
UNIVERSIDADE DE LISBOA

FACULDADE DE LETRAS

AMethodological Approach on the Creation of Trustful Test Suites

for Grammar Error Detection

Mestrado em Linguística

Mariana Isabel Pombo Cabeça

2022

Relatório de Estágio especialmente elaborado para a obtenção do grau de Mestre, orientado pela

Professora Doutora Helena Gorete Silva Moniz e pela Mestre Marianna Buchicchio

Acknowledgements

Às minhas orientadoras, a Professora Doutora Helena Moniz e a Mestre Marianna

Buchicchio, que sempre me apoiaram e mostraram o quão importante é valorizar todo o esforço

que fazemos, independentemente dos percalços pelo caminho.

À Professora Helena, por toda a ajuda e apoio desde a primeira aula, mas especialmente

por me ter ensinado a ser mais resiliente e segura de mim própria.

À Marianna, pela força de vontade contagiante, pela admiração que cresce a cada dia, por

poder tê-la como amiga e, acima de tudo, pelo apoio desde o primeiro dia.

À Unbabel e à equipa de TQT, que me receberam de braços abertos e me permitiram ter a

melhor experiência de estágio que poderia pedir.

Aos meus pais que sempre estiveram prontos para me apoiar durante todo o meu percurso

académico e por me ensinarem a não desistir e a “descansar em andamento”. À minha irmã que

tanto me ajudou nas alturas em que mais me sentia bloqueada.

Aos meus amigos, Patrícia, Braga, Catarina e especialmente ao Daniel, por todas as vezes

que me encorajaram a dar o meu melhor, que foram sempre um porto seguro para mim e que me

ajudaram tão mais do que imaginam.

1

Index

Abstract 4

Resumo 5

List of Figures 9

List of Tables 11

1. Introduction 12

2. Host Characterization 14

2.1. Lingo24 15

2.1.1. Coach - a proprietary CAT tool 17

2.1.2. The Okapi Framework 17

2.2. Translation Quality Assurance Workflows 19

2.2.1. Quality Assurance Processes 19

2.2.1.1. Manual Annotations for Quality Assurance 20

2.2.1.1.1. Communities and their Quality Assessment 20

2.2.1.1.2. Translation Assessment 22

2.2.1.2. Quality Framework 24

2.2.1.3. Quality Reporting 25

2.2.1.4. Automated Quality Metrics for Quality Assurance 27

2.2.2. Smartcheck - a Proprietary Editing Assistant Tool 30

2.2.2.1. Surfboard 34

3. State of the Art 38

3.1. Brief history of Machine Translation 38

3.2. Translation Quality Assurance 43

3.2.1. Manual Quality Metrics 44

3.2.2. Automated Quality Metrics 47

3.2.3. Test Suites 49

2

3.2.3.1. Test Suites’ History 50

3.2.3.2. Test Suites’ Approaches 51

3.3. MT’s improvement with Grammatical Error Detection and Correction 53

3.3.1. GED 53

3.3.2. GEC 56

4. Methodology 58

4.1. Previous Surfboard Rules’ Evaluation 59

4.1.1. Surfboard Rule’s Evaluation Results 61

4.2. Root-cause Analysis for the Low Evaluation Metrics 64

4.2.1. EDF’s Preparation 65

4.2.2. Annotation Revision 67

4.3. Test Suites’ Construction - New Evaluation Dataframe 69

4.3.1. Data Curation 70

4.3.2. Annotation Curation 73

4.3.3. EDF Totals: Target Languages and Registers 88

5. Results and Discussion 90

5.1. Rule’s Evaluation Comparison between Baseline Analysis and new EDF 90

5.2. Testing Smartcheck with the new EDF 93

5.2.1. Performance Measurement using a Confusion Matrix 93

5.2.1.1. Smartcheck versus EDF: Predicted Annotations Comparison 96

5.2.1.2. Evaluating Smartcheck’s Accuracy in Error Detection 97

5.3. Quality Monitoring Assessment of Smartcheck Rules 101

5.4. Using the new EDF to Evaluate different Spell Checkers 103

6. Conclusions and Future Work 106

Annexes 110

Bibliography 113

3

Abstract

Machine translation’s research has been expanding over time and so has the need to

automatically detect and correct errors in texts. As such, Unbabel combines machine translation

with human editors in post-edition to provide high quality translations. In order to assist

post-editors in these tasks, a proprietary error detection tool called Smartcheck was developed by

Unbabel to identify errors and suggest corrections.

The state-of-the-art method of identifying translation errors depends on curated annotated

texts (associated with error-type categories), which are fed to machine translation systems as

their evaluation standard, i.e. the test suites to evaluate a system’s error detection accuracy. It is

commonly assumed that evaluation sets are reliable and representative of the content the systems

translate, leading to the assumption that the root problem usually relates to grammar-checking

rules. However, the issue may instead lie in the quality of the evaluation set. If so, then the

decisions made upon evaluation will possibly even have the opposite effect to the one intended.

Thus, it is of utmost importance to have suitable datasets with representative data of the

structures needed for each system, the same for Smartcheck.

With this in mind, this dissertation developed and implemented a new methodology on

creating reliable and revised test suites to be applied on the evaluation process of MT systems

and error detection tools. Using the resulting curated test suites to evaluate proprietary systems

and tools to Unbabel, it became possible to trust the conclusions and decisions made from said

evaluations. This methodology accomplished robust identification of problematic error types,

grammar-checking rules, and language- and/or register-specific issues, therefore allowing

production measures to be adopted. With Smartcheck’s (now reliable and accurate) correction

suggestions and the improvement on post-edition revision, the work presented hereafter led to an

improvement on the translation quality provided to customers.

Keywords: Grammar Error Detection; Machine Translation Evaluation; Test Suites; NLP

systems evaluation

4

Resumo

O presente trabalho focou-se na avaliação do desempenho de uma ferramenta proprietária

da Unbabel, para detecção automática de erros, baseada em segmentos previamente anotados

pela comunidade de anotadores, o Smartcheck. Assim, foi proposta uma metodologia para

criação de um corpus de teste (do inglês test suites) baseado em dados de referência com

estruturas relevantes (do inglês gold data). Deste modo, tornou-se possível melhorar a qualidade

das sugestões de correção de erros do Smartcheck e, consequentemente, das traduções facultadas.

Para além do objetivo inicial, a nova metodologia permitiu assegurar uma avaliação rigorosa,

apropriada e fundamentada relativamente às regras usadas pelo Smartcheck, para identificar

possíveis erros de tradução, assim como avaliar outras ferramentas e sistemas de tradução

automática da Unbabel. Recentemente, assistiu-se também a uma fusão da Lingo24 com a

Unbabel e, por essa razão, os dados presentes no corpus incluem conteúdo traduzido por ambas.

Como tal, o trabalho desenvolvido contribuiu inclusivamente para a recente integração da

Lingo24.

A Secção 2 foi dedicada à apresentação da Unbabel, na qual se referem os processos de

controlo de qualidade utilizados para assegurar níveis de qualidade exigidos e se descreve

pormenorizadamente a ferramenta em foco, o Smartcheck. A Secção 3 focou-se no estado da arte

da Tradução Automática e em processos de controlo de qualidade, dando especial atenção a

corpora de teste e à influência dos mesmos. Além disso, foi também incluída uma descrição

relativa ao desenvolvimento de ferramentas automáticas de deteção e correção de erros, criadas

para aperfeiçoar os textos provenientes de traduções automáticas.

A metodologia criada, descrita na Secção 4, foi dividida em três partes principais:

avaliação piloto relativa às regras preexistentes do Smartcheck; análise de causas de erros (do

inglês root-cause analysis); e, por fim, construção de um novo corpus de teste, com dados mais

recentes e corrigidos.

O primeiro passo na metodologia consistiu na avaliação do desempenho da ferramenta

em foco na presente tese. Para tal, foi realizada uma análise piloto na qual cada regra utilizada

pelo Smartcheck foi avaliada de acordo com métricas comumente aplicadas para avaliação de

sistemas de deteção de erros, como o número de verdadeiros positivos (true positives) - casos em

que o sistema conseguiu corretamente identificar erros -, de falsos negativos (false negatives) -

casos em que existia um erro, mas o sistema não o identificou - e de falsos positivos (false

5

positives) - casos em que o sistema incorretamente considerou existir erros. Outras métricas

utilizadas para avaliação consistiram no cálculo de Precision, Recall, e F1-score, a partir dos

valores obtidos das métricas anteriormente mencionadas. Tendo terminado a avaliação piloto,

concluiu-se que nem todas as regras foram passíveis de avaliação (razão pela qual se tornou

impossível averiguar o desempenho individual para cada regra) e, quanto às que foram avaliadas,

os resultados não foram considerados satisfatórios. Isto porque, as regras não identificavam erros

existentes nas traduções e consideravam como problemáticos inúmeros segmentos

gramaticalmente corretos.

A segunda etapa da metodologia surgiu, então, como tentativa de identificar possíveis

razões pelas quais o Smartcheck e as regras associadas demonstraram um baixo desempenho. Em

vista desse objetivo, foi feita uma análise na qual foi colocada a hipótese de que as regras teriam

sido avaliadas com um corpus de teste não apropriado e obsoleto, explicando assim as métricas

muito baixas da avaliação piloto. Esta hipótese surgiu uma vez que foi não só considerada a

possibilidade de os dados do corpus não serem representativos das traduções feitas atualmente,

mas também pelo facto de as estruturas consideradas problemáticas para os sistemas de tradução

serem alteradas constantemente. De modo a corroborar a hipótese colocada, o corpus foi

analisado com base em variados critérios: qual o tipo de tradução dos dados - se os segmentos

analisados tinham ou não sido previamente revisto por pós-editores antes da respetiva submissão;

existência de segmentos duplicados ou cujo texto de partida (do inglês source text) poderia

conter erros - i.e. dados ruidosos; e revisão das anotações e das severidades associadas a cada

erro, de acordo com tipologias e diretrizes específicas da Unbabel - considerando o número de

anotações/severidades correta e incorretamente atribuídas, assim como em falta. Uma vez

finalizada a análise, concluímos que cerca de 20% dos dados correspondiam a duplicações -

tanto para o registo formal como para o informal -, que entre 15-25% das anotações foram

consideradas incorretas e que apenas metade das severidades foram corretamente atribuídas.

Assim sendo, considerámos que seria mais vantajoso criar um novo corpus representativo e

refinado, ao invés de corrigir todas as anotações incorretas do corpus previamente usado.

O terceiro e último passo da metodologia consistiu na construção de um novo corpus de

teste com 27 500 exemplos previamente anotados de traduções automáticas. Os procedimentos

para a criação deste novo corpus incluíram: filtragem de um conjunto de traduções automáticas,

com dados representativos para todas as línguas suportadas pela Unbabel; distinção entre

6

segmentos dependentes e não dependentes de contexto (uma limitação do corpus prévio);

exclusão de exemplos duplicados e de casos com textos de partida problemáticos; e, por fim,

revisão por parte de linguistas e tradutores das anotações atribuídas, seguindo tipologias

proprietárias. Este último procedimento foi ainda subdividido em: uma avaliação geral, de modo

a garantir que as traduções transmitiam de forma coerente, fluída e apropriada a mensagem do

texto de partida e que, para além disso, seguiam regras específicas para cada língua; uma

avaliação focada em especificidades por cliente, de modo a assegurar diretrizes existentes; e uma

revisão de severidades associadas a cada anotação.

