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Abstract

A graph G is (k; l) if its vertex set can be partitioned into at most k independent sets and l cliques. The (k; l)-Graph
Sandwich Problem asks, given two graphs G1 = (V; E1) and G2 = (V; E2), whether there exists a graph G = (V; E) such
that E1 ⊆ E ⊆ E2 and G is (k; l). In this paper, we prove that the (k; l)-Graph Sandwich Problem is NP-complete for the
cases k=1 and l=2; k=2 and l=1; or k= l=2. This completely classi:es the complexity of the (k; l)-Graph Sandwich
Problem as follows: the problem is NP-complete, if k + l¿ 2; the problem is polynomial otherwise. We consider the
degree � constraint subproblem and completely classify the problem as follows: the problem is polynomial, for k6 2
or �6 3; the problem is NP-complete otherwise. In addition, we propose two optimization versions of graph sandwich
problem for a property >: MAX->-GSP and MIN->-GSP. We prove that MIN-(2; 1)-GSP is a Max-SNP-hard problem,
i.e., there is a positive constant 	, such that the existence of an 	-approximative algorithm for MIN-(2; 1)-GSP implies
P = NP.
c© 2004 Published by Elsevier B.V.
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1. Introduction

We say that a graph G1 = (V; E1) is a spanning subgraph of G2 = (V; E2) if E1 ⊆ E2; and that a graph G = (V; E) is
a sandwich graph for the pair G1, G2 if E1 ⊆ E ⊆ E2. For notational simplicity in the sequel, we let E3 be the set of
all edges in the complete graph with vertex set V which are not in E2. Thus every sandwich graph for the pair G1, G2

satis:es E1 ⊆ E and E ∩ E3 = ∅. We call E1 the forced edge set, E2 \ E1 the optional edge set, E3 the forbidden edge
set. The GRAPH SANDWICH PROBLEM FOR PROPERTY > is de:ned as follows [11]:

GRAPH SANDWICH PROBLEM FOR PROPERTY >
Instance: Vertex set V , forced edge set E1, forbidden edge set E3.
Question: Is there a graph G = (V; E) such that E1 ⊆ E and E ∩ E3 = ∅ that satis:es property >?
We shall use both forms (V; E1; E2) and (V; E1; E3) to refer to an instance of a graph sandwich problem.
Graph sandwich problems have attracted much attention lately arising from many applications and as a natural gener-

alization of recognition problems [6,8,10–12,14,15]. The recognition problem for a class of graphs C is equivalent to the
graph sandwich problem in which the forced edge set E1 = E, the optional edge set E2 \ E1 = ∅, G = (V; E) is the graph
we want to recognize, and property > is “to belong to class C”.
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Golumbic et al. [11] have considered sandwich problems with respect to several subclasses of perfect graphs, and
proved that the GRAPH SANDWICH PROBLEM FOR SPLIT GRAPHS remains in P. On the other hand, they proved that the GRAPH

SANDWICH PROBLEM FOR PERMUTATION GRAPHS turns out to be NP-complete.
We are interested in graph sandwich problems for properties > related to decompositions arising in perfect graph theory:

homogeneous set [6], join composition [8]. In this paper, we consider the decomposition of a graph into independent sets
and cliques.

Let G be an undirected, :nite, simple graph. A (k; l) partition of a graph G is a partition of its vertex set into at most
k independent sets and l cliques. A graph is (k; l) if it admits a (k; l) partition. The complexity of (k; l) graph recognition
has been completely classi:ed as follows: if k =3 and l=0 then the corresponding problem is 3-coloring, which implies
[2,3] that the recognition of (k; l) graphs is NP-complete, whenever k¿ 3 or l¿ 3. For the remaining values of k and
l, the problem is polynomial: (1; 1) graphs are split graphs; (2; 0) graphs are the bipartite graphs; the polynomial-time
recognition of (2; 1) graphs and consequently of graphs (1; 2) was established in [2–4]; the polynomial time recognition
of (2; 2) graphs was established in [2,3] and independently in [7].

The studies on sandwich problems focus on those problems which are interesting in terms of their complexity, i.e.,
neither trivially NP-complete nor trivially polynomial.

Fact 1. If the recognition problem for a class of graphs C is NP-complete, then its corresponding sandwich problem is
also NP-complete.

Fact 2. If the property > is hereditary then there exists a sandwich graph for (V; E1; E2) with the property > if and
only if G1 = (V; E1) has the property >.

Fact 3. If the property > is ancestral then there exists a sandwich graph for (V; E1; E2) with the property > if and
only if G2 = (V; E2) has the property >.

Thus, Fact 1 says that the sandwich problem for (k; l) graphs is NP-complete, whenever k¿ 3 or l¿ 3. In addition,
Fact 2 (respectively, Fact 3) says that for each property which is hereditary (respectively, ancestral), the graph sandwich
problem reduces to the recognition problem for this property on the single graph G1 (respectively, G2). Therefore,
the hereditary properties de:ning (1; 0) and (2; 0) graphs, and the ancestral properties de:ning (0; 1) and (0; 2) graphs
reduces these graph sandwich problems to recognition problems that are polynomial. Given a property >, we de:ne its
complementary property O> as follows: for every graph G, say G satis:es O> if and only if OG satis:es >.

Fact 4. There is a sandwich graph with property > for the instance (V; E1; E3) if and only if there is a sandwich graph
with property O> for the instance (V; E3; E1).

