26,077 research outputs found

    Anaplastic carcinoma of the pancreas producing granulocyte-colony stimulating factor: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The granulocyte-colony stimulating factor-producing tumor was first reported in 1977, however, anaplastic pleomorphic type carcinoma of the pancreas producing granulocyte-colony stimulating factor is still rare.</p> <p>Case presentation</p> <p>A 63-year-old man was admitted to our hospital with body weight loss (-10 kg during months) and upper abdominal pain from 3 weeks. Abdominal computed tomography demonstrated a pancreatic tumor 10 cm in size and multiple low-density areas in the liver. On admission, the peripheral leukocyte count was elevated to 91,500/mm<sup>3 </sup>and the serum concentration of granulocyte-colony stimulating factor was 134 pg/mL (normal, < 18.1 pg/mL). Based on liver biopsy findings, the tumor was classified as an anaplastic pleomorphic-type carcinoma. Immunohistochemical staining showed that pancreatic carcinoma cells were positive for granulocyte-colony stimulating factor. The patient developed interstitial pneumonia, probably caused by granulocyte-colony stimulating factor, and died 11 days after admission.</p> <p>Conclusion</p> <p>This is a rare case report of anaplastic pleomorphic-type carcinoma of the pancreas producing granulocyte-colony stimulating factor and confirmed by immunohistochemistry.</p

    Relationship between the cAMP levels in leukocytes and the cytokine balance in patients surviving gram negative bacterial pneumonia

    Get PDF
    Lipopolysaccharide-stimulated leukocytes secrete proinflammatory cytokines including tumor necrosis factor-α and interleukin-12. Over-activation of host defense systems may result in severe tissue damage and requires regulation. Granulocyte colony-stimulating factor and interleukin-10 are candidate cytokines for inducing tolerance to lipopolysaccharide re-stimulation. We compared cytokines secreted by lipopolysaccharide-stimulated blood cells from patients who had survived gram negative bacterial pneumonia (Pseudomonas aeruginosa, Escherichia coli or Proteus mirabilis, n = 26) and age-matched healthy volunteers (n = 18). Interleukin-12p70 and tumor necrosis factor-α expression was significantly lower in patients (p = 0.0039 and p<0.001) compared to healthy controls, while granulocyte colony-stimulating factor production was markedly higher in patients (p<0.001). Levels of interleukin-10 were comparable. Granulocyte colony-stimulating factor expression was inversely correlated with interleukin-12p70 (R = −0.71, p<0.001) and tumor necrosis factor-α (R = −0.64, p<0.001) expression; interleukin-10 showed no significant correlation. In unstimulated leukocytes from patients, cAMP levels were significantly raised (p = 0.020) and were correlated inversely with interleukin-12p70 levels (R = −0.81, p<0.001) and directly with granulocyte colony-stimulating factor (R = 0.72, p = 0.0020), matrix metalloproteinase-9 (R = 0.67, p = 0.0067) and interleukin-10 (R = 0.54, p = 0.039) levels. Our results demonstrate that granulocyte colony-stimulating factor production by lipopolysaccharide-stimulated leukocytes is a useful indicator of tolerance induction in surviving pneumonia patients and that measuring cAMP in freshly isolated leukocytes may also be clinically significant

    Granulocyte colony-stimulating factor and leukemogenesis.

    Get PDF
    The granulocyte colony-stimulating factor (G-CSF) plays an important role in normal granulopoiesis. Its functions are mediated by specific receptors on the surface of responsive cells and, upon ligand binding, several cytoplasmic tyrosine kinases are activated. The cytoplasmic region proximal to the membrane of the G-CSF receptor (G-CSF-R) transduces proliferative and survival signals, whereas the distal carboxy-terminal region transduces maturation signals and suppresses the receptor's proliferative signals. Mutations in the G-CSF-R gene resulting in truncation of the carboxy-terminal region have been detected in a subset of patients with severe congenital neutropenia who developed acute myelogenous leukemia (AML). In addition, the AML1-ETO fusion protein, expressed in leukemic cells harboring the t(8;21), disrupt the physiological function of transcription factors such as C/EBPalpha and C/EBPepsilon, which in turn deregulate G-CSF-R expression. The resulting high levels of G-CSF-R and G-CSF-dependent cell proliferation may be associated with pathogenesis of AML with t(8;21). Moreover, in vitro and in vivo studies demonstrated that G-CSF may act as a co-stimulus augmenting the response of PML-RARalpha acute promyelocytic leukemia cells to all-trans-retinoic acid treatment. Finally, in the PLZF-RARalpha acute promyelocytic leukemia transgenic model, G-CSF deficiency suppressed leukemia development. Altogether, these data suggest that the G-CSF signaling pathway may play a role in leukemogenesis

    Toxicity and activity of docetaxel in anthracycline-pretreated breast cancer patients: a phase II study