Tendo sido a metodologia dada como terminada, o corpus de teste consistia agora num

conjunto de dados de confiança, capaz de avaliar sistemas de tradução automática e ferramentas

como o Smartcheck de uma forma objetiva e fundamentada. Posto isto, as várias avaliações

realizadas - descritas na Secção 5 - usaram os dados compreendidos no corpus como termo de

comparação. A primeira avaliação teve como objetivo principal comparar os resultados obtidos

na análise piloto quanto às regras do Smartcheck com os resultados de uma nova avaliação das

mesmas usando o novo corpus de teste, de forma a chegar a conclusões mais fiáveis e credíveis.

A partir desta, foi possível concluir não só que, contrariamente às conclusões anteriores, todas as

regras são agora passíveis de avaliação, mas também que o número de casos em que o

Smartcheck incorretamente identificava segmentos como problemáticos foi reduzido. A

avaliação seguinte comparou anotações recorrendo a uma matriz de confusão (do inglês

confusion matrix) entre previsões concedidas tanto pelo Smartcheck como pelo corpus de teste.

Deste modo, foi possível identificar quais os tipos de erros mais frequentes e quais os tipos mais

(e menos) problemáticos de identificar pelo sistema. Assim, o corpus de teste foi considerado

como gold standard de modo a realizar uma avaliação global do Smartcheck, calculando o

número total de falsos positivos (atingindo cerca de 45%), falsos negativos (com 35%) e

verdadeiros positivos (aproximadamente 20%). Quanto aos verdadeiros positivos, estes foram

divididos em dois tipos: segmentos corretamente identificados pelo Smartcheck como erro, mas

que foram classificados incorretamente (cerca de 11%); e erros em que tanto a extensão como a

classificação foram atribuídas corretamente (a rondar os 8% do número total de anotações). A

terceira e última análise recorreu aos totais obtidos na avaliação anterior para calcular valores

para métricas como Precision, Recall e F1-score para cada língua e para cada registo suportado.

Desta forma, foi possível concluir que, quanto à primeira métrica, a média entre registos estava

7

bastante equilibrada, mas o mesmo não se verificou em Recall nem F1-score, uma vez que o

registo formal atingiu valores superiores. Para além disso, recorremos ainda ao corpus para

avaliar spell checkers usados pela Unbabel e, analisando os resultados obtidos, pudemos concluir

que o spell checker em uso obteve a avaliação mais baixa. Tendo isto em conta, foi decidido que

seria então preferível substituí-lo pelo spell checker com a melhor avaliação, de modo a reduzir o

número de erros nas traduções e assim melhorar a qualidade das mesmas.

Todo o trabalho realizado pôde ser implementado em vários outros campos para além do

inicialmente estabelecido, i.e. para além da avaliação sistemática da ferramenta Smartcheck.

Demonstrando, deste modo, todo o impacto que uma análise bem fundamentada pode ter no

processo de tomada de decisão. Isto porque, sem um corpus de teste representativo e estruturado,

as avaliações feitas não seriam válidas e os resultados obtidos facilmente levariam a conclusões

impróprias ou até nocivas para o desenvolvimento dos sistemas e ferramentas em questão.

Palavras-chave: Sistemas de Deteção Automática de Erros; Tradução Automática; Corpus de

teste; Avaliação de Sistemas de PLN

8

List of Figures

Figure 1. Relationship between the Okapi Framework, Lingo24 and main tools 18

Figure 2. Unbabel Editor Community Hierarchy 21

Figure 3. Unbabel Editor’s Quality Scale 22

Figure 4. The MQM Core Typology 23

Figure 5. Example of CUA and its Quality Levels 26

Figure 6. Example of a Word-level QE Training Set (Kepler et al., 2019, p.118) 28

Figure 7. Smartchek’s Architecture 31

Figure 8. Example of a Smartcheck’s suggestion regarding the incorrect use of register in an MT

output from English to Italian 33

Figure 9. Communication between Smartcheck and Surfboard 36

Figure 10. Surfboard Rules: Number of rules per Target Language 60

Figure 11. Surfboard Rules: Baseline Results Summary 61

Figure 12. Surfboard Rules: TPs, FNs and FPs per rule 63

Figure 13. Data curation process: Merge of files into one dataframe 66

Figure 14. Data curation process: Filtering of translation step 66

Figure 15. Data curation process: Filtering of registers 67

Figures 16 and 17. New EDF: Filtering data by register (left Figure) and sorting language pairs

(right Figure) 70

Figure 18. EDF’s Content: number of total segments, annotated segments and context-dependent

segments 73

Figure 19. EDFs Content: Total of formal and informal segments per target language 89

Figure 20. Confusion Matrix Example: Annotations for EN-ES (informal register) 94

9

Figure 21. Grand Total of FNs, FPs and TPs when evaluating Smartcheck with the new EDF 96

Figure 22. Smartcheck Labeled TP cases in comparison to gold annotations from the EDF 97

Figure 23. P Average per Target Language 99

Figure 24. R Average per Target Language 100

Figure 25. F1-score Average per Target Language 101

Figure 26. Spell Checkers Evaluation with new EDF as Gold Standard: Cases of TPs, FPs and

FNs 104

Figure 27. Spell Checkers Evaluation with new EDF as Gold Standard: P, R and F1-score 105

10

List of Tables

Table 1. Surfboard Rules: Baseline Analysis Results 62

Table 2. EDF’s Analysis: Totals - Tone: Formal (Note: “Ann.” stands for “annotations”) 68

Table 3. EDF’s Analysis: Totals - Tone: Informal (Note: “Ann.” stands for “annotations”) 69

Table 4. Accuracy - Segment annotation for different types of mistranslation (Note: “TL” stands

for Target Language) 76

Table 5. Fluency - Grammar subcategories and criteria for annotating segments 78

Table 6. Localization - Numerals: Language specificities when indicating groups of thousands

and decimal places 82

Table 7. Localization - Date Format: Language specificities when referring to dates 83

Table 8. Capitalization for Customer Support: Required casing for sentences following greetings

87

Table 9. Evaluation Dataframe’s Content: Grand total of formal and informal segments 88

Table 10. Rules’ Comparison between baseline analysis and the new EDF 92

Table 11. P Average Total per Register 98

Table 12. R Average Total per Register 99

Table 13. F1-score Average Total per Register 100

11

1. Introduction

This dissertation was written for the Master’s degree in Linguistics of the School of Arts

and Humanities of the University of Lisbon, in the context of an internship carried out at

Unbabel, a Portuguese software company that provides translation services in the Customer

Support domain.

The overall interest in the automation of Machine Translation (MT) has been

tremendously growing over the years. This is due to the fact that human translation can be

considered a demanding and rather complex task, whereas MT provides faster, more efficient

and cost effective translations. Nevertheless, MT cannot yet achieve the quality standard that

human translation can.

With this in mind, Unbabel successfully combined MT’s advantages with the high quality

assurance from human revision, thus overcoming a major MT limitation. In order to achieve the

best possible translation quality, Unbabel provides translation services that rely on the efficiency

of MT outputs and on the resulting quality of subsequently improving them with human

post-edition. It is, therefore, of utmost importance to focus not only on the quality of the MT

output, but on improving post-editors performance as well.

To that end, Unbabel created Smartcheck, a proprietary grammar error detection tool that

highlights possible existing translation errors and provides suggestions in the post-edition stage.

This tool was the primary focus of this dissertation and, as such, the work described hereafter

aimed to improve Smartcheck’s performance and demonstrate the importance of fairness and

quality in evaluation data, i.e. of creating trustful test suites built upon a robust methodology and

gold representative data. Although Smartcheck has several distinct modules, we will focus on the

rules and spell checkers assessment.

Evaluation of systems is one of the most crucial steps involved in the MT process. It

would not be possible to sensibly assess if the MT outputs accurately conveyed the inputs given

without the use of evaluation metrics, which have been improving in parallel with MT

development. However, there is one particular aspect that tends to be ignored: we often look into

the results obtained from said evaluations without questioning whether or not the conclusions

drawn from the assessments are valid and trustworthy. Most likely, this happens due to the fact

that we assume that any evaluation standard is created to fit its purpose, to be refined and reliable

from the start. Evidently, if the data used to evaluate MT systems is not revised prior to

12

implementation, it can be extremely harmful to these systems and lead to inaccurate insights and

adverse decisions. For instance, a system is being evaluated and it is concluded that a given rule,

created to account for a specific translation error, has good coverage and correctly identifies

every existing issue related to that same error type in the translation. As such, no adjustments

were to be made to that rule. However, in reality, that same rule was classifying various correctly

translated words as incorrect. Yet no adjustments will be done, since the rule was evaluated as

“good”. The opposite can also be the case, where a rule with high accuracy can be incorrectly

evaluated as harmful and is later on (unnecessarily) changed or even removed from the system.

Additionally, unrevised evaluation data may also contain outdated information or duplicated

segments that result in unnecessary longer processing times for the system.

It is of utmost importance to create a sound evaluation standard that contains

representative, relevant and accurate data of the content to be translated. Furthermore, the data

compiled in evaluation corpora must be consistent in order to avoid multiple classifications for

one single segment. For example, if we were to feed a system with two equally translated

sentences and consider one as incorrect and the other as correct, then the next time the system

encounters that same sentence, it will not be capable of considering it as neither correct nor

incorrect, since there is no “correct” decision to be made.

Taking these must-have qualities into consideration, the current dissertation presents a

methodology for creating trustful test suites that can be used not only to evaluate different MT

systems but also error detection tools, such as Smartcheck. To that end, this dissertation is

organized the following way: Section 2 will describe Unbabel, while focusing on the new and

improved quality assurance workflow. Within this workflow, Smartcheck will be exhaustively

described as a tool used to assist in post-edition related tasks and, as such, improve the

translation’s quality. Following this, the state-of-the-art of MT will be presented in Section 3

alongside a brief history of this field, where the importance and advantages of test suites are

highlighted. Additionally, the methodology in this dissertation will be introduced with a baseline

analysis (described in Section 4) in order to identify possible existing issues, as well as followed

by a root-cause analysis. The pilot analysis will afterwards be used as a benchmark to compare

Smartcheck’s performance prior to and after the new test suites. Lastly, Section 5 will be

dedicated to the discussion regarding the outcome of implementing the methodology described in

the previous section. This last section will also include proposals for future related work.

13

2. Host Characterization

Many platforms have resorted to Artificial Intelligence (AI) to process and translate texts.

These AI technologies are based on deep learning, and are stated in the literature as ideal for

improving the quality and speed of translation (e.g., Koehn, 2020). Globalization of MT research

flourished in the mid 1970s and only recently has a new neural approach emerged, i.e. Neural

Machine Translation (NMT) (Bahdanau et al., 2014; Koehn, 2020). NMT has brought great

improvement to the field, particularly on state-of-the-art automatic evaluation metrics (ibidem).

Taking this into account, Unbabel merges the benefits of AI with the skills of human editors to

assemble a hybrid approach of translation.