Thus, our proof of the NP-completeness of the sandwich problem for (2; 1) graphs implies the NP-completeness of the
sandwich problem for (1; 2) graphs.

Given V ′ ⊂ V and E a set of edges over the set V , the set E[V ′] = {uv: u∈V ′ and v∈V ′} is the subset of edges
e = uv of E such that e has its endpoints in V ′. In this paper we propose two optimization versions of graph sandwich
problem for a property >. These versions are: one maximization problem, called MAX->-GSP, and one minimization
problem, called MIN->-GSP. Let (V; E1; E2) be an instance of graph sandwich problem for a property >. The problem
MAX->-GSP consists in :nding the maximum subset V ′ of V such that (V ′; E1[V ′]; E2[V ′]) has answer YES for the
decision version of the graph sandwich problem for the property >. The problem MIN->-GSP consists in :nding the
minimum subset V ′ of V such that (V \ V ′; E1[V \ V ′]; E2[V \ V ′]) has answer YES for the decision version of the
graph sandwich problem for the property >. In this paper we give a :rst application for these de:nitions. We prove that
MIN-(2; 1)-GSP, MIN-(1; 2)-GSP and MIN-(2; 2)-GSP are Max SNP-hard problems [1,16], which means that there is a
positive constant 	, where the existence of an 	-approximative algorithm implies P = NP.

This paper is organized as follows: in Section 2 we prove that the (2; 1)-Graph Sandwich Problem is NP-complete.
Section 3 contains the proof that the (2; 2)-Graph Sandwich Problem is NP-complete. These results together with the facts
above completely classify the complexity of the (k; l)-Graph Sandwich Problem as follows: the problem is NP-complete,
if k + l¿ 2; and polynomial otherwise. Section 4 de:nes and classi:es the degree constraint subproblems obtained by
bounding the maximum degree in G2. Sections 5 and 6 consider our proposed optimization versions. We present in
Section 7 our concluding remarks.
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2. (2; 1)-Graph Sandwich Problem

In this section we prove that the (2; 1)-GRAPH SANDWICH PROBLEM is NP-complete by reducing the NP-complete problem
3-SATISFIABILITY to (2; 1)-GRAPH SANDWICH PROBLEM. These two decision problems are de:ned as follows.

3-SATISFIABILITY (3SAT)
Instance: Set X = {x1; : : : ; xn} of variables, collection C = {c1; : : : ; cm} of clauses over X such that each clause c∈C

has |c| = 3 literals.
Question: Is there a truth assignment for X such that each clause in C has at least one true literal?

(2; 1)-GRAPH SANDWICH PROBLEM

Instance: Vertex set V , forced edge set E1, forbidden edge set E3.
Question: Is there a graph G = (V; E), such that E1 ⊆ E and E ∩ E3 = ∅, and G is (2; 1)?

Theorem 5. The (2; 1)-GRAPH SANDWICH PROBLEM is NP-complete.

Proof. In order to reduce 3SAT to (2; 1)-GRAPH SANDWICH PROBLEM we need to construct a particular instance (V; E1; E3)
of (2; 1)-GRAPH SANDWICH PROBLEM from a generic instance (X; C) of 3SAT, such that C is satis:able if and only if
(V; E1; E3) admits a sandwich graph G= (V; E) which is (2; 1). First we describe the construction of a particular instance
(V; E1; E3) of (2; 1)-GRAPH SANDWICH PROBLEM; second we prove in Lemma 6 that every graph G = (V; E) satisfying
E1 ⊆ E and E ∩E3 = ∅ and such that G is (2; 1), de:nes a truth assignment for (X; C); third we prove in Lemma 10 that
every truth assignment for (X; C) de:nes a graph G = (V; E) which is (2; 1) satisfying E1 ⊆ E and E ∩ E3 = ∅. These
steps are explained in detail below.

2.1. Construction of particular instance of (2; 1)-GRAPH SANDWICH PROBLEM

The vertex set V contains: an auxiliary set of vertices: {k1; k2; s11; s12; s21; s22}; for each variable xi, 16 i6 n, two vertices
xi, xi, corresponding to its literals and a vertex pi; for each clause cj = (lj1 ∨ lj2 ∨ lj3), 16 j6m, three corresponding
vertices tj1, t

j
2, t

j
3. In Fig. 1, solid edges are forced E1-edges and dashed edges are forbidden E3-edges.

The Forced Edge Set E1 contains: edges between auxiliary vertices {k1k2, k1s11, k1s12, s11s12, k2s21, k2s22, s21s22}; for
each variable xi, 16 i6 n, the set {xis11, xis12, xipi, xipi}; for each clause cj , 16 j6m, the set {tj1tj2; tj1tj3; tj2tj3}.

The Forbidden Edge Set E3 contains: edges between auxiliary vertices: {k1s21, k1s22, k2s11, k2s12, s11s21, s11s22, s12s21,
s12s22}; for each variable xi, 16 i6 n, the set {xixi; pik2}; for each clause cj=(lj1 ∨ lj2 ∨ lj3), 16 j6m, {tj1lj1, tj2lj2, tj3lj3}.

We call (2; 1) base graph the subgraph of G2 = (V; E2) induced by {k1; k2; s11; s12; s21; s22} (see Fig. 1(BG)). For each
i∈ {1; : : : ; n}, we call variable gadget the subgraph of G2 = (V; E2) induced by {xi, xi, pi} (see Fig. 1(VG)). For each
j∈ {1; : : : ; m}, we call clause gadget the subgraph of G2 = (V; E2) induced by {tj1,tj2,tj3} (see Fig. 1(CG)). Lemmas 6 and
10 prove the required equivalence for establishing Theorem 5.

