5,781 research outputs found

    Decomposing Cubic Graphs into Connected Subgraphs of Size Three

    Get PDF
    Let S={K1,3,K3,P4}S=\{K_{1,3},K_3,P_4\} be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph GG into graphs taken from any non-empty SSS'\subseteq S. The problem is known to be NP-complete for any possible choice of SS' in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of SS'. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of SS'-decomposable cubic graphs in some cases.Comment: to appear in the proceedings of COCOON 201

    Transversal designs and induced decompositions of graphs

    Get PDF
    We prove that for every complete multipartite graph FF there exist very dense graphs GnG_n on nn vertices, namely with as many as (n2)cn{n\choose 2}-cn edges for all nn, for some constant c=c(F)c=c(F), such that GnG_n can be decomposed into edge-disjoint induced subgraphs isomorphic to~FF. This result identifies and structurally explains a gap between the growth rates O(n)O(n) and Ω(n3/2)\Omega(n^{3/2}) on the minimum number of non-edges in graphs admitting an induced FF-decomposition

    Between Treewidth and Clique-width

    Full text link
    Many hard graph problems can be solved efficiently when restricted to graphs of bounded treewidth, and more generally to graphs of bounded clique-width. But there is a price to be paid for this generality, exemplified by the four problems MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set that are all FPT parameterized by treewidth but none of which can be FPT parameterized by clique-width unless FPT = W[1], as shown by Fomin et al [7, 8]. We therefore seek a structural graph parameter that shares some of the generality of clique-width without paying this price. Based on splits, branch decompositions and the work of Vatshelle [18] on Maximum Matching-width, we consider the graph parameter sm-width which lies between treewidth and clique-width. Some graph classes of unbounded treewidth, like distance-hereditary graphs, have bounded sm-width. We show that MaxCut, Graph Coloring, Hamiltonian Cycle and Edge Dominating Set are all FPT parameterized by sm-width

    A Generalization of the Hamilton-Waterloo Problem on Complete Equipartite Graphs

    Full text link
    The Hamilton-Waterloo problem asks for which ss and rr the complete graph KnK_n can be decomposed into ss copies of a given 2-factor F1F_1 and rr copies of a given 2-factor F2F_2 (and one copy of a 1-factor if nn is even). In this paper we generalize the problem to complete equipartite graphs K(n:m)K_{(n:m)} and show that K(xyzw:m)K_{(xyzw:m)} can be decomposed into ss copies of a 2-factor consisting of cycles of length xzmxzm; and rr copies of a 2-factor consisting of cycles of length yzmyzm, whenever mm is odd, s,r1s,r\neq 1, gcd(x,z)=gcd(y,z)=1\gcd(x,z)=\gcd(y,z)=1 and xyz0(mod4)xyz\neq 0 \pmod 4. We also give some more general constructions where the cycles in a given two factor may have different lengths. We use these constructions to find solutions to the Hamilton-Waterloo problem for complete graphs

    On the Generalised Colouring Numbers of Graphs that Exclude a Fixed Minor

    Full text link
    The generalised colouring numbers colr(G)\mathrm{col}_r(G) and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as a generalisation of the usual colouring number, and have since then found important theoretical and algorithmic applications. In this paper, we dramatically improve upon the known upper bounds for generalised colouring numbers for graphs excluding a fixed minor, from the exponential bounds of Grohe et al. to a linear bound for the rr-colouring number colr\mathrm{col}_r and a polynomial bound for the weak rr-colouring number wcolr\mathrm{wcol}_r. In particular, we show that if GG excludes KtK_t as a minor, for some fixed t4t\ge4, then colr(G)(t12)(2r+1)\mathrm{col}_r(G)\le\binom{t-1}{2}\,(2r+1) and wcolr(G)(r+t2t2)(t3)(2r+1)O(rt1)\mathrm{wcol}_r(G)\le\binom{r+t-2}{t-2}\cdot(t-3)(2r+1)\in\mathcal{O}(r^{\,t-1}). In the case of graphs GG of bounded genus gg, we improve the bounds to colr(G)(2g+3)(2r+1)\mathrm{col}_r(G)\le(2g+3)(2r+1) (and even colr(G)5r+1\mathrm{col}_r(G)\le5r+1 if g=0g=0, i.e. if GG is planar) and wcolr(G)(2g+(r+22))(2r+1)\mathrm{wcol}_r(G)\le\Bigl(2g+\binom{r+2}{2}\Bigr)\,(2r+1).Comment: 21 pages, to appear in European Journal of Combinatoric
    corecore