Founded by Vasco Pedro (CEO), João Graça (CTO), Sofia Pessanha, Bruno Silva, and

Hugo Silva in 2013, Unbabel has its headquarters in Lisbon, Berlin, London, San Francisco, and

New York. Emerging from values such as creating understanding, embracing diversity, being

ambitious and outcome oriented, this translation platform is inevitably prone to thrive. Towards

the end of 2021, Unbabel acquired Lingo24 and created a new opportunity to grow in number

and diversify its product. Lingo24, with its headquarters in Edinburgh, Scotland, and running a

network of five global locations (namely Edinburgh, London, Timișoara, Cebu City, and

Panama), has a wealth of experience in delivering high-quality, multi-format, multilingual

translations, thus matching perfectly with Unbabel’s vision of “building the world’s translation

layer”.

Unbabel MT systems learn from human post-edited data overtime. The combination of

MT and post-editing allows for a faster, more efficient, cost effective and high-quality

translation, for customer support. With its multilingual supported scale, this Portuguese startup is

currently able to manage seventy two different language pairs. Unbabel has also won various

awards, such as two ECCCSAs1 of Best Innovation in Customer Support of 2019 and Best Use

of AI and Associated Technologies of 2020, and more recently the CUSTOMER Product of the

Year Award of 2021.

In this chapter, we will discuss the following: Section 2.1 will be dedicated to describing

Lingo24’s services and its history before the recent integration with Unbabel; in Section 2.2, the

translation quality assurance workflows will be characterized; in Section 2.2.1, we will describe

how translation quality is assured through both manual and automated processes. Regarding

1 ECCCSAs: European Contact Center & Customer Service Awards

14

manual processes, in Section 2.2.1.1, Unbabel annotates MT outputs following a specific

typology used to both evaluate its community of editors (Section 2.2.1.1.1) and MT outputs

through annotations (Section 2.2.1.1.2). Section 2.2.1.2 will describe the Quality Framework

used, referring to prior services done at Unbabel as well as Lingo24, and what was changed

during the integration process. Afterwards, the quality reporting process is explained in Section

2.2.1.3. From then on, automatic quality evaluation is described in Section 2.2.1.4, referring to

different evaluation metrics such as QE and COMET. Finally, the tools used to assure quality and

help monitor all processes are introduced and explained in detail. The first tool mentioned in

Section 2.2.2 is the focus of the current dissertation - Smartcheck - and it will be explained how

and why this tool is important to editors. Lastly, Section 2.2.2.1 is solely focused on an interface

called Surfboard and its associated rules, as well as how it relates to Smartcheck, by stressing its

relation to annotations and, therefore, its relevance on quality assurance processes and

workflows.

2.1. Lingo24

An initial disclaimer. Although Lingo24 is now Unbabel and named as such, for clarity

purposes, this section will still be describing it as an individual industry. The purpose is to make

clearer to our reader what Lingo24 has brought and the challenges that such integration poses,

which is also one of the scopes of our work.

Oftentimes, large global companies that generate content at a high velocity find it

difficult to scale efforts related to promoting and supporting their products in their native

language. This is due to the fact that localization2 processes are usually highly fragmented and

decentralized. By acquiring Lingo243 and its services for global enterprises, Unbabel has

reinforced its service to better assist global companies, thus accelerating their international

growth and engaging their global teams.

3 Lingo24 Acquisition: For more information, please refer to:

https://resources.unbabel.com/press-releases/unbabel-acquires-language-translation-company-lingo24

2 Localization: According to Reinhard Schäler (2004), “localisation has largely been defined as the linguistic and

cultural adaptation of products for specific locales” and therefore “it is the localisation industry that can enable the

open, pluralist, user-friendly and inclusive multilingual and cross-cultural information society” (p. 1-2). For further

information regarding localization, please refer to Section 4.3.2.

15

https://resources.unbabel.com/press-releases/unbabel-acquires-language-translation-company-lingo24

Founded by Christian Arno in 2001, Lingo24 provides translation, localization and

consulting services in any language. Due to the fact that Lingo24’s 24/7 business model relies

heavily on freelancers, it offers the greatest breadth of subject matter expertise in each language

pair. This private limited company has also been awarded the Excellence Award for innovative

technology at the TAUS (Translation Automation User Society) User Conference in Seattle, in

2012 with the Computer Aided Translation (CAT) tool Coach, which will be described in Section

2.1.1.

Lingo24’s AI-based MT supports translators in around 50% of projects to accelerate

turnaround time for customers in all different types of content, without compromising quality.

Blending the creativity and expertise of professional translators together with tools to automate

repetitive tasks, glossaries and translation memory allows for translations to be tailored to fit the

customer's profile and budget. This is done through the AI-powered platform that is built around

open source4 technology components from organizations such as the Okapi5 Framework, further

explained in Section 2.1.2.

Additionally, Lingo24 offers a variety of services depending on the customer’s needs:

different translation services; localization consultancy, achieved through bespoke solutions

created to tackle unique challenges and/or LocStrat - i.e. localization strategy - assessments;

NMT with customized engines to reduce costs and maximize impact tailored to a specific

content; international marketing services used to identify keywords in new international markets

and optimize foreign language sites; software localization services for a seamless integration,

and optimized language assets, checks and quality levels; platform integrations with dedicated

translations plugins; and, finally, data simplification used to reduce word count and overall costs,

with no impact on translation quality.

Unbabel’s AI capabilities and robust multilingual customer service solutions combined

with Lingo24’s expertise in global enterprises is already emphasizing the ability to generate

multilingual content quickly and accurately, by professional translators and proficient bilinguals.

5 For more information regarding Okapi, please refer to: https://okapiframework.org/

4 Open source: According to Deek, F. and McHugh, J. (2007), “the open source movement is a worldwide attempt

to promote an open style of software development” where the “products are usually free of direct cost” and anyone

is allowed to “modify the code” as pleased.

16

https://okapiframework.org/

2.1.1. Coach - a proprietary CAT tool

Prior to the description of Coach (Bota et al., 2013) and the Okapi Framework, it is

important to note that these tools are presented within Lingo24’s chapter and not in the

state-of-the-art - Section 3 - due to their impact within the company and the way they shape the

processes at Lingo24. In other words, upon Lingo24’s integration into Unbabel, many services

were revised so that both companies could compromise on alignment strategies, including the

editing assistant tools in question. Moreover, the focus of our work is on distinct tools to assist

editors, but, although those tools have similar goals, the way they work and the processes

involved are very distinct in nature, due mostly to the two distinct models of translation and the

actors involved, i.e. Lingo24 mostly relies on professional translators, whereas Unbabel has

distinct communities of crowdsourced post-editors, ranging from bilinguals to very experienced

professional translators and linguists.

Lingo24 focuses on applied AI to efficiently provide quality and consistency to

customers with highly customized engines. With this in mind, a proprietary CAT tool was

developed for fastened and accurate translations, called Coach. Coach, compiling

customer-specific style guidelines and terminology, is used to automate time-consuming parts of

the translation process to deliver faster results and more budget-friendly translations. Thus, not

only is the customer able to control the translation’s quality, but also personalize quality control

checks, regarding, for example, issues with punctuation, spell checking or specific formatting.

Moreover, Coach makes it easy for translators to deliver translations with reduced turnaround

times. This is due to the fact that there are many customisable interfaces for different tasks. For

example, terminology validation, comparative MT revision, live dictionaries to check spelling or

synonyms, among others. However, Lingo24 cannot provide such services without the help from

a third party, the Okapi Framework. Ergo, Coach is integrated with one of Okapi’s utilities API

(Application Programming Interface) to perform all the necessary checks.

2.1.2. The Okapi Framework

The Okapi framework is an open source and cross-platform set of components and

applications designed to help with localization and translation processes. Okapi is meant to

provide tools to build new localization processes or enhance existing ones, while preserving

compatibility and interoperability. In other words, Lingo24 is able to take advantage of different

17

tools that are based on this framework and, as a consequence, take translation’s quality one step

further. For instance, CheckMate6 is a commonly known tool that the company relies on to

ensure quality. This tool is a graphical user interface (GUI) application with the purpose of

performing quality checks on bilingual translated documents. These quality checks are done by

looking for repeated words, corrupted characters, patterns in source text that should correspond

to a given pattern in the target text, translations suspiciously longer or shorter than the source,

and omitted translations, just to name a few operations. One key feature of CheckMate is the

possibility of disabling warnings if a specific “error”7 should not have been detected. This option

is important because the next time the verification is re-run, those false warnings, i.e. false

positives8, will not be listed again. In addition, this tool allows to integrate the verification that

the open-source LanguageTool9 checker performs, which offers a range of simple and complex

checks for many different languages. CheckMate is also backed up by professional linguists and

machine learning experts to review MT and improve its overall quality. This utility is of utmost

importance, because Coach is integrated with CheckMate’s API. In other words, Lingo24’s

checks are done indirectly through CheckMate, because Coach is the one performing its tasks

through this utility, as illustrated in Figure 1.

9 LanguageTool: An open-source project that analyzes the style, tonality and typography of text, aside from giving

context-aware suggestions. For more information, please refer to: https://languagetool.org/

8 False Positive: please refer to Section 2.2.2.1 for a detailed definition.

7 Note that, in this case, the MT system incorrectly considered a specific token to have an error, i.e. a false positive

instance. Therefore, the use of quotation marks is solely to facilitate understanding.

6 CheckMate: https://okapiframework.org/wiki/index.php?title=CheckMate

18

https://languagetool.org/
https://okapiframework.org/wiki/index.php?title=CheckMate

Figure 1. Relationship between the Okapi Framework, Lingo24 and main tools

MT outputs can be looked at as a result of a snowball effect in the sense that, if noisy data

is fed to MT engines, with no post-edition done, no quality checks performed, and no

assessments carried out, then good quality translations cannot be expected as a result. However,

if all the steps are improved and scrutinized, then the quality of MT outputs will gradually start

to increase overtime. Thus, performing quality checks, having professional linguists and custom

engines ready to support any type of content will inevitably lead to better translations.

With this in mind, Unbabel and Lingo24 worked together to try and identify different

quality assurance workflows that could have an impact on overall quality and help manage such

complex processes.

2.2. Translation Quality Assurance Workflows

According to the Committee for the Coordination of Statistical Activities (CCSA) (2009),

“quality is interpreted in a broad sense, encompassing all aspects of how well statistical

processes and statistical outputs fulfill key stakeholders' expectations.” Every quality aspect must

be considered of equal importance, ranging from a sound methodology to data’s “relevance,

completeness, accuracy, reliability, consistency, timeliness and accessibility” (ibidem).

With this in mind, the current section will focus on Unbabel’s quality assurance processes

such as manual annotations, editors’ evaluation, automated metrics, and the quality framework

developed upon Lingo24’s integration.

2.2.1. Quality Assurance Processes

Unbabel’s engines are constantly retrained and improved with post-edited good quality

data to ensure consistency and reliability. But how do we know if the data being fed to said

systems is good enough to train them?

To guarantee that the data is indeed suitable for its purpose, Unbabel performs distinct

quality assurance processes. The goal is to check if the translations’ quality is good enough to be

sent to the customer. These processes include shared components from the Quality Framework

mentioned above and can be divided into two different types: manual quality control and

automated processes. The former relates to manual quality assessment methodologies, such as

19

MQM (Multidimensional Quality Metrics) (Lommel et al., 2014), Editors’ Evaluation, and

Translation Error Annotations, while the latter concerns Quality Estimation (QE) and COMET

(Crosslingual Optimized Metric for Evaluation of Translation) (Rei et al., 2020). Through these

metrics, it is possible to determine if a translation is correlated with human judgements and if it

is accurate and consistent with the customer’s needs.