Lemma 6. If the particular instance (V; E1; E3) of (2; 1)-GRAPH SANDWICH PROBLEM constructed above admits a graph
G = (V; E) such that E1 ⊆ E and E ∩ E3 = ∅ and G is (2; 1), then there exists a truth assignment that satis>es (X; C).

Proof. Suppose there exists a (2; 1) sandwich graph G=(V; E) with (2; 1) partition (S1; S2; K) where S1, S2 are independent
sets and K is a clique.

Claim 7. k1; k2 ∈K and s11; s12; s21; s22 ∈ S1 ∪ S2.

Proof. Since S1 ∪ S2 induce a bipartite subgraph in G, any triangle induced in G1 must have at least one of its vertices
in K . Hence, at least one vertex of the triangle induced by k1; s11 and s12; and at least one vertex of the triangle induced

k2

xi
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t2
j

j j
t1 t3

k1

s11 s21

s12 s22

(BG) (VG) (CG)
ii

Fig. 1. Base graph (BG), Variable gadget (VG) and Clause gadget (CG).
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by k2; s21 and s22 belong to K . Now, each vertex in {s11; s12; s21; s22} is joined by E3-edges to three vertices that induce
a triangle in G1. If one of the vertices of {s11; s12; s21; s22} belonged to K , then this would force at least one triangle to
have no vertices in K , a contradiction. Thus, we must have {s11; s12; s21; s22} ⊆ S1 ∪ S2; and {k1; k2} ⊆ K .

Both {s11; s12} and {s21; s22} induce edges in G1, which force {s11; s12}∩Si 
= ∅, {s21; s22}∩Si 
= ∅, i=1; 2. We assume
with no loss of generality that s11; s21 ∈ S1, which implies s12; s22 ∈ S2. In case the particular instance (V; E1; E3) admits a
(2; 1) sandwich graph G = (V; E) any (2; 1) partition (S1; S2; K) for G satis:es S1; S2; K 
= ∅.

Claim 8. For each i∈ {1; : : : ; n}, pi ∈ S1 ∪ S2, xi ∈K ∪ S2 and xi ∈K ∪ S1.

Proof. Since pik2 ∈E3 and k2 ∈K , we have that pi cannot be in K . In addition, xis11; xis12 ∈E1 and s11 ∈ S1, s12 ∈ S2, we
have respectively xi ∈K ∪ S2 and xi ∈K ∪ S1, i∈ {1; : : : ; n}.

Observe that since xipi ∈E1 and xixi ∈E3, we have that if xi ∈K , then xi ∈ S1, which implies pi ∈ S2; if xi ∈ S2, then
pi ∈ S1, which implies xi ∈K . Therefore, for each i∈ {1; : : : ; n}, exactly one vertex of {xi; xi} belongs to K .

Claim 9. For each j∈ {1; : : : ; m}, at least one of the vertices {tj1; tj2; tj3} must be in K .

Proof. Since S1 ∪ S2 induce a bipartite subgraph in G, for each j∈ {1; : : : ; m}, at least one of the vertices of the triangle
induced in G1 by {tj1; tj2; tj3} must be in K .

We now de:ne the truth assignment for (X; C): for i∈ {1; : : : ; n}, variable xi is false if and only if the vertex xi ∈K .
Suppose that for some j∈ {1; : : : ; m}, the clause cj = (lj1 ∨ lj2 ∨ lj3) is false. By the construction of (V; E1; E3), there is an
edge of E3 between the vertex assigned to the literal ljk and the vertex tjk , k ∈ {1; 2; 3}. Hence, if the literal ljk is false,
then its corresponding vertex is in K which implies that tjk cannot be in K . So, all vertices of the triangle induced in
G1 by {tj1; tj2; tj3} must be in S1 ∪ S2. By Claim 9, this is a contradiction to the hypothesis that S1, S2 and K is a (2; 1)
partition of the set of vertices of G. Hence, the above de:ned truth assignment satis:es (X; C). This ends the proof of
Lemma 6.

The converse of Lemma 6 is given next by Lemma 10.

Lemma 10. If there exists a truth assignment that satis>es (X; C), then the particular instance (V; E1; E3) of (2; 1)-GRAPH
SANDWICH PROBLEM constructed above admits a graph G = (V; E) such that E1 ⊆ E and E ∩ E3 = ∅ and G is (2; 1).

Proof. Suppose there is a truth assignment that satis:es (X; C). We shall de:ne a partition of V into sets S1, S2 and K
that in turn de:nes a solution G for the particular instance (V; E1; E3) of (2; 1)-GRAPH SANDWICH PROBLEM associated with
the 3SAT instance (X; C).

Place vertices k1; k2 ∈K and s11; s21 ∈ S1 and s12; s22 ∈ S2. For i∈ {1; : : : ; n} if variable xi is false then place vertices xi
in K , xi in S1 and pi in S2. Otherwise, if variable xi is true, then place vertices xi in S2, xi in K and pi in S1.
For j∈ {1; : : : ; m} and cj = (lj1 ∨ lj2 ∨ lj3), place the corresponding vertices tj1, t

j
2, t

j
3 as follows. For k ∈ {1; 2; 3}, if the

literal ljk is false then place tjk in S1 ∪ S2; otherwise, place t
j
k in K . Since the truth assignment satis:es (X; C), for each j,

we have at most two vertices tjk in S1 ∪ S2. In addition, in case two vertices tjk and tjp are placed in S1 ∪ S2, place one in
S1 and the other one in S2.

