34,553 research outputs found

    On decision and optimization (k,l)-graph sandwich problems

    Get PDF
    AbstractA graph G is (k,l) if its vertex set can be partitioned into at most k independent sets and l cliques. The (k,l)-Graph Sandwich Problem asks, given two graphs G1=(V,E1) and G2=(V,E2), whether there exists a graph G=(V,E) such that E1⊆E⊆E2 and G is (k,l). In this paper, we prove that the (k,l)-Graph Sandwich Problem is NP-complete for the cases k=1 and l=2; k=2 and l=1; or k=l=2. This completely classifies the complexity of the (k,l)-Graph Sandwich Problem as follows: the problem is NP-complete, if k+l>2; the problem is polynomial otherwise. We consider the degree Δ constraint subproblem and completely classify the problem as follows: the problem is polynomial, for k⩽2 or Δ⩽3; the problem is NP-complete otherwise. In addition, we propose two optimization versions of graph sandwich problem for a property Π: MAX-Π-GSP and MIN-Π-GSP. We prove that MIN-(2,1)-GSP is a Max-SNP-hard problem, i.e., there is a positive constant ε, such that the existence of an ε-approximative algorithm for MIN-(2,1)-GSP implies P=NP

    A Center Transversal Theorem for Hyperplanes and Applications to Graph Drawing

    Full text link
    Motivated by an open problem from graph drawing, we study several partitioning problems for line and hyperplane arrangements. We prove a ham-sandwich cut theorem: given two sets of n lines in R^2, there is a line l such that in both line sets, for both halfplanes delimited by l, there are n^{1/2} lines which pairwise intersect in that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines there is a point such that for any halfplane containing that point there are (n/3)^{1/2} of the lines which pairwise intersect in that halfplane. We generalize those results in higher dimension and obtain a center transversal theorem, a same-type lemma, and a positive portion Erdos-Szekeres theorem for hyperplane arrangements. This is done by formulating a generalization of the center transversal theorem which applies to set functions that are much more general than measures. Back to Graph Drawing (and in the plane), we completely solve the open problem that motivated our search: there is no set of n labelled lines that are universal for all n-vertex labelled planar graphs. As a side note, we prove that every set of n (unlabelled) lines is universal for all n-vertex (unlabelled) planar graphs

    Linear transformation distance for bichromatic matchings

    Full text link
    Let P=B∪RP=B\cup R be a set of 2n2n points in general position, where BB is a set of nn blue points and RR a set of nn red points. A \emph{BRBR-matching} is a plane geometric perfect matching on PP such that each edge has one red endpoint and one blue endpoint. Two BRBR-matchings are compatible if their union is also plane. The \emph{transformation graph of BRBR-matchings} contains one node for each BRBR-matching and an edge joining two such nodes if and only if the corresponding two BRBR-matchings are compatible. In SoCG 2013 it has been shown by Aloupis, Barba, Langerman, and Souvaine that this transformation graph is always connected, but its diameter remained an open question. In this paper we provide an alternative proof for the connectivity of the transformation graph and prove an upper bound of 2n2n for its diameter, which is asymptotically tight

    Unique perfect phylogeny is NP-hard

    Full text link
    We answer, in the affirmative, the following question proposed by Mike Steel as a $100 challenge: "Is the following problem NP-hard? Given a ternary phylogenetic X-tree T and a collection Q of quartet subtrees on X, is T the only tree that displays Q ?
    • …
    corecore