On one hand, manually evaluating MT can be done through human evaluation. Although

this process is considered to be crucial due to its associated intricate analysis and high sensitivity

to nuanced errors, it can be expensive and time consuming. An industry standard way of doing so

is by annotating errors in a translation and gathering information, in order to use it to generate an

MQM score (Lommel et al., 2014), as it will be explained in the following section. On the other

hand, evaluating MT can also be done through automatic evaluation when a software is used to

generate a score for a given translation. Although this process allows for a lower-cost evaluation,

it can never be as accurate as human evaluation nor as sensitive to granular errors. The

combination of both manual and automatic quality processes is extensively used at Unbabel for

different purposes.

2.2.1.1. Manual Annotations for Quality Assurance

While Lingo24 relied on a variety of quality checks and on DQF-Taus (described in

Section 3.2.1) to make MQM-based annotations to translated texts, Unbabel adopted two major

manual quality processes to ensure quality throughout every translation, namely with Editors

Evaluation and Translation Error Annotations through the MQM methodology (Lommel et al.,

2014).

When the quality of a translated text is estimated, editors play a major role in the process.

This is due to the fact that editors, as the name suggests, edit and correct MT outputs in order for

the translated text to be delivered to the client with the highest possible quality. Hence, editors

must be evaluated to secure all these requirements, as is described in the following section.

2.2.1.1.1. Communities and their Quality Assessment

Prior to describing Unbabel editors and their hierarchical community, it is relevant to

mention evaluators, who belong to the PRO community and that have a major role in the editors’

20

evaluation. Evaluators are professional translators that work within a proprietary tool called

Evaluation Tool by following specific Evaluation Guidelines.

The editor’s evaluation is divided into stages as shown in Figure 2. The first step is the

evaluation of Trainee Editors, through training tasks with fabricated content, while the following

stage corresponds to their promotion to become Paid Editors. These ratings allow them to

become part of the Editor’s Community if their evaluation is positive. They are also allowed to

have access to the customers’ content once this stage is reached. However, if the evaluation is

negative, there are two possible outcomes: if a Trainee Editor receives a negative rating, then

he/she remains in the training phase until the following evaluation; if a Paid Editor receives a

negative evaluation, then he/she will be demoted to Trainee and carry out training tasks once

more. It is worth mentioning that Trainees have multiple opportunities to be evaluated and, if the

requirements are met, be promoted. Additionally, editors also follow language and usability

guidelines to guarantee a solid foundation for translation.

Figure 2. Unbabel Editor Community Hierarchy

Through the evaluation process, all editors are evaluated on a scale from one to five

regarding the quality of their work, as illustrated in Figure 3. The further on the scale an editor is

rated, the better their translations are.

21

Figure 3. Unbabel Editor’s Quality Scale

Having finished the revision of the MT’s output, the resulting translation is delivered to

the client and the service is considered completed. Nevertheless, Unbabel takes this as an

opportunity to gather these outputs, identify translation errors and categorize them according to

the Unbabel Error Typology, an adaptation of the one provided by MQM10 (Lommel et al., 2014)

and developed under Quality Translation 21’s (QT21)11 project.

2.2.1.1.2. Translation Assessment

Unbabel’s typology for translation error identification and classification, i.e. annotation,

was created in compliance with the MQM framework by Lommel et al. (2014). The MQM’s

relevant categories for this dissertation are illustrated in Figure 4. The Unbabel’s typology

version 2 (followed throughout this dissertation) was later replaced by a new version, version 3,

created upon Lingo24’s integration - mentioned in Section 2.2.1.2.

11 Quality Translation 21 (QT21): previously in http://www.qt21.eu/. For the latest update, please refer to:

https://themqm.org/

10 More information about the MQM could previously be found in:

http://www.qt21.eu/mqm-definition/definition-2015-12-30.html. For the latest update on the MQM Framework,

please refer to: https://themqm.org/.

22

http://www.qt21.eu/
https://themqm.org/
http://www.qt21.eu/mqm-definition/definition-2015-12-30.html
https://themqm.org/

Figure 4. The MQM Core Typology

The annotation process is done by professional translators and linguists, through a

proprietary annotation tool called Annotate. This process may be described as the consistent

labeling of errors that can fall under three different categories: Accuracy, Fluency, and Style.

Accuracy errors are linked to the relationship between a source text and a target text, and to

which extent the latter accurately renders the meaning of the former. For example, addition and

omission of content are considered to be Accuracy errors. On the other hand, Fluency errors are

related to the linguistic well-formedness of a text (translated or not) and are known to affect

readability and comprehension, such as spelling and grammar issues. Finally, the Style category

includes errors concerning the incorrect use of register or noncompliance with the client’s

instructions.

Moreover, the degree of severity that an error disrupts a text, and consequently impacts

its perceived quality, is associated with one of three different severity levels, namely Minor,

Major and Critical. According to the Unbabel Annotation Guidelines, Minor errors “do not lead

to a loss of meaning”, and the overall message being delivered is still understood. However, both

the stylistic quality and fluency of the text may decrease. For an error to be considered Major,

the user’s comprehension of said text must be affected. Usually, these errors change an important

part of the content, and “the change of meaning results in the improper use of the

product/service”. Lastly, if an error is offensive, “changes the meaning of the original text and

may carry health, safety, legal or financial implications”, or if “it violates geopolitical usage

23

guidelines, damages the company’s reputation, causes the application to crash or negatively

modifies/misrepresents the functionality of a product or service”, then it is considered Critical.

Note that this severity level requires primary focus due to their impact on translation quality. For

this very reason, Unbabel performs targeted tests through Critical Error Test Suites12 to correct as

many impactful errors as possible in a given text.

The MQM score obtained from these annotations, calculated by taking into account the

number of words in the target text as well as the number of errors in it, allows us to know how

good the quality of a translation is, in that the higher the value, the better the quality.

Notwithstanding, this valuable score also allows us to establish an internal process of collecting,

assessing and prioritizing translation errors and error types, called the Error Feedback Loop.

Thereby, it is possible to holistically analyze the identified errors, report them to teams such as

the editor’s community and AI teams, in order to continuously ensure higher customer

satisfaction and overall increase in quality. Further information about MQM and the scores’

calculation, can be found in Section 3.2.1.

2.2.1.2. Quality Framework

Unbabel and Lingo24 cooperated to create the current Quality Framework, a new and

improved way to report translation quality developed in accordance with MQM scores.

Prior to Lingo24’s acquisition, Unbabel offered three different digital Customer Support

channels, also referred to as content types. These content types varied according to the

translation process and the customer’s request. As such, Chat (online support messages) solely

required MT, due to its need for a shorter turnaround time13, Tickets (a customer support related

term used to describe issues raised by customers through emails) required a balanced

combination between MT and post-edition, and finally the web facing channel that demanded the

13 Turnaround time: The time that it takes to fulfill the customer’s request, from the moment the customer’s order

arrives, including the time it takes to translate the order and evaluate its quality, i.e. QE, and finally to the moment

the client receives the concluded translation.

12 Test Suites: Test suites can be considered to be a test set with the purpose of testing the performance of

the MT system on specific quality-related aspects. This is done through a subset of test sentences

manually chosen that are later given to the MT system. Its performance is then calculated based on the

percentage of properly translated instances (Avramidis et al., 2019). For further information, please refer

to Section 3.2.3.

24

highest possible quality in translations, i.e., FAQs (Frequently Asked Questions). This last

content type was considered as having a one-to-many type of communication and, for this

reason, required an additional step of human intervention related to translations’ proofreading

and correction, performed by a Senior Editor14.

Similarly to the different content types, Lingo24 used to provide different translation

service levels falling back on true localization. Ranging from a lower-cost translation to a

professional transcreation, there were five different service levels a client could choose from: i)

plain MT, a translation provided fully by an MT system with no checking nor editing done by

human translators; ii) first draft translation, a light post-edited translation done by a professional

translator; iii) professional translation, the one closest to the source and provided with customer

specific expertise; iv) on-brand translation, when a professional translator is able to maintain

style and tone throughout the text alongside with marketing expertise; and finally v)

transcreation, done by a professional transcreator, following a creative writing approach.

Neither the content types mentioned nor the service levels referred to are currently used

at Unbabel to determine the translation’s quality requested by customers. Due to the fact that it

was necessary to meet customer’s expectations, Lingo24’s integration led to the establishment of

a new and revised Quality Framework, evermore focused on fit-for-purpose translation quality.

This framework consists of the following major components: restatement of the proprietary

MQM-based typology in order to better handle the annotation process, with content from both

Unbabel customer support and Lingo24’s; the previously mentioned combination between

content types and service levels into Quality Levels; the improvement of CUA (mentioned in the

following section), as to also be accountable for Lingo24’s content; and finally, the setting of

Business Critical Errors (BCEs) (Stewart et al., 2022).

The Quality Levels created upon the new framework indicate the translation’s quality

expectation, depending on the expected MQM score. In other words, the higher the quality level

requested, the better the translation. Therefore, these levels range from unedited MT outputs all

the way to the best possible on-brand translation. Each level is associated with different

price-quality relations that allow customers to select the best suited option for them.

Lastly, regarding Business Critical Errors, also referred to as BCEs, they are a subset of

errors that indicate which ones can be perceived as critical for our customers’ needs. In other

14 Senior Editor: A post-editor who consistently provided high quality translations.

25

words, BCEs go beyond the Critical Error definition previously mentioned in Section 2.2.1.1.2,

as they include errors that are not necessarily considered critical from a linguistic perspective,

but that can nonetheless cause damage to the customers.

2.2.1.3. Quality Reporting

Some customers are usually unfamiliar with MQM and its raw subjective scores, and thus

understanding what a specific value means might be challenging. Hence, the Customer Utility

Analysis (CUA) was created by Unbabel to provide a much straightforward reading of all these

values15. It is used to report on translation quality and it consists of different quality levels

represented by a four color schema, as illustrated in Figure 55, with each one being determined

by a range of MQM scores, gradually increasing alongside the translation’s quality: translations

with errors that critically impact the overall communication and meaning are considered to be

“Weak” and are associated with a dark red color; translations with discrepancies belong to the

“Moderate” category and are associated with a light red color; some translations have

grammatical issues that do not interfere with the understanding of the text, and so are considered

“Good” translations, with a light green color associated; and lastly, fluent translations with very

few minor mistakes are considered to be “Excellent” and are associated with a dark green color.

Figure 5. Example of CUA and its Quality Levels

15 For more information regarding the process of quality reporting at Unbabel, please refer to:

https://help.unbabel.com/hc/en-us/articles/4408078076439-Quality-reporting-Monitor-the-quality-results-for-your-tr

anslations and https://resources.unbabel.com/i/1315162-translation-quality-at-unbabel/3?