To show that (S1; S2; K) is a (2,1) partition for a sandwich graph G=(V; E) we need to prove that there is no E1 edge
with both endnodes in S1, there is no E1 edge with both endnodes in S2 and there is no E3 edge with both endnodes in
K .

By the above placement, s11, s21 are in S1, and xi, t
j
k and pi can be in S1, i∈ {1; : : : ; n}, j∈ {1; : : : ; m}, k ∈ {1; 2; 3}. The

only possible forced edges between these vertices are: the edge xipi which does not have both endnodes in S1, because
xi ∈ S1 if the variable xi is false and pi ∈ S1 if xi is true; and the edge tjk t

j
q which does not have both endnodes in S1,

k 
= q; k; q∈ {1; 2; 3}. Hence, there is no E1 edge with both endnodes in S1.
In the same way, s12, s22 are in S2, and the vertices xi, t

j
k , pi can be in S2, i∈ {1; : : : ; n}, j∈ {1; : : : ; m}, k ∈ {1; 2; 3}.

The only possible forced edges between these vertices are: the edge xipi which does not have both endnodes in S2,
because xi ∈ S2 if the variable xi is true and pi ∈ S1 if xi is false; and the edge tjk t

j
q which does not have both endnodes

in S1, k 
= q, k; q∈ {1; 2; 3}. Hence, there is no E1 edge with both endnodes in S2.
For the set K we have that k1, k2 are in K , and the vertices xi, xi, t

j
k can be in K , i∈ {1; : : : ; n}, j∈ {1; : : : ; m},

k ∈ {1; 2; 3}. The only possible forbidden edges between these vertices are: the edge xixi which does not have both
endnodes in K , because xi ∈K if and only if the variable xi is true and xi ∈K if and only if xi is false; and the edges
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Fig. 2. (a) Instance (V; E1; E3) obtained from the satis:able instance of 3SAT: I = (U; C) = ({x1; x2; x3}; {(x1 ∨ x2 ∨ x3); (x1 ∨ x2 ∨ x3);
(x1 ∨ x2 ∨ x3)}) and (b) respective partition for the (2; 1) graph G de:ned from the satisfying truth assignment x1 = F , x2 = T , x3 = F .

xit
j
k ; xit

j
k , by the above placement, we never have both vertices in K . Hence, there is no E3 edge with both endnodes

in K . And this ends the proof of Lemma 10. In Fig. 2 we give an example of the constructed instance (V; E1; E3) for
(2,1)-GRAPH SANDWICH PROBLEM, and of the (2,1) graph G given by the proof of Lemma 10.

3. (2; 2)-Graph Sandwich Problem

In this section we prove that the (2; 2)-GRAPH SANDWICH PROBLEM is NP-complete by reducing the NP-complete problem
3SAT to (2; 2)-GRAPH SANDWICH PROBLEM.

(2; 2)-GRAPH SANDWICH PROBLEM

Instance: Vertex set V , forced edge set E1, forbidden edge set E3.
Question: Is there a graph G = (V; E), such that E1 ⊆ E and E ∩ E3 = ∅, and G is (2; 2)?

Theorem 11. The (2; 2)-GRAPH SANDWICH PROBLEM is NP-complete.

Proof. In order to reduce 3SAT to (2; 2)-GRAPH SANDWICH PROBLEM we need to construct a particular instance (V; E1; E3)
of (2; 2)-GRAPH SANDWICH PROBLEM from a generic instance (X; C) of 3SAT, such that C is satis:able if and only if
(V; E1; E3) admits a sandwich graph G = (V; E) which is (2; 2).

3.1. Construction of particular instance of (2; 2)-GRAPH SANDWICH PROBLEM

The vertex set V contains: auxiliary sets of vertices B1={k1; k2; s11; s12; s21; s22} and B2={k3; k4; s31; s32; s41; s42}; for each
variable xi, 16 i6 n, two vertices xi, xi, corresponding to its literals and a vertex pi; for each clause cj = (lj1 ∨ lj2 ∨ lj3),
16 j6m, three corresponding vertices tj1, t

j
2, t

j
3. See Fig. 1, where solid edges denote forced E1-edges and dashed edges

denote forbidden E3-edges.
The Forced Edge Set E1 contains: sets of edges between auxiliary vertices F1={k1k2, k1s11; k1s12; s11s12; k2s21; k2s22; s21s22}

and F2 = {k3k4; k3s31; k3s32; s31s32, k4s41, k4s42, s41s42}; for each variable xi, 16 i6 n, the set {xis11, xis12, xipi, xipi}; for
each clause cj , 16 j6m, the set {tj1tj2; tj1tj3; tj2tj3}.

The Forbidden Edge Set E3 contains: sets of edges incident to auxiliary vertices F3 = {k1s21, k1s22, k2s11, k2s12, s11s21,
s11s22, s12s21, s12s22}, F4 = {k3s41, k3s42, k4s31, k4s32, s31s41, s31s42, s32s41, s32s42}, F5 = {uv: u∈B1 and v∈B2}, F6 =
{uv: u∈B2 and v∈V \ (B1 ∪ B2)}; for each variable xi, 16 i6 n, the set {xixi; pik2}; for each clause cj , 16 j6m,
{tj1lj1, tj2lj2, tj3lj3}.
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k4k3

s31 s41
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Fig. 3. (2; 2) Base graph—all non-represented edges are E3 edges.

