serious in heuristic-based routing algorithms for evacuees where results are affected by the choice of certain parameters. Therefore, this paper proposes a simulation-based evacuee routing algorithm that optimises evacuation by making use of the high computational power of cloud servers. Rather than guiding evacuees with a predetermined routing algorithm, a robust Cognitive Packet Network based algorithm is first evaluated via a cloud-based simulator in a faster-than-real-time manner, and any "simulated casualties" are then re-routed using a variant of Dijkstra's algorithm to obtain new safe paths for them to exits. This approach can be iterated as long as corrective action is still possible.Comment: Submitted to PerNEM'15 for revie

    Routing Diverse Evacuees with Cognitive Packets

    Get PDF
    This paper explores the idea of smart building evacuation when evacuees can belong to different categories with respect to their ability to move and their health conditions. This leads to new algorithms that use the Cognitive Packet Network concept to tailor different quality of service needs to different evacuees. These ideas are implemented in a simulated environment and evaluated with regard to their effectiveness.Comment: 7 pages, 7 figure

    Using graphical models and multi-attribute utility theory for probabilistic uncertainty handling in large systems, with application to nuclear emergency management

    Get PDF
    Although many decision-making problems involve uncertainty, uncertainty handling within large decision support systems (DSSs) is challenging. One domain where uncertainty handling is critical is emergency response management, in particular nuclear emergency response, where decision making takes place in an uncertain, dynamically changing environment. Assimilation and analysis of data can help to reduce these uncertainties, but it is critical to do this in an efficient and defensible way. After briefly introducing the structure of a typical DSS for nuclear emergencies, the paper sets up a theoretical structure that enables a formal Bayesian decision analysis to be performed for environments like this within a DSS architecture. In such probabilistic DSSs many input conditional probability distributions are provided by different sets of experts overseeing different aspects of the emergency. These probabilities are then used by the decision maker (DM) to find her optimal decision. We demonstrate in this paper that unless due care is taken in such a composite framework, coherence and rationality may be compromised in a sense made explicit below. The technology we describe here builds a framework around which Bayesian data updating can be performed in a modular way, ensuring both coherence and efficiency, and provides sufficient unambiguous information to enable the DM to discover her expected utility maximizing policy
    • …
    corecore