26

https://help.unbabel.com/hc/en-us/articles/4408078076439-Quality-reporting-Monitor-the-quality-results-for-your-translations
https://help.unbabel.com/hc/en-us/articles/4408078076439-Quality-reporting-Monitor-the-quality-results-for-your-translations
https://resources.unbabel.com/i/1315162-translation-quality-at-unbabel/3

Therefore, CUA allows customers to have access and a better understanding of these

scores and quality measures for the relevant languages, as a consequence of being available on

the company’s Portal16. The Unbabel Portal grants customers the access to these scores and

various other metrics, such as information about their requested translations and their particular

quality. As such, each customer is able to audit their own data and even filter it to a specific time

period, if desired.

2.2.1.4. Automated Quality Metrics for Quality Assurance

Unbabel aims to achieve the highest quality possible for MT, hence the necessity to know

how reliable the translation is and how good the MT engine performs. For this reason, Unbabel

created its own framework for QE to account for the former concern, and opted to mainly rely on

the evaluation metric COMET for the latter.

Although editing MT is usually faster than translating sentences from scratch, some of

these translations end up being more complex than expected, due to multiple factors (e.g. context

related issues, wrong lexical selections, misspelled words) and consequently, their corrections

become time-consuming. “Therefore, estimating post-editing effort to support the work of

translators is a desirable feature in computer-aided human translation workflows” (Specia et al.,

2018, p.46). This is exactly what QE does, because it predicts the quality of an MT output. It is

trained with both the original sentence from the customer’s order and the target sentence, without

access to a reference.

With this in mind, Unbabel created its own open source framework called OpenKiwi

(Kepler et al., 2019), also known as Kiwi. Kiwi can perform on two separate levels, word-level

and sentence-level, and provide a quality score for each one. Word-level QE aims “to assign

quality labels (OK or BAD) to each machine translated word, as well as to gaps between words

(...), and source words” (Kepler et al., 2019, p.117-118). Demonstrated in Figure 6 is an example

of a training set, in which the top sentence in English is the source, the bottom sentence is the

MT output in German, and the middle sentence corresponds to its manual post-edition. In QE,

there are three types of word level tags: MT tags that account for words that are replaced or

16 The Unbabel Portal: It ensures that customers have access to valuable insights and particularly to the metrics

used to evaluate translation quality within all channel types and language pairs. For further information, please refer

to: https://unbabel.com/portal/

27

https://unbabel.com/portal/

deleted; Gap tags to account for words that need to be inserted in the sentence; and Source tags,

used to indicate missing or mistranslated source words. This way, the classification is done in a

meticulous manner, taking into account issues such as context, mistranslations, and omissions.

Figure 6. Example of a Word-level QE Training Set (Kepler et al., 2019, p.118)

On the other hand, the goal of sentence-level QE is to predict the translation quality of

the entire sentence, focusing on a greater scope. Therefore, the final score is calculated with

Sentence HTER and Token Scores associated. Sentence HTER (Snover et al., 2009), also known

as Human-Targeted Translation Error Rate, is a quality evaluation metric that predicts how many

edits will be necessary to achieve a good quality MT. It ranges from 0 to 1, in that the higher the

score the more edits that need to be made in a given sentence. The other value mentioned - Token

Scores - relates to the accuracy of translation regarding each individual word, meaning that each

word receives a score - a token score - from 0 to 1, and the higher the score the worse was the

word choice for that specific translation.

Although we may know how reliable a given translation is, the second concern still

remains. How do we ensure that the MT engine is fit for its purpose? “To judge the quality of a

machine translation, one measures its closeness to one or more reference human translations

28

according to a numerical metric” (Papineni et al., 2002, p.311). In other words, the goal is to see

if the hypothesis17’ quality resembles the reference18’s, while resorting to automatic metrics.

Currently, Unbabel makes use of various automatic evaluation metrics for MT.

Notwithstanding, we will now focus on introducing Unbabel’s proprietary metric, COMET (Rei

et al., 2020), which is used for leveraging retrainings of MT. COMET is a refined metric based

on already existing ones that poorly correlate with human judgments. To surpass this correlation

limitation, Unbabel created a machine learning system that is trained with two types of data, one

from open source models and another from internal models. Regarding open source models,

COMET uses pre-assigned Direct Assessment19 scores on translation to improve the correlation.

Whereas internal models are trained with in-house data, for which we have much more granular

MQM annotations and scores. For this reason, COMET’s correlations with human judgment are

much higher when compared to other metrics, since all data used to train it is directly provided

by human translators (Rei et al., 2020). Moreover, COMET’s performance regarding correlation

between MT output and human judgment is one of the highest, scoring a 0.6 on a scale from 0 to

1. When compared to other metrics such as BLEU, our internal metric also shows higher

correlation scores for a vast number of categories, namely addition, capitalization,

mistranslation, omission, spelling and word order. However, recent analyses have revealed that

COMET still struggles with fine-grained differences, such as named entities, and

punctuation-related issues.

Recently, a tool that helps visualization of MT performance was created, called

MT-Telescope20 (Rei et al., 2021). Using this tool, it is possible to compare the output quality of

two MT systems by looking for disparities and generally evaluating the distribution of quality

scores (ibidem).

System’s performance evaluation can significantly grow if it takes into consideration

multiple other metrics to achieve continuous improvement. This being said, Unbabel still makes

20 For more information about MT-Telescope, please refer to: https://unbabel.com/research/mt-telescope/

19 Direct Assessment: According to Elbeck, M. and Bacon, D. (2015, p.2), direct assessment “involves scoring a

learner’s task performance in which the performance is believed to be contingent on achieving a learning goal”.

18 Reference: A possible translation of the source that has been verified by a human translator (i.e. a ‘gold

standard’).

17 Hypothesis: A translation of the source text (not necessarily MT, since any translation can be considered an

hypothesis).

29

https://unbabel.com/research/mt-telescope/

use of other types of metrics for benchmarking purposes such as BLEU21 (Papineni et al., 2002)

and METEOR (Lavie and Denkowski, 2009).

2.2.2. Smartcheck - a Proprietary Editing Assistant Tool

As part of the Translation Quality Workflow, alongside the framework just described,

Unbabel created an error detection tool called Smartcheck, that identifies existing translation

issues to support editors in post-edition by providing them with possible corrections. In other

words, this editing assistant tool helps editors to find translation issues much faster and to avoid

overlooking other possible faults, focusing exclusively on content derived from tickets.

When Lingo24 merged with Unbabel, their error detection processes and translation

checks were integrated into the already existing quality assurance tools at Unbabel. Thus,

different checks from CheckMate, a tool which belonged to the Lingo24’s error detection

process, were integrated into Smartcheck. This allowed for all content (both from Unbabel and

Lingo24) to be taken into account by this error detection tool.

In this section, Smartcheck’s architecture is explained taking into account its relation with

external services and its dependency on proprietary grammar checking rules. Moreover, it is

described as a tool of great importance to post-editors, due to the support it provides when

performing text editing tasks. The current section is focused on how these proprietary rules are

created, evaluated and deployed to Smartcheck, allowing editors to make use of them in their

daily tasks.

As previously stated, one way to ensure MT quality is through human evaluation,

post-edition and translation error annotations through MQM. Due to the constant checking of

translations to improve and retrain the engines, editors are essential to Unbabel’s success. But

how can we help them do their job, spur them to accomplish tasks, reduce errors and assist them

while taking into account time limitations? Here is where Smartcheck comes into play and has a

crucial role in assisting editors.

Once a customer provides Unbabel the source text to be translated, it can follow through

different pipelines depending on the customer needs. However, the process involved in editing

21 BLUE (Bilingual Evaluation Understudy): An automatic machine translation evaluation method that correlates

highly with human judgments by averaging out individual sentence judgment errors over a test corpus (Papineni et

al., 2002).

30

the MT output is always done by Unbabel’s Communities assisted by Smartcheck. As illustrated

in Figure 7, Smartcheck checks for errors such as register and formality inconsistencies, specific

client rules, and overall consistency of the text, while the spelling portion is handled by external

Natural Language Processing (NLP) services, such as a word aligner, a syntax parser, and a spell

checker. The first NLP service mentioned - the word aligner - is responsible for finding the

correspondence between source and target words in a pair of sentences. Additionally, the syntax

parser named Stanza22 plays a crucial role when handling morphological issues. Stanza is a

natural language analysis package that allows Unbabel to convert text strings into lists of

sentences and words, to later generate their morphological features as well as their syntactic

dependencies and, as such, recognize named entities. Finally, regarding the spell checking

service, Unbabel used to rely on Aspell23 to replace misspelled words in English and, thus avoid

issues that would derive from source texts. However, this tool was recently replaced by

Hunspell24, which can morphologically analyze languages through word-level writing systems

with complex compound and character encoding.

Figure 7. Smartchek’s Architecture

Smartcheck helps editors in performing their translation tasks faster and more efficiently,

due to less mistakes being overlooked, and in making it possible to decide if a highlight error

24 For more information regarding Hunspell, please refer to: https://github.com/hunspell/hunspell

23 For more information regarding Aspell, please refer to: http://aspell.net/

22 For more information regarding Stanza, please refer to: https://stanfordnlp.github.io/stanza/

31

https://github.com/hunspell/hunspell
http://aspell.net/
https://stanfordnlp.github.io/stanza/

needs to be changed. One key feature of Smartcheck is that it encompasses custom language

rules written in a proprietary programming language called SURF for various types of issues,

such as style, fluency, grammar related errors, dependency problems, among others. Therefore,

Smartcheck is the result of a combination of several NLP modules and hardcoded rules for

different language pairs.

This tool can be seen as a supercharged multilingual version of a spell checker, as it

analyzes not only grammar and orthography, but also morphology and style-adapted client rules,

going beyond the spell checkers and morphosyntactic classifiers. Moreover, it identifies possible

mistakes and suggests specific corrections. In other words, it does not substitute the mistake for

the correct form, and for this reason it must be considered a Grammar Error Detection (GED)25

tool instead of a Grammar Error Correction (GEC)26 tool. The core difference is that the editor

has the final word and they must decide to accept or reject the suggestions.

Smartcheck’s purpose is to help editors in two major ways: by checking potential

grammatical errors and by automatically suggesting tips concerning customer’s style guides.

This tool operates in the Unbabel’s Editors Interface and it was developed using proprietary

technology based on several language rules that check the translation coherence and consistency.

When Smartcheck detects an error on a segment, it underlines that expression in red - illustrated

in Figure 8 -, in order for the editor to check the provided suggestion and subsequently decide

whether to edit the suggestion or not. In the example below, the required register is highlighted in

the top right corner and thus, the translation must have a formal tone. However, an informal

pronoun, i.e. the “ti” circled in red, is incorrectly used instead.

26 Grammar Error Correction (GEC): “The task of correcting different kinds of errors in text such as spelling,

punctuation, grammatical, and word choice errors”, as described in the shared task of GEC in

http://nlpprogress.com/english/grammatical_error_correction.html (accessed 5 July 2021)

25 Grammar Error Detection (GED): According to Rei and Yannakoudakis (2016), GED is independent from GEC

as it detects grammatical errors by sequence labeling each token in a sentence with a binary classification (i.e.

correct or incorrect), and classifies them accordingly, depending on the grammatical category they belongs to. For

more information regarding GED, please refer to Section 3.3.1.

32

http://nlpprogress.com/english/grammatical_error_correction.html

Figure 8. Example of a Smartcheck’s suggestion regarding the incorrect use of register in an MT

output from English to Italian

As a result, Smartcheck can help editors in many ways. For example, they are less likely

to overlook misspelled words, agreement issues and inconsistencies regarding register.