Call (2; 2) Base graph the subgraph of G2 = (V; E2) induced by {k1, k2, s11, s12, s21, s22, k3, k4, s31, s32, s41, s42} (see
Fig. 3). As in the previous problem, we have two kinds of gadgets: Variable gadget (Fig. 1(VG)) and clause gadget
(Fig. 1(CG)). The special instance has a property similar to Theorem 5: if the particular instance (V; E1; E3) admits a
(2; 2) sandwich graph G = (V; E), then any (2; 2) partition (S1; S2; K1; K2) for G satis:es S1; S2; K1; K2 
= ∅. Without loss
of generality assume k1; k2 ∈K1, k3; k4 ∈K2, s11; s21; s31; s41 ∈ S1, s12; s22; s32; s42 ∈ S2. This implies K2 = {k3; k4}.

The proof now follows from Theorem 5 and the equivalence: the particular instance (V; E1; E3) admits a (2; 2) sandwich
graph G=(V; E) with (2; 2) partition (S1; S2; K1; K2) if and only if the particular instance (V−B2; E1−F2; E3−(F4∪F5∪F6))
admits a (2; 1) sandwich graph with (2; 1) partition (S1; S2; K).

4. (k; l)-bounded � Graph Sandwich Problem

In this section, we consider the complexity of the (k; l)-Graph Sandwich problem when restricted to inputs having G2

with bounded maximum degree.

(k; l)-BOUNDED � GRAPH SANDWICH PROBLEM ((k; l) − BQGSP)
Instance: Vertex set V , forced edge set E1, forbidden edge set E3, where G2 is a graph with no vertex degree exceeding

�.
Question: Is there a graph G = (V; E) such that E1 ⊆ E and E ∩ E3 = ∅ which is a (k; l) graph?
We completely classify the (k; l) − BQGSP as follows: (k; l) − BQGSP is polynomial for k6 2 or Q6 3, and

NP-complete otherwise.

Lemma 12. If (k; l)−BQGSP is solvable in polynomial time then the (k; l+1)−BQGSP is solvable in polynomial time.

Proof. Let (V; E1; E3) be an instance for (k; l + 1) − BQGSP. Suppose that there exists a polynomial time algorithm A
to solve the (k; l) − BQGSP. We observe that if there exists a sandwich graph for (V; E1; E3) which is (k; l + 1) then
a clique in G is also a clique in G2. Thus, in order to de:ne a polynomial time algorithm for (k; l + 1) − BQGSP we
proceed as follows: for each subset S with less than or equal to Q+ 1 vertices we verify if S induces a clique in G2. In
the aRrmative case we apply the algorithm A to test if there exists a sandwich graph for the instance (V \ S; E1; E3) of
(k; l) − BQGSP. Hence, we have designed an algorithm for (k; l+ 1) − BQGSP which runs in time O(nQ+1P), where P
is the order of the algorithm A.

Lemma 13. If k6 2, then (k; l) − BQGSP is solvable in polynomial time.

Proof. We argue by induction on l. As we said in the Introduction the (1; 0) and (2; 0)-Graph Sandwich Problems
are solvable in polynomial time, so are the corresponding problems BQGSP. Suppose that for k6 2 and l¿ 0 the
(k; l) − BQGSP is solvable in polynomial time. By Lemma 12 we have that the corresponding (k; l + 1) − BQGSP is a
polynomial time problem.

Now, consider k¿ 3. Note that, as a consequence of Brook’s theorem [5], (k; 0) graph recognition is polynomial when
restricted to inputs having Q6 3. This implies by Fact 2 that (k; 0) − B3GSP is solvable in polynomial time, and by
Lemma 12, (k; l)−B3GSP is also polynomial. However, by Garey et al. [9], (k; 0) graph recognition is NP-complete, even
when restricted to inputs having Q6 4, which implies by Fact 2 that (k; 0) − BQGSP is NP-complete, and as remarked
in [2,3], (k; l) − BQGSP is NP-complete, for Q¿ 4.
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5. Optimization versions of Graph Sandwich Problem for a Property .

In this section we consider two natural extensions for the decision version of Graph Sandwich Problem for a
Property >.

Let (V; E1; E2) be an instance of Graph Sandwich Decision Problem for a Property >. Let V ′ be a subset of V ; and
E1[V ′] and E2[V ′] denote, respectively, the subsets of E1 and E2 satisfying E1[V ′] = {uv∈E1: u∈V ′ and v∈V ′} and
E2[V ′] = {uv∈E2: u∈V ′ and v∈V ′}.

The proposed Optimization Versions consist in considering the maximum subset V \ V ′ of V , such that the graph
sandwich instance (V \ V ′; E1[V \ V ′]; E2[V \ V ′]) for property > has answer YES.

Note that with respect to 	-approximative algorithms for optimization problems a same decision problem can yield
diTerent optimization problems according to whether we are considering maximization or minimization versions. Next we
formally de:ne both a minimization and a maximization version for Graph Sandwich Problem for a Property >.

Version 1. MINIMIZATION VERSION OF GRAPH SANDWICH PROBLEM FOR A PROPERTY > (MIN->-GSP).
Instance: (V; E1; E2).
Goal: Minimize |V ′|; V ′ ⊆ V , such that (V \ V ′; E1[V \ V ′]; E2[V \ V ′]) has a sandwich graph satisfying property >.

