2,813 research outputs found

    !-Graphs with Trivial Overlap are Context-Free

    Full text link
    String diagrams are a powerful tool for reasoning about composite structures in symmetric monoidal categories. By representing string diagrams as graphs, equational reasoning can be done automatically by double-pushout rewriting. !-graphs give us the means of expressing and proving properties about whole families of these graphs simultaneously. While !-graphs provide elegant proofs of surprisingly powerful theorems, little is known about the formal properties of the graph languages they define. This paper takes the first step in characterising these languages by showing that an important subclass of !-graphs--those whose repeated structures only overlap trivially--can be encoded using a (context-free) vertex replacement grammar.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    Boundary graph grammars with dynamic edge relabeling

    Get PDF
    AbstractMost NLC-like graph grammars generate node-labeled graphs. As one of the exceptions, eNCE graph grammars generate graphs with edge labels as well. We investigate this type of graph grammar and show that the use of edge labels (together with the NCE feature) is responsible for some new properties. Especially boundary eNCE (B-eNCE) grammars are considered. First, although eNCE grammars have the context-sensitive feature of “blocking edges,” we show that B-eNCE grammars do not. Second, we show the existence of a Chomsky normal form and a Greibach normal form for B-eNCE grammars. Third, the boundary eNCE languages are characterized in terms of regular tree and string languages. Fourth, we prove that the class of (boundary) eNCE languages properly contains the closure of the class of (boundary) NLC languages under node relabelings. Analogous results are shown for linear eNCE grammars

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management

    A language theoretic analysis of combings

    Full text link
    A group is combable if it can be represented by a language of words satisfying a fellow traveller property; an automatic group has a synchronous combing which is a regular language. This paper gives a systematic analysis of the properties of groups with combings in various formal language classes, and of the closure properties of the associated classes of groups. It generalises previous work, in particular of Epstein et al. and Bridson and Gilman.Comment: DVI and Post-Script files only, 21 pages. Submitted to International Journal of Algebra and Computatio

    Type-driven semantic interpretation and feature dependencies in R-LFG

    Full text link
    Once one has enriched LFG's formal machinery with the linear logic mechanisms needed for semantic interpretation as proposed by Dalrymple et. al., it is natural to ask whether these make any existing components of LFG redundant. As Dalrymple and her colleagues note, LFG's f-structure completeness and coherence constraints fall out as a by-product of the linear logic machinery they propose for semantic interpretation, thus making those f-structure mechanisms redundant. Given that linear logic machinery or something like it is independently needed for semantic interpretation, it seems reasonable to explore the extent to which it is capable of handling feature structure constraints as well. R-LFG represents the extreme position that all linguistically required feature structure dependencies can be captured by the resource-accounting machinery of a linear or similiar logic independently needed for semantic interpretation, making LFG's unification machinery redundant. The goal is to show that LFG linguistic analyses can be expressed as clearly and perspicuously using the smaller set of mechanisms of R-LFG as they can using the much larger set of unification-based mechanisms in LFG: if this is the case then we will have shown that positing these extra f-structure mechanisms is not linguistically warranted.Comment: 30 pages, to appear in the the ``Glue Language'' volume edited by Dalrymple, uses tree-dvips, ipa, epic, eepic, fullnam

    Graph layout for applications in compiler construction

    Get PDF
    We address graph visualization from the viewpoint of compiler construction. Most data structures in compilers are large, dense graphs such as annotated control flow graph, syntax trees, dependency graphs. Our main focus is the animation and interactive exploration of these graphs. Fast layout heuristics and powerful browsing methods are needed. We give a survey of layout heuristics for general directed and undirected graphs and present the browsing facilities that help to manage large structured graph

    Comparing and evaluating extended Lambek calculi

    Get PDF
    Lambeks Syntactic Calculus, commonly referred to as the Lambek calculus, was innovative in many ways, notably as a precursor of linear logic. But it also showed that we could treat our grammatical framework as a logic (as opposed to a logical theory). However, though it was successful in giving at least a basic treatment of many linguistic phenomena, it was also clear that a slightly more expressive logical calculus was needed for many other cases. Therefore, many extensions and variants of the Lambek calculus have been proposed, since the eighties and up until the present day. As a result, there is now a large class of calculi, each with its own empirical successes and theoretical results, but also each with its own logical primitives. This raises the question: how do we compare and evaluate these different logical formalisms? To answer this question, I present two unifying frameworks for these extended Lambek calculi. Both are proof net calculi with graph contraction criteria. The first calculus is a very general system: you specify the structure of your sequents and it gives you the connectives and contractions which correspond to it. The calculus can be extended with structural rules, which translate directly into graph rewrite rules. The second calculus is first-order (multiplicative intuitionistic) linear logic, which turns out to have several other, independently proposed extensions of the Lambek calculus as fragments. I will illustrate the use of each calculus in building bridges between analyses proposed in different frameworks, in highlighting differences and in helping to identify problems.Comment: Empirical advances in categorial grammars, Aug 2015, Barcelona, Spain. 201
    • …
    corecore