Additionally, they can avoid the time-consuming task of reading numerous customer’s style

recommendations and associated customer-specific terms. Therefore, it is possible to

significantly improve the editor’s work quality and change the entire process to be more

time-efficient and, consequently, transform this step in the translation pipeline to be regarded as

cost-effective.

All things considered, Unbabel created Smartcheck due to the flexibility and increased

control it provides when compared to other GED tools. The possibility of creating

language-specific rules simply by following an unique syntax, allows for greater control in the

MT process and for creating unlimited custom rules for clients. Thus, Smartcheck makes it

possible for editors to achieve higher quality in translations and, as a consequence, use these

texts to feed MT systems and improve them over time. In short, the more the editors edit MT

outputs and correct translation errors, the better the outputs of the systems will become.

33

2.2.2.1. Surfboard

Smartcheck heavily relies on coded rules from Surfboard, a proprietary interface which

allows for rule creation, testing and evaluation. It is important to draw a distinction between

Surfboard and SURF, since the former is a back-end platform and the latter a proprietary

programming language used in said platform to develop custom rules, i.e. SURF rules. These

rules are then deployed to Smartcheck to assist editors and improve their performance.

Managing rules can be a challenge, especially when there are distinct rules per language,

customer and within customers also per brand. With this in mind, the following question arises:

how do we know if the existing SURF rules are accurate enough to fit their purpose? In order to

answer that question, each rule’s performance must be evaluated. The state-of-the-art process of

assessing the rules’ performance is through evaluation with test suites. With regular assessments

and better test suites to evaluate the custom rules, the systems can be upgraded, improved and

even more precise.

When creating a system that automatically translates texts from one language to another,

it is extremely important to have a considerable amount of examples in both the source language

and the target language corpora. However, human language is not as simple as direct translations

and so only relying on corpora for MT is neither efficient, nor realistic. It would be impossible to

account for every sentence and structure possible in one or more languages. For instance,

expressions that depend on context, cases of ambiguity, and even the fact that some languages

have different grammatical features are some examples of this limitation. Thus, instead of

creating grammar rules that only account for specific expressions, what is crucial is to create

rules that cover a broad range of common translation errors. Moreover, there needs to be

client-specific rules to not only account for explicit guidelines, but also for brands within those

clients. For this reason, parallel corpora and curated data that account for customer specificities

are of utmost importance.

Although editors review the translations, there will inevitably be overlooked errors.

Regardless, recognizing the problem, and taking corrective actions by combining both custom

grammar rules and quality in extensive data is crucial. For this reason, improving MT engines is

a very meticulous process, involving not only the need to assist editors, to know what are the

most frequent critical translation errors and to create rules that avoid forthcoming problems, but

34

also the fact that these systems need to be frequently tested and that the problematic structures

must be addressed and corrected.

With this in mind, Surfboard is the tool designed for the creation and regular testing of

language rules, by checking their metrics and automatically evaluating their quality. As

previously mentioned, the programming language for writing grammar checking rules is called

SURF. SURF, a domain-specific language (DSL), has an unique syntax for writing code and also

a compiler to turn it into a machine-understandable format. This proprietary programming

language has two main advantages: the first one is that custom-made rules allow for an easier

and more efficient application in staging - a “pre-production” environment for testing before

deployment -; and the second one is the fact that specific language rules can be easily improved

and have new features added, if needed, while automatically measuring its performance. This

way, the process of creating grammar rules becomes user-friendly and, consequently, it allows

for evaluation of every rule in production.

But how does Surfboard actually connect to Smartcheck? In order for SURF rules to

properly assist editors, they all need to be gathered and tested on Surfboard in the first place, so

that afterwards Smartcheck can retrieve them. To enable running SURF and simultaneously

check the source text (input), a Python server had to be created and divided into two standard

parts: an interface and an engine, as illustrated in Figure 9. The interface is offline and backed by

a compiler for supporting the writing of the rules. On the other hand, the engine is online and

always running the rules against received text, i.e. it stays running and constantly waits for texts

to be checked. Once the MT output is provided, Smartcheck will get all the current rules from

Surfboard and save them on the SURF Engine, using a “GET” rule. Every time a rule is added,

modified or deleted, Surfboard notifies Smartcheck, via a request with the ID of the rule and the

action needed - either adding a new rule, updating an existing one, or deleting it, if necessary. It

is important to mention that if a rule is updated, then Smartcheck will ask Surfboard for the rule

string via a query and then save it on the SURF engine, and if it is deleted, then Smartcheck will

delete the rule from the SURF engine itself.

35

Figure 9. Communication between Smartcheck and Surfboard

Moreover, in Surfboard every rule can be evaluated using a series of different metrics

built-in the platform, such as #F to account for how many times a rule was fired, TP for cases of

true positives, FP for false positives, FN for false negatives, and lastly #A to account for how

many times it was annotated, i.e., obtained by summing cases of True Positives (TPs), False

Positives (FPs) and False Negatives (FNs) per rule. While a TP is a case of an error being

correctly detected by SURF rules, a FN is a case of an existing error not being detected, since the

classifier - SURF - considers a word as not having an error - negative class27 -, when it should

have. Lastly, cases of FPs consist of expressions where errors were detected when there were no

actual errors. Thus, they are classified as positive, but the positive/gold class28 was negative.

Surfboard can also calculate metrics such as Precision (P) and Recall (R), which are

standard and widely used to evaluate systems’ performance (Makhoul et al., 1999), in the

following way:

,𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

These are often combined with the F1-score metric, in case a numerical measurement of a

system's performance is required. Therefore, F1-score can be defined as “the weighted harmonic

mean of P and R” (ibidem, p2):

28 Positive/Gold Class: When a word/expression has grammatical/lexical related problems and is therefore

incorrectly translated, i.e., presence of issues.

27 Negative Class: When a word/expression is correctly translated and has no grammatical/lexical related problems,

i.e, absence of issues.

36

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The ideal situation when testing a rule is for it to achieve high metrics and avoid cases of

false positives and false negatives. SURF rules rely heavily on MQM annotations for providing

the error categories. This is the reason behind the existence of test suites that are used to evaluate

every rule in Surfboard. These test suites, combined in one single evaluation dataframe, account

for every language pair Unbabel supports and must consist of gold annotations. Since

annotations are used to evaluate SURF rules, hardcoded Smartcheck rules, and Unbabel’s spell

checker they must be curated and customer-representative. As mentioned earlier, knowing which

structures are problematic for each language, which grammatical categories need more attention,

and what are the overall strengths and weaknesses is a critical step when creating rules to fix

translation problems. Hence, the greater the thoroughness of annotations, the better the quality of

the MT output. For this reason, the grammar rules created for overlooked annotation errors are

established with the annotation’s Error Typology created by Unbabel.

37

3. State of the Art

MT’s research has been increasingly expanding over time, despite some hardships along

the way. Nonetheless, there is still much to do in order to truly guarantee good quality outputs

and the system’s full automation.

In this chapter, we will start by discussing the initial attempts at developing MT systems

in Section 3.1, and describe multiple efforts to improve the systems’ performance and overall

progress. Over the years, the investment in the MT field led to an exponential growth in these

systems and new approaches started to emerge. Approaches such as rule-based, statistical, and

more recently NMT. However, with the expansion of MT research, the need to assure quality and

evaluate these translation systems also became a necessity. Thus, manual and automated metrics

such as MQM (Section 3.2.1) and QE, BLEU, METEOR, and COMET (Section 3.2.2), were

created to enhance quality assessment processes. Additionally, for an evaluation’s result to be

reliable, the gold standard must compile extensive, representative and revised data, i.e. the

evaluation must be done using test suites. Section 3.2.3 is dedicated to describing test suites, their

purpose, progress throughout the years, and the different approaches to adopt when creating

them. Finally, in an attempt to improve the quality of machine translated outputs, tools of GED

and GEC were created. These tools, described in Section 3.3, also allow for a decrease in human

dependency when reviewing translations and identifying potential existing issues.

3.1. Brief history of Machine Translation

MT came into the spotlight in the early Twentieth Century with electromechanical

devices capable of being used as translation dictionaries. In 1933, Georges Artsrouni, a French

engineer, created a “Mechanical Brain” (Cerveau Mécanique) that functioned as a multilingual

dictionary for producing quick rough translations. The main problem with Artsrouni’s creation

was its underlying inability to provide more accurate translations. That same year in Russia, Petr

Petrovič Trojanskij developed a “translating machine” capable of bilingual and multilingual

translation. MT research was therefore finally taking its first steps.

In 1949, Warren Weaver wrote a memorandum entitled “Translation” that is said to be the

“single most influential publication in the early days of machine translation” (MT News

International, 1999, p.5). By then some word-for-word automatic translations started to appear,

but they were too crude and consequently this approach presented many limitations. Taking this

38

into consideration, Weaver’s memorandum put forward four new proposals to overcome these

limitations: i) problems of ambiguity may be solved through context and, depending on the noun,

verb or adjective with multiple meanings, the amount of context required changes; ii) there are

logical elements in all languages, so any written language is an expression of logical characters,

and thus the problem of translation can be formally solvable; iii) the frequency of letters, their

combinations, patterns, and intervals between each may be independent to some degree of the

language used; iv) the fourth proposal focused on the premise of linguistic universals, derived

from the second proposal’s logical features.

Although some rejected these proposals, others saw this as an opportunity to dive into the

unknown world of MT. Hence, in the beginning of the 1950s, research started to bloom with

Yehoshua Bar-Hillel in Massachusetts Institute of Technology (MIT) due to the growing interest

in Weaver’s memorandum. For Bar-Hillel, research on MT could “(...) probably provide valuable

insights into the functioning of linguistic communication” (Bar-Hillel, 1951, p.229), particularly

regarding syntax and how it could deal with translation ambiguities. However, these were but the

groundwork in the MT’s progress, as fully automatic translations were far from being achieved:

“... fully automatic translation would not be achieved without long-term basic research, and (in

the interim) human assistance was essential, either to prepare texts or to revise the output (known

already as pre- and post-editing.” (Hutchins, 1995, p. 433).

Soon after, Léon Dostert in collaboration with the International Business Machines

(IBM) Corporation did the first public demonstration of an MT system, albeit not yet owning the

adequate computer facilities. Nonetheless, this demonstration gave inspiration for other countries

to invest in other MT projects and, as a consequence of the Cold War and the rise of MT, the US

focused the research on Russian-to-English translations whilst most Soviet research was directed

at English-to-Russian systems (Hutchins, 1995).

For a fleeting moment, the assumption that MT was heading in a promising direction was

spreading. However, in the beginning of the 1960s it shortly faded into disillusion:

“Those who are interested in MT as a primarily practical device must realize that full automation

of the translation process is incompatible with high quality. There are two possible directions in

39

which a compromise could be struck; one could sacrifice quality or one could reduce the

self-sufficiency of the machine output.” (Bar-Hillel, 1960, p.93)

According to Bar-Hiller (1960), even human translators need extra-linguistic knowledge

to provide high quality translations. For this very reason, even ambiguous structures cannot be

settled simply through context, as Weaver believed. Thus, Bar-Hiller concluded that fully

automatic high quality translation (FAHQT) can only be achieved with the cooperation of human

post-editors to fix these flawed MT outputs.

