6,386 research outputs found

    Grammatical Error Correction: A Survey of the State of the Art

    Full text link
    Grammatical Error Correction (GEC) is the task of automatically detecting and correcting errors in text. The task not only includes the correction of grammatical errors, such as missing prepositions and mismatched subject-verb agreement, but also orthographic and semantic errors, such as misspellings and word choice errors respectively. The field has seen significant progress in the last decade, motivated in part by a series of five shared tasks, which drove the development of rule-based methods, statistical classifiers, statistical machine translation, and finally neural machine translation systems which represent the current dominant state of the art. In this survey paper, we condense the field into a single article and first outline some of the linguistic challenges of the task, introduce the most popular datasets that are available to researchers (for both English and other languages), and summarise the various methods and techniques that have been developed with a particular focus on artificial error generation. We next describe the many different approaches to evaluation as well as concerns surrounding metric reliability, especially in relation to subjective human judgements, before concluding with an overview of recent progress and suggestions for future work and remaining challenges. We hope that this survey will serve as comprehensive resource for researchers who are new to the field or who want to be kept apprised of recent developments

    Artificial Error Generation with Machine Translation and Syntactic Patterns.

    Get PDF
    Shortage of available training data is holding back progress in the area of automated error detection. This paper investigates two alternative methods for artificially generating writing errors, in order to create additional resources. We propose treating error generation as a machine translation task, where grammatically correct text is translated to contain errors. In addition, we explore a system for extracting textual patterns from an annotated corpus, which can then be used to insert errors into grammatically correct sentences. Our experiments show that the inclusion of artificially generated errors significantly improves error detection accuracy on both FCE and CoNLL 2014 datasets.Comment: The 12th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2017

    Why We Need New Evaluation Metrics for NLG

    Full text link
    The majority of NLG evaluation relies on automatic metrics, such as BLEU . In this paper, we motivate the need for novel, system- and data-independent automatic evaluation methods: We investigate a wide range of metrics, including state-of-the-art word-based and novel grammar-based ones, and demonstrate that they only weakly reflect human judgements of system outputs as generated by data-driven, end-to-end NLG. We also show that metric performance is data- and system-specific. Nevertheless, our results also suggest that automatic metrics perform reliably at system-level and can support system development by finding cases where a system performs poorly.Comment: accepted to EMNLP 201

    Detecting grammatical errors with treebank-induced, probabilistic parsers

    Get PDF
    Today's grammar checkers often use hand-crafted rule systems that define acceptable language. The development of such rule systems is labour-intensive and has to be repeated for each language. At the same time, grammars automatically induced from syntactically annotated corpora (treebanks) are successfully employed in other applications, for example text understanding and machine translation. At first glance, treebank-induced grammars seem to be unsuitable for grammar checking as they massively over-generate and fail to reject ungrammatical input due to their high robustness. We present three new methods for judging the grammaticality of a sentence with probabilistic, treebank-induced grammars, demonstrating that such grammars can be successfully applied to automatically judge the grammaticality of an input string. Our best-performing method exploits the differences between parse results for grammars trained on grammatical and ungrammatical treebanks. The second approach builds an estimator of the probability of the most likely parse using grammatical training data that has previously been parsed and annotated with parse probabilities. If the estimated probability of an input sentence (whose grammaticality is to be judged by the system) is higher by a certain amount than the actual parse probability, the sentence is flagged as ungrammatical. The third approach extracts discriminative parse tree fragments in the form of CFG rules from parsed grammatical and ungrammatical corpora and trains a binary classifier to distinguish grammatical from ungrammatical sentences. The three approaches are evaluated on a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting common grammatical errors into the British National Corpus. The results are compared to two traditional approaches, one that uses a hand-crafted, discriminative grammar, the XLE ParGram English LFG, and one based on part-of-speech n-grams. In addition, the baseline methods and the new methods are combined in a machine learning-based framework, yielding further improvements

    A methodological approach on the creation of trustful test suites for grammar error detection