Version 2. MAXIMIZATION VERSION OF GRAPH SANDWICH PROBLEM FOR A PROPERTY > (MAX->-GSP).
Instance: (V; E1; E2).
Goal: Maximize |V ′|; V ′ ⊆ V , such that (V ′; E1[V ′]; E2[V ′]) has a sandwich graph satisfying property >.

We denote the optimum value for the problems MIN->-GSP and MAX->-GSP by writing, respectively,
Optmin->-gsp(V; E

1; E2) and Optmax->-gsp(V; E
1; E2).

We observe that both optimization problems are not constrained to the property (k; l) graphs.
Next, we prove that the minimization problem MIN-(2; 1)-GSP corresponding to the Version 1 of graph sandwich

problem for the property (2; 1)-graphs is Max SNP-hard, i.e., there is an 	¿ 0, such that the existence of a 	-approximative
algorithm for this problem implies P=NP [1,16].

6. The Max SNP-hardness of MIN-(2; 1)-GSP

In order to establish that MIN-(2; 1)-GSP is Max SNP-hard, we use the concept of L-reductions of Papadimitriou and
Yannakakis [16], a special kind of reduction that preserves approximability. Let A and B be two optimization problems.
We say that A L-reduces to B if there are two polynomial-time algorithms f and g and positive constants ( and ), such
that for each instance I of A,

(1) Algorithm f produces an instance I ′ = f(I) of B such that the optima of I and I ′ satisfy OptB(I
′)6 (:OptA(I);

(2) Given any feasible solution of I ′ with cost c′, algorithm g produces a feasible solution of I with cost c such that
|c − OptA(I)|6 ):|c′ − OptB(I

′)|.

To prove that an optimization problem is Max SNP-hard, we need to L-reduce a suitable Max SNP-hard problem to it.
We prove that MIN-(2; 1)-GSP is Max SNP-hard by L-reducing to it the optimization version of a suitable restriction of
MAX3SAT. We have to strengthen the NP-completeness proof presented in Section 2, by considering the Max SNP-complete
problem MAX 3SAT O3 de:ned as follows [16]:

MAX 3SAT O3

Instance: Set U of variables, collection C of clauses over U such that each clause c∈C has |c| = 3 literals, and each
variable appears at most three times in the set of clauses.

Goal: Find a truth assignment for U which maximizes the number of clauses in C having at least one true literal.

6.1. The algorithm f

Let I =(U; C) be an instance of MAX 3SAT O3, where U has n variables and C has m clauses. Algorithm f produces, in
polynomial time on the size of I , an instance (V; E1; E3) of MIN-(2; 1)-GSP. The instance (V; E1; E3) is quite similar to the
NP-complete instance of (2; 1) decision version presented in Section 2. Roughly speaking, the Clause graphs are the same
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and the Base graph and the Variable graphs have their vertices replaced either by complete graphs or by independent sets.
In addition, an edge between two vertices is replaced by the set of all edges between the corresponding sets of vertices.

Next, we precisely de:ne the instance (V; E1; E3).

6.1.1. The set V
We have six auxiliary sets of vertices k1,k2,s11,s12, s21 and s22, each containing 3n vertices; for each variable xi; 16 i6 n,

we have three sets of vertices xi, xi and pi, each containing 3n vertices; for each clause ci = (lj1 ∨ lj2 ∨ lj3); 16 j6m, we
have three vertices tj1, t

j
2 and tj3.

For each j∈ {1; : : : ; m}, we call Clause gadget the subgraph of G2 = (V; E2) induced by {tj1; tj2; tj3}.

6.1.2. The sets E1 and E3

The Forced Edge Set E1 contains the following edges:

(1) If u; v∈V (k1), then uv∈E1,
(2) If u; v∈V (k2), then uv∈E1,
(3) If u∈V (k1) and v∈V (k2), then uv∈E1,
(4) If u∈V (k1) and v∈V (s11) or v∈V (s12), then uv∈E1,
(5) If u∈V (s11) and v∈V (s12), then uv∈E1,
(6) If u∈V (k2) and v∈V (s21) or v∈V (s22), then uv∈E1,
(7) If u∈V (s21) and v∈V (s22), then uv∈E1,
(8) For all i∈ {1; 2; 3; : : : ; n}, if u∈V (xi) and v∈V (pi), then uv∈E1,
(9) For all i∈ {1; 2; 3; : : : ; n}, if u∈V (xi) and v∈V (pi), then uv∈E1,

(10) If u; v are vertices of a Clause Gadget, then uv∈E1.

The Forbidden Edge Set E3 contains the following edges:

(1) If u; v∈V (s11), then uv∈E3,
(2) If u; v∈V (s12), then uv∈E3,
(3) If u; v∈V (s21), then uv∈E3,
(4) If u; v∈V (s22), then uv∈E3,
(5) For all i∈ {1; 2; 3; : : : ; n}, if u; v∈V (pi), then uv∈E3,
(6) For all i∈ {1; 2; 3; : : : ; n}, if u∈V (k1) and v∈V (pi), then uv∈E3,
(7) If u∈V (s11) or u∈V (s12) and v∈V (s21) or v∈V (s22), then uv∈E3,
(8) For all i∈ {1; 2; 3; : : : ; n}, if u∈V (xi) and v∈V (xi), then uv∈E3,
(9) For all j∈ {1; 2; 3; : : : ; m}, if clause cj = (lj1 ∨ lj2 ∨ lj3)∈C, then for all x∈V (lj1) t

j
1x∈E3, for all x∈V (lj2) t

j
2x∈E3

and for all x∈V (lj3) t
j
3x∈E3.