The lack of interest, and consequently of funding, in MT grew significantly in 1964 with

a report from the Automatic Language Processing Advisory Committee (ALPAC). This report,

considered by some as “narrow, biased, and shortsighted” (Hutchins, 1995, p.436), stated that

there should not be further investment in MT research due to its time-consuming nature, the great

cost associated, and the low-accuracy outputs. Eventually, MT research in the USA ceased for a

long period of time.

In spite of this negative outlook, the demand for translations was growing exponentially

in Canada due to the bilingual nature of the country. Research began in 1970 with the Traduction

Automatique de l’Université de Montréal (TAUM) project. This project had two notable

achievements: the creation of a new metalanguage and of the METEO system. The

computational metalanguage was created to manipulate linguistic structures that were

represented by strings and trees. In fact, this achievement was of such value that it established

the foundation for Prolog, a well-known programming language that is still used to this day in

NLP. In parallel, the METEO system was developed to translate weather forecasts from English

to French. As such, this system was able to obtain high accuracy levels due to its “restricted

range of vocabulary and grammatical structures” (Kenny, 2019, p.432).

Countries in Europe joined the MT research later on, in 1976. By then, various systems

started to come into operational use, in particular the Systran MT system. This operational

system was originally developed as a direct translation system between Russian and English for

the US Air Force, but was later adopted by the then Commission of the European Communities

(CEC). Initially, Systran was only targeted at English-to-French translations, however, as the

European Communities (now European Union) started to coalesce, the need for translating other

40

languages increased as well. In fact, Systran was so successful that it was installed at multiple

intergovernmental institutions, e.g. NATO, and is still thriving as of 2022.

During the 1980s, different companies from Japan started to focus their interest and

efforts in MT in order to develop software for computer-aided translation (CAT). These systems

were designed for microcomputers and were limited to dealing with morphological and syntactic

information, “with little or no attempt to resolve lexical ambiguities” (Hutchins, 2001, p.18). For

this reason, they fully depended on human assistance for preparing (pre-editing) and revising

(post-editing) translations. However, Japan was not the pioneer for these microcomputers. In

1983, the Automated Language Processing Systems (ALPS) was created by developers from

Brigham Young University to provide “the translator with a set of software tools to automate

many of the tasks encountered in everyday translation experience” (Slocum, 1985, p.10). Hence,

the ALPS system managed to resolve ambiguities in source texts and provided three different

levels of assistance: multilingual word-processing, automatic dictionary and terminology

consultation, and interactive translation (Hutchins, 2001). Regardless, not only did this system

still required post-edition to achieve high quality translations, but it also could not account for

idiomatic structures. Thus, the ALPS’s recognition was rather short-lived in the MT world.

Up until this moment, automatic translations were done through rule-based machine

translation (RBMT) systems. This first approach of MT required good quality dictionaries, and

syntactic and semantic analysis to associate “the structure of the given input sentence with the

structure of the demanded output sentence” (Okpor, 2014, p.161). The RBMT approach was

known for its customizable features that allowed for full control of the translation’s quality. The

main reason is that each error could be corrected through a new targeted rule. Nonetheless, it still

presented some limitations, specifically the fact that linguistic information still needed to be

manually added and that good dictionaries are expensive and do not cover all the languages.

Some examples of this approach are the PROLOG-based Logic-programming MT (LMT) system

(McCord, 1985) and the previously mentioned Systran system. This second system started out as

RBMT, but later transitioned to a hybrid approach that combined Rule-based MT with Statistical

MT.

The Statistical MT (SMT) approach, considered state-of-the-art by the end of the 20th

century, relies on statistical translation models that analyze both monolingual and bilingual

corpora. As described by Okpor (2014, p.163):

41

“The initial model of SMT (...) proposed by Brown et al. takes the view that every sentence in

one language is a possible translation of any sentence in the other [language] and the most

appropriate is the translation that is assigned the highest probability by the system.”

SMT generates translations with the aim of identifying the relation between words,

phrases and sentences in the source and target texts. Therefore, it subdivides itself into four

distinguishing sub-approaches depending on its focus: word-based, phrase-based, and

syntax-based. The former approach is the original model for SMT in which the translation

process is decomposed in order to associate each word from a source sentence with its

corresponding target. In other words, this approach consists in a word-for-word alignment task.

However, these systems are quite low on overall accuracy and may not be appropriate for all

languages, as they only operate at a full word level, thus excluding agglutinative languages such

as Turkish (Bodrumlu, et al., 2009). Phrase-based models, on the other hand, segment sentences

by phrases instead of words. Note that any sequence of words can be considered a phrase if it is

seen as fit, therefore this segmentation is not necessarily linguistically motivated (Koehn, et al.,

2003). These models begin by translating each phrase into English in order to reorder them

afterwards and provide a translated output. One criticism of these two approaches is that they are

not representative of syntactic aspects of languages. With this in mind, the syntax-based

approach was created using parse trees as inputs, “i.e., the input sentence is preprocessed by a

syntactic parser” (Yamada and Knight, 2001, p.523). Syntax-based models perform three

extremely useful operations on each node of the parse tree: reordering child nodes to account for

languages with different word orders, e.g. SVO- and SOV-languages; inserting extra words to

capture linguistic differences; and finally translating the overall sentence (ibidem).

Soon after, the fourth approach of SMT, i.e. hierarchical phrase-based, was created by

combining the previously described phrase-based method with syntax-based models. Since these

two approaches used phrases to learn how to reorder words, the hierarchical phrase-based

approach aimed to use those same phrases to learn reorderings of hierarchical units that consist

of both words and subphrases (Chiang, 2005).

The SMT approach, when compared to RBMT, is faster, better at detecting exceptions,

and its development cost is significantly lower. However, despite these strengths, the fact that it

42

still requires high CPU and extra storage space, that the translation quality is unpredictable and

that it does not rely on grammar rules proves that a third approach (with better translation

quality, higher performance and less required investment) is essential to the progress of MT’s

research.

With this in mind, a new approach was developed to try and achieve higher accuracy

levels and overall more control in translation by merging RBMT and SMT into a single

approach, called Hybrid MT. As a result, translations can either be performed upfront through

RBMT alone and then be corrected using SMT, or be pre-processed by the former and

post-processed by the latter (Okpor, 2014).

The attention towards the progress in MT systems quickly increased when, in 2016, a

new state-of-the-art approach and major milestone arrived - i.e. NMT. This new approach makes

use of a single large neural network modeled to mimic the human brain to provide translation

outputs for various languages and requires an abundance of training data (Tan et al., 2020). NMT

is capable of handling languages that are morphologically more complex and it is data-driven. In

other words, it can easily meet increased demands and be customizable through multiple data

sources. One problem of this approach lies in the fact that large-scale corpora are not available

for the majority of language pairs (ibidem). Nonetheless, this approach is highly more accurate

and cost efficient in comparison to the previous ones, thus justifying its current relevance in the

MT field.

3.2. Translation Quality Assurance

With the worldwide rapid growth of MT, the need for evaluating translated outputs

increased as well. However, asserting that a translation is good or bad is no straightforward task

and, as disclosed by House (2014, p.241):

“(...) any statement about the quality of a translation implies a conception of the nature and goals

of translation, in other words it presupposes a theory of translation. And different theoretical

stances must lead to different concepts of translational quality, to different ways of going about

assessing (retrospectively) the quality of a translation and different ways of ensuring

(prospectively) the production of a translation of specified qualities.”

43

Evaluating translations started out as an inconsistent and somewhat groundless process,

due to the fact that these assessments were done informally by bilingual professional translators

and linguists. Today, however, the evaluation process is significantly more meticulous and

controlled. Evaluating a translation nowadays involves checking aspects such as fluency,

adequacy (between the source and the target texts), and compliance with specific requirements

(ibidem). This evaluation can be done through two major contrasting types of quality metrics:

automated metrics and manual metrics. The convenience of automated metrics to evaluate

systems is of utmost importance in MT’s research, due to the fact that human evaluation is often

the best indicator of quality, but its cost and time-consuming tasks hinder MT’s current

development.

3.2.1. Manual Quality Metrics

Evaluating translation quality is still, to this day, a very intricate and challenging task, let

alone in the late 1980s. At the time, translation quality was assessed by bilingual reviewers or

monolingual subject experts that would provide feedback on the translated texts. However, the

fact that there was no structured methodology nor any predefined tools to conduct this

evaluation, led to numerous inconsistencies between translator providers. Moreover, not only

were the reviewers’ feedback quite vague, but the quality review steps involved in these

assessments were also not well looked upon (Lommel, 2018).

To address this issue, Language Service Providers (LSPs) created translation score-cards.

As described in Lommel (2018, p.111), the translation score-cards “allowed reviewers to count

numbers of errors to generate overall quality scores, usually represented as a percentage, with

100% indicating no errors”. Additionally, some errors were also assigned with different weights,

such as minor, major, and severe.

Processes such as the one just described were an important step forward in the translation

quality evaluation development, although they still did not account for many other

inconsistencies. One of the most significant problems was related to the uncertainty of meeting

customers requirements.

In the 1990s, while aiming to overcome these limitations, two new efforts for quality

assessment were created. First, a new metric called SAE J2450 was developed to address

automotive documentation and it featured different error types and two severity levels. However,

44

its intended purpose was solely for automotive service manuals and no other content type. As

this metric is of specific application, it could not be applied across the board to various other

texts or, in other words, it could not be generalized. The second project for quality assessment

was the Localization Industry Standards Association (LISA) Quality Assessment (QA). The

LISA QA Model was essentially used as the “standard for quality assessment of software and

documentation localisations after its release in the 1990s” (ibidem, p.112). The Model featured

18 or 21 categories and, unlike SAE J2450, three different severity levels. Despite advocating

transparency, both efforts failed to guarantee what they vouched for. On the one hand, the

reviewers were not interchangeable and there was an inconsistency in attributing error severities,

thus the inter-annotator agreement (IAA) was substantially low. On the other hand, there was an

effort to standardize error types, but this decision led to multiple complications regarding the

models that had been developed with specific scenarios or text types in mind. Therefore, the

LISA QA Model was constantly being modified and unstable. As pointed out by Castilho (2018,

p.15):

“... if, on the one hand, this [LISA QA Model] offers a degree of standardisation, on the other it

makes adaptability to the specifications of individual translation and localisation projects rather

difficult.”

Subsequently, two other initiatives started to actively work on assessing translation

quality and developing new approaches, giving rise to the Dynamic Quality Framework (DQF)

by the Translation Automation User Society (TAUS) and to the QTLaunchPad project, led by the

German Research Centre for Artificial Intelligence (DFKI). As translation quality requirements

change depending on a number of different factors, the DQF “provides a commonly agreed

approach to select the most appropriate translation quality evaluation models and metrics

depending on the specific quality requirements” (Görög, 2014, p.157). This framework provides

tools to not only standardize the evaluation process, but also modify it in order to become more

objective and transparent overall. In addition, a new translation error typology for use in human

and machine translation analysis was created within the QTLaunchPad project. Taking into

consideration various error typologies and tools such as the previously mentioned LISA QA

Model and SAE J2450, this project resulted in a new and reliable error typology called

45

Multidimensional Quality Metrics (MQM) (Lommel et al., 2014) that attempted to harmonize

various evaluation methods into one master typology.