    Get PDF
    Machine translation’s research has been expanding over time and so has the need to automatically detect and correct errors in texts. As such, Unbabel combines machine translation with human editors in post-edition to provide high quality translations. In order to assist post-editors in these tasks, a proprietary error detection tool called Smartcheck was developed by Unbabel to identify errors and suggest corrections. The state-of-the-art method of identifying translation errors depends on curated annotated texts (associated with error-type categories), which are fed to machine translation systems as their evaluation standard, i.e. the test suites to evaluate a system’s error detection accuracy. It is commonly assumed that evaluation sets are reliable and representative of the content the systems translate, leading to the assumption that the root problem usually relates to grammar-checking rules. However, the issue may instead lie in the quality of the evaluation set. If so, then the decisions made upon evaluation will possibly even have the opposite effect to the one intended. Thus, it is of utmost importance to have suitable datasets with representative data of the structures needed for each system, the same for Smartcheck. With this in mind, this dissertation developed and implemented a new methodology on creating reliable and revised test suites to be applied on the evaluation process of MT systems and error detection tools. Using the resulting curated test suites to evaluate proprietary systems and tools to Unbabel, it became possible to trust the conclusions and decisions made from said evaluations. This methodology accomplished robust identification of problematic error types, grammar-checking rules, and language- and/or register-specific issues, therefore allowing production measures to be adopted. With Smartcheck’s (now reliable and accurate) correction suggestions and the improvement on post-edition revision, the work presented hereafter led to an improvement on the translation quality provided to customers.O presente trabalho focou-se na avaliação do desempenho de uma ferramenta proprietária da Unbabel, para detecção automática de erros, baseada em segmentos previamente anotados pela comunidade de anotadores, o Smartcheck. Assim, foi proposta uma metodologia para criação de um corpus de teste (do inglês test suites) baseado em dados de referência com estruturas relevantes (do inglês gold data). Deste modo, tornou-se possível melhorar a qualidade das sugestões de correção de erros do Smartcheck e, consequentemente, das traduções facultadas. Para além do objetivo inicial, a nova metodologia permitiu assegurar uma avaliação rigorosa, apropriada e fundamentada relativamente às regras usadas pelo Smartcheck, para identificar possíveis erros de tradução, assim como avaliar outras ferramentas e sistemas de tradução automática da Unbabel. Recentemente, assistiu-se também a uma fusão da Lingo24 com a Unbabel e, por essa razão, os dados presentes no corpus incluem conteúdo traduzido por ambas. Como tal, o trabalho desenvolvido contribuiu inclusivamente para a recente integração da Lingo24. A Secção 2 foi dedicada à apresentação da Unbabel, na qual se referem os processos de controlo de qualidade utilizados para assegurar níveis de qualidade exigidos e se descreve pormenorizadamente a ferramenta em foco, o Smartcheck. A Secção 3 focou-se no estado da arte da Tradução Automática e em processos de controlo de qualidade, dando especial atenção a corpora de teste e à influência dos mesmos. Além disso, foi também incluída uma descrição relativa ao desenvolvimento de ferramentas automáticas de deteção e correção de erros, criadas para aperfeiçoar os textos provenientes de traduções automáticas. A metodologia criada, descrita na Secção 4, foi dividida em três partes principais: avaliação piloto relativa às regras preexistentes do Smartcheck; análise de causas de erros (do inglês root-cause analysis); e, por fim, construção de um novo corpus de teste, com dados mais recentes e corrigidos. O primeiro passo na metodologia consistiu na avaliação do desempenho da ferramenta em foco na presente tese. Para tal, foi realizada uma análise piloto na qual cada regra utilizada pelo Smartcheck foi avaliada de acordo com métricas comumente aplicadas para avaliação de sistemas de deteção de erros, como o número de verdadeiros positivos (true positives) - casos em que o sistema conseguiu corretamente identificar erros -, de falsos negativos (false negatives) - casos em que existia um erro, mas o sistema não o identificou - e de falsos positivos (false positives) - casos em que o sistema incorretamente considerou existir erros. Outras métricas utilizadas para avaliação consistiram no cálculo de Precision, Recall, e F1-score, a partir dos valores obtidos das métricas anteriormente mencionadas. Tendo terminado a avaliação piloto, concluiu-se que nem todas as regras foram passíveis de avaliação (razão pela qual se tornou impossível averiguar o desempenho individual para cada regra) e, quanto às que foram avaliadas, os resultados não foram considerados satisfatórios. Isto porque, as regras não identificavam erros existentes nas traduções e consideravam como problemáticos inúmeros segmentos gramaticalmente corretos. A segunda etapa da metodologia surgiu, então, como tentativa de identificar possíveis razões pelas quais o Smartcheck e as regras associadas demonstraram um baixo desempenho. Em vista desse objetivo, foi feita uma análise na qual foi colocada a hipótese de que as regras teriam sido avaliadas com um corpus de teste não apropriado e obsoleto, explicando assim