47,380 research outputs found

    On the explanatory depth and pragmatic value of coarse-grained, probabilistic, causal explanations

    Get PDF
    This article considers the thesis that a more proportional relationship between a cause and its effect yields a more abstract causal explanation of that effect, thereby producing a deeper explanation. This thesis has important implications for choosing the optimal granularity of explanation for a given explanandum. In this article, I argue that this thesis is not generally true of probabilistic causal relationships. In light of this finding, I propose a pragmatic measure of explanatory depth. This measure uses a decision-theoretic model of information pricing to determine the optimal granularity of explanation for a given explanandum, agent, and decision problem

    The problem of granularity for scientific explanation

    Get PDF
    This dissertation aims to determine the optimal level of granularity for the variables used in probabilistic causal models. These causal models are useful for generating explanations in a number of scientific contexts. In Chapter 1, I argue that there is rarely a unique level of granularity at which a given phenomenon can be causally explained, thereby rejecting various causal exclusion arguments. In Chapter 2, I consider several recent proposals for measuring the explanatory power of causal explanations, and show that these measures fail to track the comparative depth of explanations given at different levels of granularity. In Chapter 3, I offer a pragmatic account of how to partition the measure space of a causal variable so as to optimally explain its effect. My account uses the decision-theoretic notion of value of information, and indexes the relative depth of an explanation to a particular agent faced with a particular decision problem. Chapter 4 applies this same decisiontheoretic framework to answer the epistemic question of how to discover constitutive relationships in nature. In Chapter 5, I describe the formal details of the relationship between random variables that are meant to be coarse-grained and fine-grained representations of the same type of phenomenon. I use this formal framework to rebut a popular argument for the view that special science probabilities can be objective chances. Chapter 6 discusses challenges related to the causal interpretation of Bayes nets that use imprecise rather than precise probabilities

    KInNeSS: A Modular Framework for Computational Neuroscience

    Full text link
    Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.Center for Excellence for Learning Education, Science, and Technology (SBE-0354378); Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Approximate Causal Abstraction

    Get PDF
    Scientific models describe natural phenomena at different levels of abstraction. Abstract descriptions can provide the basis for interventions on the system and explanation of observed phenomena at a level of granularity that is coarser than the most fundamental account of the system. Beckers and Halpern (2019), building on work of Rubenstein et al. (2017), developed an account of abstraction for causal models that is exact. Here we extend this account to the more realistic case where an abstract causal model offers only an approximation of the underlying system. We show how the resulting account handles the discrepancy that can arise between low- and high-level causal models of the same system, and in the process provide an account of how one causal model approximates another, a topic of independent interest. Finally, we extend the account of approximate abstractions to probabilistic causal models, indicating how and where uncertainty can enter into an approximate abstraction

    Central peak position in magnetization loops of high-TcT_c superconductors

    Full text link
    Exact analytical results are obtained for the magnetization of a superconducting thin strip with a general behavior J_c(B) of the critical current density. We show that within the critical-state model the magnetization as function of applied field, B_a, has an extremum located exactly at B_a=0. This result is in excellent agreement with presented experimental data for a YBCO thin film. After introducing granularity by patterning the film, the central peak becomes shifted to positive fields on the descending field branch of the loop. Our results show that a positive peak position is a definite signature of granularity in superconductors.Comment: $ pages, 6 figure

    Reflective visualization and verbalization of unconscious preference

    Full text link
    A new method is presented, that can help a person become aware of his or her unconscious preferences, and convey them to others in the form of verbal explanation. The method combines the concepts of reflection, visualization, and verbalization. The method was tested in an experiment where the unconscious preferences of the subjects for various artworks were investigated. In the experiment, two lessons were learned. The first is that it helps the subjects become aware of their unconscious preferences to verbalize weak preferences as compared with strong preferences through discussion over preference diagrams. The second is that it is effective to introduce an adjustable factor into visualization to adapt to the differences in the subjects and to foster their mutual understanding.Comment: This will be submitted to KES Journa
    • …
    corecore