Note that, we have now as base graph the subgraph of G2 induced by the vertices in the sets k1; k2; s11; s12; s21 and
s22. Note that, k1 and k2 induce complete graphs in G1 and s11, s12, s21 and s22 are independent sets in G3. For each
i∈ {1; 2; 3; : : : ; n}, the variable gadget is now a subgraph of G2 induced by the vertices in the sets xi, xi and pi, where
xi and xi are independent sets in G1 but complete subgraphs of G2, whereas pi is an independent set in G3. For each
j∈ {1; 2; 3; : : : ; m}, the Clause gadget, a triangle of G1 induced by tj1; t

j
2; t

j
3, remains unchanged.

Lemma 14. If I = (U; C) is an instance of MAX 3SAT O3 with n variables and m clauses, then⌈n
3

⌉
6Optmax3sat O3

(I)6m6 3n:

Proof. Consider I = (U; C) an instance of MAX 3SAT O3 with |U |= n and |C|=m. Since each variable must have at least
one of its two literals occurring in the set of clauses, and since each clause has size 3, the number m of clauses satis:es
3m¿ n. Hence m is limited below by the least integer greater or equal to n=3. On the other hand, since each variable
occurs at most 3 times in the set of clauses, the number m of clauses satis:es 3m6 3n. Therefore we have the inequalities
�n=3�6m6 n, as required.
Now in order to establish the claimed bounds for Optmax3sat O3

(I), note :rst that Optmax3sat O3
(I)6m. Now to establish

the claimed lower bound, it is enough to exhibit a truth assignment for I with �n=3� satis:ed clauses. For each variable
ui ∈U , i∈ {1; 2; : : : ; n}, set ui = T , if and only if its positive literal occurs in C. Note that this truth assignment for U
can be de:ned in time polynomial in the size of I . Now to each variable ui we have a corresponding literal xi occurring
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in C with value true. Let k be the minimum number of clauses that :t those n literals with value true. Since each clause
has size 3, integer k is the least integer satisfying 3k¿ n, i.e., k = �n=3� is the least integer greater than or equal to n=3.
Hence, we have at least �n=3� satis:ed clauses, and we have the inequalities �n=3�6Optmax3sat O3

(I)6m, as required.

Lemma 15. Let I = (U; C) be a MAX 3SAT O3 instance, (V; E1; E2) be the MIN-(2; 1)-GSP instance yielded by algorithm
f from I = (U; C) and ,I be a feasible solution of MAX 3SAT O3 for I(U; C). Then, there is a feasible solution -V of
MIN-(2; 1)-GSP for (V; E1; E2) produced from ,I in polynomial time in the size of I , such that, |-V | = m− |,I |.

Proof. Consider a truth assignment ,I for I = (U; C). Let C′ ⊆ C the subset of satis:ed clauses of C. Then, the truth
assignment ,I is a satis:able truth assignment for the instance I ′ = (U; C′), with |,I | = |C′|. Hence, we can construct
V ′=-V , a feasible solution of MIN-(2; 1)-GSP for (V; E1; E2), by selecting one vertex of each clause graph corresponding
to each one of the m − |,I | non satis:ed clauses. This solution is feasible: since ,I is a satis:able truth assignment for
the instance I ′ = (U; C′), we can place all the vertices of V (k1) and V (k2) in K , place all the vertices of V (s11) and
V (s21) in S1 and place all the vertices of V (s12) and V (s22) in S2. In addition, for i∈ {1; : : : ; n}, if xi is false then place
all the vertices of V (xi) in K , all the vertices of V (xi) in S1, and all the vertices of V (pi) in S2. Otherwise, if xi is true,
then place all the vertices of V (xi) in S2, all the vertices of V (xi) in K , and all the vertices of V (pi) in S1. For every
true clause of C the vertices of the corresponding Clause graph can be placed one in K and the other 2 vertices one into
each of the 2 independent sets. As for each non satis:ed clause of C we remove one vertex of the corresponding Clause
gadget, we can place the remaining 2 vertices one in S1 and the other in S2. Thus, -V is feasible and |-V |=m−|,I |.

Claim 16. Let I = (U; C) be a MAX 3SAT O3 instance, (V; E1; E2) be the MIN-(2; 1)-GSP instance yielded by algorithm
f from I = (U; C) and -V be a feasible solution of MIN-(2; 1)-GSP for (V; E1; E2), where |-V |¡ 3n and S1; S2; K be
the (2; 1)-partition for the sandwich graph de>ned by the removal of -V from (V; E1; E2). Then the truth assignment
,I , where the variable xi = F if and only if there is a vertex of the set xi in K is well de>ned.

Proof. First of all, note that as |-V |¡ 3n, there are vertices of xi; xi and pi that are not removed by -V . It is enough to
prove that if a non-removed vertex of the set xi is placed in K , then all non-removed vertices of the set are also placed
in K . Suppose there are two non-removed vertices u; v of the set xi, such that u is placed in K and v is not placed in K .
By Claim 8, vertex v is placed in S2, and then all vertices of the set pi are placed in S1, because each one of them is
adjacent to v. Now Claim 8 says all non-removed vertices of the set xi must be placed in K ∪ S1, a contradiction because
each one of them is non adjacent to u and each one of them is adjacent to the vertices of pi.