as métricas muito baixas da avaliação piloto. Esta hipótese surgiu uma vez que foi não só considerada a possibilidade de os dados do corpus não serem representativos das traduções feitas atualmente, mas também pelo facto de as estruturas consideradas problemáticas para os sistemas de tradução serem alteradas constantemente. De modo a corroborar a hipótese colocada, o corpus foi analisado com base em variados critérios: qual o tipo de tradução dos dados - se os segmentos analisados tinham ou não sido previamente revisto por pós-editores antes da respetiva submissão; existência de segmentos duplicados ou cujo texto de partida (do inglês source text) poderia conter erros - i.e. dados ruidosos; e revisão das anotações e das severidades associadas a cada erro, de acordo com tipologias e diretrizes específicas da Unbabel - considerando o número de anotações/severidades correta e incorretamente atribuídas, assim como em falta. Uma vez finalizada a análise, concluímos que cerca de 20% dos dados correspondiam a duplicações - tanto para o registo formal como para o informal -, que entre 15-25% das anotações foram consideradas incorretas e que apenas metade das severidades foram corretamente atribuídas. Assim sendo, considerámos que seria mais vantajoso criar um novo corpus representativo e refinado, ao invés de corrigir todas as anotações incorretas do corpus previamente usado. O terceiro e último passo da metodologia consistiu na construção de um novo corpus de teste com 27 500 exemplos previamente anotados de traduções automáticas. Os procedimentos para a criação deste novo corpus incluíram: filtragem de um conjunto de traduções automáticas, com dados representativos para todas as línguas suportadas pela Unbabel; distinção entre segmentos dependentes e não dependentes de contexto (uma limitação do corpus prévio); exclusão de exemplos duplicados e de casos com textos de partida problemáticos; e, por fim, revisão por parte de linguistas e tradutores das anotações atribuídas, seguindo tipologias proprietárias. Este último procedimento foi ainda subdividido em: uma avaliação geral, de modo a garantir que as traduções transmitiam de forma coerente, fluída e apropriada a mensagem do texto de partida e que, para além disso, seguiam regras específicas para cada língua; uma avaliação focada em especificidades por cliente, de modo a assegurar diretrizes existentes; e uma revisão de severidades associadas a cada anotação. Tendo sido a metodologia dada como terminada, o corpus de teste consistia agora num conjunto de dados de confiança, capaz de avaliar sistemas de tradução automática e ferramentas como o Smartcheck de uma forma objetiva e fundamentada. Posto isto, as várias avaliações realizadas - descritas na Secção 5 - usaram os dados compreendidos no corpus como termo de comparação. A primeira avaliação teve como objetivo principal comparar os resultados obtidos na análise piloto quanto às regras do Smartcheck com os resultados de uma nova avaliação das mesmas usando o novo corpus de teste, de forma a chegar a conclusões mais fiáveis e credíveis. A partir desta, foi possível concluir não só que, contrariamente às conclusões anteriores, todas as regras são agora passíveis de avaliação, mas também que o número de casos em que o Smartcheck incorretamente identificava segmentos como problemáticos foi reduzido. A avaliação seguinte comparou anotações recorrendo a uma matriz de confusão (do inglês confusion matrix) entre previsões concedidas tanto pelo Smartcheck como pelo corpus de teste. Deste modo, foi possível identificar quais os tipos de erros mais frequentes e quais os tipos mais (e menos) problemáticos de identificar pelo sistema. Assim, o corpus de teste foi considerado como gold standard de modo a realizar uma avaliação global do Smartcheck, calculando o número total de falsos positivos (atingindo cerca de 45%), falsos negativos (com 35%) e verdadeiros positivos (aproximadamente 20%). Quanto aos verdadeiros positivos, estes foram divididos em dois tipos: segmentos corretamente identificados pelo Smartcheck como erro, mas que foram classificados incorretamente (cerca de 11%); e erros em que tanto a extensão como a classificação foram atribuídas corretamente (a rondar os 8% do número total de anotações). A terceira e última análise recorreu aos totais obtidos na avaliação anterior para calcular valores para métricas como Precision, Recall e F1-score para cada língua e para cada registo suportado. Desta forma, foi possível concluir que, quanto à primeira métrica, a média entre registos estava bastante equilibrada, mas o mesmo não se verificou em Recall nem F1-score, uma vez que o registo formal atingiu valores superiores. Para além disso, recorremos ainda ao corpus para avaliar spell checkers usados pela Unbabel e, analisando os resultados obtidos, pudemos concluir que o spell checker em uso obteve a avaliação mais baixa. Tendo isto em conta, foi decidido que seria então preferível substituí-lo pelo spell checker com a melhor avaliação, de modo a reduzir o número de erros nas traduções e assim melhorar a qualidade das mesmas. Todo o trabalho realizado pôde ser implementado em vários outros campos para além do inicialmente estabelecido, i.e. para além da avaliação sistemática da ferramenta Smartcheck. Demonstrando, deste modo, todo o impacto que uma análise bem fundamentada pode ter no processo de tomada de decisão. Isto porque, sem um corpus de teste representativo e estruturado, as avaliações feitas não seriam válidas e os resultados obtidos facilmente levariam a conclusões impróprias ou até nocivas para o desenvolvimento dos sistemas e ferramentas em questão
    corecore