    Get PDF
    : Docetaxel has proven effective in advanced breast cancer. Myelosuppression and cumulative fluid retention syndrome are troublesome, potentially avoidable toxicities. In this consecutive cohort study, docetaxel (100 mg/m2 by 1 hour i.v. infusion, q3 weeks) activity and toxicity was explored in 56 anthracycline-pretreated patients (eligible: 55: median age: 51 years [range: 28-68 years]; median performance status: 0 [range: 0-3]) with metastatic breast cancer, using two different granulocyte colony-stimulating factor and steroid pre- and postmedication schedules. Twenty-nine patients (group A) received a 5-day oral prednisone premedication, and 26 (group B) received 4-day low-dose i.m. dexamethasone; group B patients also received prophylactic granulocyte colony-stimulating factor. All patients were evaluable for toxicity and 53 for response. Prophylactic granulocyte colony-stimulating factor significantly lowered the incidence of grade III-IV neutropenia and neutropenic fever (p = 0.0001 and 0.01, respectively). The incidence of moderate-severe fluid retention syndrome was lower in patients receiving i.m. dexamethasone (p = 0.08). Overall response rate was 53% (4 complete responses/24 partial responses, 95% confidence interval 39.4-66.2%); 32% have stable disease and 15% progressive disease. In 21 anthracycline-refractory/resistant patients, as well as in 10 paclitaxel-pretreated patients, the overall response rate was 50%. Docetaxel is highly active in anthracycline- and paclitaxel-pretreated metastatic breast cancer, with manageable toxicity. Optimal use of both granulocyte colony-stimulating factor support and steroid premedication deserves further investigation

    The preparation of 6x His-tagged granulocyte colony stimulating factor using an improved in vitro expression

    Get PDF
    An improved in vitro expression system called the rapid translation system (RTS) was used in this study for the in vitro biosynthesis of 6x His tagged granulocyte colony stimulating factor (6x His-tagged granulocyte colony-stimulating factor (GCSF)). This was done to overcome the problems associated with traditional cell based biotechnology. The study involved the preparation of template DNA for cell-free protein synthesis through gene amplification of open reading frame (ORF) of hGCSFb, cloning in pIVEX 2.4d vector and transformation of the produced construct in chemically competent Escherichia coli DH 5 α cells. A cell free protein synthesis system, RTS 100 E. coli HY kit, was tested for 6x His tagged G-CSF protein synthesis. Protein purification was done using Ni-NTA chromatography. Protein production was detected by two methods electrophoretically by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunologically by dot blotting immunodetection. The use of these methods yielded purified 6xHis-tagged GCSF with a concentration of about 250 Όg/ml RTSreaction.Keywords: Granulocyte colony stimulating factor, in vitro expression system, RTS system

    The Granulocyte colony-stimulating factor produces long-term changes on gene and miRNA expression profiles in CD34+ cells from healthy donors

    Get PDF
    Granulocyte colony-stimulating factor is the most commonly used cytokine for the mobilization of hematopoietic progenitor cells from healthy donors for allogeneic stem cell transplantation. Although the administration of this cytokine is considered safe, knowledge about its long-term effects, especially in hematopoietic progenitor cells, is limited. On this background, the aim of our study was to analyze whether or not granulocyte colony-stimulating factor induces changes in gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors, and to determine whether or not these changes persist in the long-term. For this purpose, we analyzed the whole genome expression profile and the expression of 384 microRNA in CD34(+) cells isolated from peripheral blood of six healthy donors, before mobilization and at 5, 30 and 365 days after mobilization with granulocyte colony-stimulating factor. Six microRNA were differentially expressed at all time points analyzed after mobilization treatment as compared to the expression in samples obtained before exposure to the drug. In addition, 2424 genes were also differentially expressed for at least 1 year after mobilization. Of interest, 109 of these genes are targets of the differentially expressed microRNA also identified in this study. These data strongly suggest that granulocyte colony-stimulating factor modifies gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors. Remarkably, some changes are present from early time-points and persist for at least 1 year after exposure to the drug. This effect on hematopoietic progenitor cells has not been previously reported

    EFFECT OF POLYSORBATE-80 CONCENTRATION ON G-CSF FORMULATION USING LIQUID CHROMATOGRAPHY

    Get PDF
    Objective: The aim of the study was to find the dual effects of polysorbate-80 concentration on oxidation and aggregation in the formulation of granulocyte colony stimulating factor. Methods: The effect of polysorbate-80 at different concentration was monitored and analyzed using high performance liquid chromatography. Oxidative degradation and aggregate generation was studied using reverse phase and size exclusion chromatography method respectively. Results: With increase in concentration of polysorbate-80 the amount of oxidation as well as aggregate formation increases in a concentration dependent manner. The aggregates present at higher concentration of polysorbate-80 formulation are not found with low concentration or without polysorbate-80. This result shows that higher concentration of Tween-80 force the formation of oligomers and leads to increased level of oxidation of granulocyte colony stimulating factor. Conclusion: The dual effect of aggregation and oxidation of polysorbate-80 on the recombinant granulocyte colony stimulating factor indicate that during formulation development studies it is crucial to evaluate the amount of polysorbate-80 to be used in the formulation

    Phase I study of the combination of losoxantrone and cyclophosphamide in patients with refractory solid tumours

    Get PDF
    Losoxantrone is a DNA intercalator that was developed with the potential to replace anthracyclines. The recommended single agent dose of losoxantrone is 50 mg m−2 every 3 weeks. We conducted a phase I study of losoxantrone and a fixed dose of cyclophosphamide on a q3 weekly schedule. Forty-nine patients were enrolled, of which 46 were evaluable for toxicity. The dose-limiting toxicity was neutropenia at the maximum tolerable losoxantrone dose of 45 mg m−2. With granulocyte colony-stimulating factor support, significant further dose escalation of losoxantrone was achieved. Cardiotoxicity was seen with cumulative dosing. Pharmacokinetics of losoxantrone revealed linear kinetics and triphasic clearance, with significant interpatient variability. No objective responses were seen in this study. Neutropenia was dose-limiting in this combination with or without granulocyte colony-stimulating factor support. The recommended dose for further testing is cyclophosphamide 500 mg m−2 followed by losoxantrone 95 mg m−2 with granulocyte colony-stimulating factor support
    • 

    corecore