Lemma 17. Let I = (U; C) be a MAX 3SAT O3 instance, (V; E1; E2) be the MIN-(2; 1)-GSP instance yielded by algorithm
f from I = (U; C) and -V be a feasible solution of MIN-(2; 1)-GSP for (V; E1; E2). Then, there is a feasible solution
,I of MAX 3SAT O3 for I(U; C) produced from -V in polynomial time in the size of I , such that, |,I |¿m− |-V |.

Proof. By Lemma 14, we have that m6 3n. Consider a feasible solution -V of MIN-(2; 1)-GSP for (V; E1; E2). We
consider two cases, according to |-V |¿ 3n or |-V |¡ 3n.

In the :rst case, when |-V |¿ 3n, which implies m − |-V |6 0. Hence, for any truth assignment ,I for I(U; C) the
inequality |,I |¿m− |-V | clearly holds.

In the second case, when |-V |¡ 3n, as -V is feasible, and each one of the graphs k1; k2; s11; s12; s21 and s22, and xi; xi
and pi has 3n vertices, there is at least one vertex of each of them out of -V . So the non-removed vertices of the literal
graphs xi and xi, according Claim 16 de:ne a truth assignment ,I where c= |,I | clauses are satis:ed. This truth assignment
forces that each one of the m− c non satis:able clauses requires one additional vertex of the corresponding Clause graph
in -V . Hence, |-V |¿m− c = m− |,I |.

Theorem 18 (fundamental property). Optmin-(2;1)-gsp(V; E
1; E2) = m− Optmax3sat O3

(I).

Proof. By Lemma 17, there is a truth assignment ,I to I =(U; C), such that we have Optmin-(2;1)-gsp(V; E
1; E2)¿m−|,I |.

Since, MAX 3SAT O3 is a maximization problem, m − |,I |¿m − Optmax3sat O3
(I), which gives the inequality Optmin-(2;1)-gsp

(V; E1; E2)¿m−Optmax3sat O3
(I). By Lemma 15, there is a feasible solution -V of MIN-(2; 1)-GSP for (V; E1; E2) such that,

Optmax3sat O3
(I)=m−|-V |. As MIN-(2; 1)-GSP is a minimization problem, we have that m−-V 6Optmin-(2;1)-gsp(V; E

1; E2),

which gives the inequality Optmax3sat O3
(I)6m−Optmin-(2;1)-gsp(V; E

1; E2). Thus, we conclude that Optmin-(2;1)-gsp(V; E
1; E2)=

m− Optmax3sat O3
(I).
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Corollary 19. MIN-(2; 1)-GSP is Max SNP-hard.

Proof. We L-reduce MAX 3SAT O3 to MIN-(2; 1)-GSP. We start the L-reduction by setting algorithm f de:ned in Section 6.1
to be the algorithm f of the L-reduction. By Lemma 14 and Fundamental Theorem 18, we have that Optmin-(2;1)-gsp(V; E

1; E2)
=m− Optmax3sat O3

(I)6 3n− n
3 =

8n
3 6 8Optmax3sat O3

(I), Hence, we can set ( = 8.

Given a feasible solution -V of MIN-(2; 1)-GSP for (V; E1; E2), Lemma 17 says that a feasible solution ,I of I(U; C)
can be produced from -V in polynomial time in the size of I , such that, |,I |¿m − |-V |. Hence, |Optmax3sat O3

(I) −
|,I‖6 |m− Optmin-(2;1)-gsp(V; E

1; E2) − (m− |-V |)| = ‖-V | − Optmin-(2;1)-gsp(V; E
1; E2)|, showing that ) = 1 suRces.

7. Conclusion

We proved that the (k; l)-Graph Sandwich Problem is NP-complete for the cases k = 1 and l= 2; k = 2 and l= 1; or
k= l=2. We note that the basic idea of the construction of the particular instance of these problems is a simple necessary
condition: if a graph is (k; l) then it does not contain l + 1 independent cliques of size k + 1. Recently, this condition
was established suRcient for the class of the Chordal graphs, as proved by Hell et al. [13]. In addition, we considered
the degree Q constraint subproblem (k; l)− BQGSP and completely classi:ed the problem as follows: (k; l)− BQGSP is
a polynomial problem for k6 2 or Q6 3; and NP-complete otherwise.

We observe that it is not possible to use our L-reduction transformation to prove that the maximization version for Graph
Sandwich Problem for the property (k; l) graphs (MAX-(2; 1)-GSP) is a Max SNP-hard problem. Note that, in our transfor-
mation we have an instance I =(U; C) with n variables and each variable corresponds to 9n additional vertices in the cor-
responding instance of (V; E1; E2). The structure of (V; E1; E2) implies the existence of a feasible solution with at least 9n2

vertices. Hence, we have an optimum value of MAX-(2; 1)-GSP for (V; E1; E2) of order /(n2). As Optmax3sat O3
(I)=O(n), it is

impossible to de:ne a positive constant ( for the :rst L-reduction inequality: Optmin-(2;1)-gsp(V; E
1; E2)6 (Optmax3sat O3

(I).
We conclude by noting that analogous arguments show that MIN-(1,2)-GSP and MIN-(2,2)-GSP are Max SNP-hard
problems.
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