MQM is highly hierarchical as it includes different branches with dependent ‘children’

nodes. These branches can be distinguished depending on different issue types: Accuracy

between the source and target texts; Design, e.g. text formatting issues; Fluency, i.e. the text’s

linguistic well-formedness; Locale conventions, e.g. date and time formats; adherence to Style

guides, and finally the use of correct Terminology. These error types are of utmost importance for

evaluating translations, because, depending on the task, some types are considered to be more

important than others and the severity level of a given error may differ between minor, major,

and critical. Thus, “severity refers to the nature of the error itself and its effects on usability of

the translations” (Lommel, 2018, p.120).

MQM metrics were made to be “as course-grained as possible while still serving their

purpose” (Lommel, 2018, p.116) when evaluating translations. To calculate an MQM score, each

error is taken into account, multiplied by its severity value and its weight to generate penalty

points. These points are later summed up to obtain the total and the final score, typically

presented as a percentage. This way, the MQM29 provides a better understanding of which issue

types contribute to quality problems and, thereby, which issues must be addressed. Additionally,

it is possible to set thresholds for different translation qualities and separate those found by the

requester as acceptable from those considered inadequate.

It quickly became clear that the MQM typology and the DQF complemented each other

and that it would be beneficial to merge them. So, in the follow-up project of QTLaunchPad,

QT21, the integration between MQM and TAUS and DFK’s efforts began. Some examples of

these changes were: the initial MQM branches were restructured to match DQF’s categories;

DQF adopted the MQM issue names; an additional severity level - null - was added to allow for

issues to be marked without assigning penalties to them; and two new dimensions were added,

namely Internationalization to account for localization issues and Verity to “deal with the

relationship of the content to the world in which it exists” (Lommel, 2018, p.118). As a

consequence of this integration, the typology became smaller and overall easier to use and

understand.

29 The MQM: https://themqm.org/

46

https://themqm.org/

3.2.2. Automated Quality Metrics

Automated evaluation of MT is performed by systems that provide a score regarding a

given MT output. Such automated systems cannot be considered autonomous as they still rely on

humans. This is due to the fact that these scores are automatically computed and based on human

intervention for tasks related to collecting data, annotating or creating reference translations.

There are three types of automated evaluation according to Chatzikoumi (2020): i)

metrics that provide scores in reference to a given translation; ii) quality estimation (QE) metrics;

and iii) diagnostic evaluation based on checkpoints. All these metrics are used to determine if an

MT system is able to meet several conditions and identify possible limitations. Therefore, an

ideal automated evaluation system must be able to correlate the MT’s outputs with human

judgment (the most important criterion), be consistent, reliable, sensitive to nuanced errors, and

handle a great range of different fields (Banerjee and Lavie, 2005).

With this in mind, Papineni et al. (2002) proposed a state-of-the-art evaluation metric

called BiLingual Evaluation Understudy (BLEU) to measure translation performance. BLEU

requires a “numerical ‘translation closeness’ metric” and a high quality corpus of human

reference translations to estimate a translation’s quality value. This value can range from 0 to 1,

where 1 corresponds to a translation identical to the reference and is highly unlikely to be

obtained. In other words, it compares n-grams of a given translation to n-grams of a reference

and counts the number of matches. Therefore, the greater the number of matches, the better the

quality of the translation and the higher the score it achieves.

Although BLEU is well known for its high correlation with human judgment, it solely

relies on precision30 (P), in particular on “modified unigram precision”, disregarding the widely

used recall31 (R) metric, as its notion is unclear for BLEU’s intended purposes. Hence, to tackle

this and other weaknesses, Metric for Evaluation of Translation with Explicit ORdering

(METEOR) (Banerjee and Lavie, 2005) was designed to explicitly match the MT output and the

reference translations. In fact, it does not simply match identical words in the two strings being

31 Recall: “Recall is the ratio of acceptable n-grams in the MT output (i.e. the n-grams also found in at least one of

the reference translations) to the number of n-grams of the reference translation (the ideal number of n-grams)”

Chatzikoumi (2020, p.5).

30 Precision: “Precision is the ratio between acceptable n-grams in the MT output (i.e. the n-grams also found in at

least one of the reference translations) to the number of n-grams in the same MT output” Chatzikoumi (2020, p.5).

47

compared, it can match words that are morphologically related and synonyms of each other.

METEOR computes the already mentioned metrics P and R, but also “Fmean by combining the

precision and recall via a harmonic-mean (...) that places most of the weight on recall” (ibidem,

p.68). This way, METEOR can achieve one of the highest correlations with human judgment in

comparison with other automated evaluation metrics.

The Bilingual Evaluation Understudy with Representations from Transformers

(BLEURT) (Sellam et al., 2020) is the most recent metric for reference-based text generations

focused on English. This metric uses synthetic examples, i.e. fit-for-purpose fabricated reference

and candidate sentences, and, as a result, it is able to generalize and “model human assessment

with superior accuracy” in comparison with the previous metrics described.

Around that time, a new state-of-the-art evaluation metric was developed by Zhang et al.

(2019) called BERTScore, with the goal of evaluating semantic equivalence between candidate

sentences and annotated references. BERTScore is a language generation evaluation metric based

on Bidirectional Encoder Representations from Transformers (BERT), a language representation

model developed by Devlin et al. (2019). BERTScore manages to overcome BLEU’s and

METEOR’s limitations regarding the inability of robust paraphrase matching and capturing

distant dependencies and ordering. This is done through contextualized token embeddings and

matching their similarities. In other words, each token from a reference is matched to a token

from a candidate sentence through contextual embeddings to compute R (and vice-versa to

compute P) and the match between them is computed using “cosine similarity, optionally

weighted with inverse document frequency scores” (ibidem, p.3). However, this relation with

contextual embeddings may jeopardize scores, as it heavily depends on the quality of the

models’ embeddings.

While aiming to achieve even higher levels of correlation with human judgment, a new

framework called Crosslingual Optimized Metric for Evaluation of Translation (COMET) (Rei et

al., 2020) was developed. COMET is a state-of-the-art “neural framework for training

multilingual machine translation evaluation models” (ibidem, p.1) and a proprietary metric of

Unbabel. As such, its description has been given in Section 2.2.1.4. A final note, COMET has

recently evolved to a compressed model, in the spirit of green artificial intelligence initiatives,

called COMETinho (Rei et al., 2022).

48

3.2.3. Test Suites

With the arrival of MT, the metrics used to evaluate translation systems started to reach

their limit. With this in mind, the MT community decided to look for alternative evaluation

approaches from as early as the 1990s. Examples of such alternatives are the use of test corpora

and of test suites to evaluate system’s performances, two complementary techniques that should

not be confused with each other. The main difference between them relies on the fact that the

former are repositories of large amounts of possibly unrefined data, while the latter consist of a

curated set of tests, representative of the structures that one wishes to analyze.

Test corpora represent “naturally occurring data, so that one can be sure that the

phenomena one is testing for really do occur” (Balkan et al., 1994, p.53). In other words, this

technique can be used as a tool for adequacy evaluation as it depends on sequences of full

sentences, i.e. pieces of text. Thus, it is particularly useful for testing context-dependent semantic

and pragmatic phenomena. However, test corpora lack meticulousness and so the complex nature

of these phenomena can make it difficult to isolate the one phenomenon being tested. Moreover,

the fact that most corpora lack annotations also contributes to making the evaluation process

even more complex.

Test suites, on the other hand, are lists of sentences specifically assembled to obtain a

corpus of controlled examples - gold standard32 data - used for diagnostic evaluation of a given

system. As defined by Balkan (1994, p.1), test suites are:

“... a collection of (usually) artificially constructed inputs, where each input is designed to probe a

system's treatment of a specific phenomenon or set of phenomena. Inputs may be in the form of

sentences, sentence fragments, or even sequences of sentences.”

Given the fact that the input used for testing is checked beforehand, it is possible to

control the vocabulary and the phenomenon being tested. This way the evaluator “can focus on

the way the system deals with the construction without the distraction of problems relating to

lexical coverage” (Balkan et al., 1994, p.53) and, therefore, use test suites to thoroughly evaluate

systems. This evaluation method is especially useful when performing the following three major

32 Gold standard: A gold standard is a data sample that accurately represents the content at issue and that has

already been checked, in order to remove irrelevant and/or invalid data.

49

tasks, according to Balkan et al. (1994): i) for presenting language phenomena in an exhaustive

and systematic way; ii) for generating possible combinations of phenomena; and iii) to

systematically derive negative data from positive data, “by violating grammatical constraints

associated with the positive data item” (ibidem, p.53).

3.2.3.1. Test Suites’ History

Test suites have been used since the beginning of the 1990s. For instance, King and

Falkedal (1990) tried to define an evaluation strategy for a bilingual translation system that

would be of interest to the NLP community. As such, the authors proposed “setting up a series of

systematically organized test inputs to test at least the syntactic coverage of the system”.

However, they quickly found a major issue related to the complex interaction between different

linguistic phenomena. So, it was decided to reduce the test suites’ items’ linguistic complexity to

an absolute minimum. This decision was found to not be as functional as predicted, as the sole

task of creating test suites focused on one single language was already considered lengthy and

highly demanding, not to mention regarding multiple language pairs. Therefore, two test suites

were created in place of one: the first focused on a bilingual corpus representing the content the

system would tackle; and the second related to translation mismatches between the source and

target languages regarding lexicon and structural ambiguities. Nevertheless, it was concluded

that the main virtue of test suites is their “flexibility in accounting for both the competence and

the user-related performance of the system under test” (ibidem, p.215), only if said system

includes “a substantial component of contrastively based test inputs” (ibidem, p.213).

The MT community has started to focus on test suites to either account for particular

linguistic phenomena, as is the case with PROTEST (Guillou and Hardmeier, 2016), or to

compare different MT system, e.g. (Burchardt et al., 2017) and (Macketanz et al., 2019).

The test suite PROTEST aimed to handle a specific linguistic phenomenon limitation

found in the MT’s evaluation process. By then, most MT evaluation methods resorted to

word-alignment when generating correspondences between output words and input words.

However, the problem lied in the fact that this approach would only account for content words,

but disregard function words such as pronouns (in particular, anaphoric pronouns). Therefore, the

test suite PROTEST was created to overcome this limitation through evaluation of pronoun

correctness and ultimately improve the state-of-the-art for this linguistic obstacle.

50

Other work has been done regarding test suites on a more general level, namely the test

suite in Burchardt et al. (2017), created for the language pair English-German in the QT21

project. It consisted of a balanced test set with segments from multiple corpora, grammatical

resources, and lists of translation errors to compare three different types of MT systems:

rule-based, phrase-based, and NMT. With the ultimate goal of automating test suites’ testing,

each test sentence was annotated with the phenomenon category and the phenomenon it

represented. Although the results obtained were considered to be insightful on the system’s

performance, this test suite was a preliminary version nonetheless.

More recently, Macketanz et al. (2019) extended the work presented in Burchardt et al.

(2017) by including more test sentences and better coverage of phenomena, as well as testing a

significantly higher number of state-of-the-art systems.

3.2.3.2. Test Suites’ Approaches

An MT system “is evaluated by how well its proposed corrections or edits match the

gold-standard edits” (Ng et al., 2014, p.4). For this reason, test suites’ construction must be done

by following a specific approach that is considered appropriate for the evaluation’s main goal.

This is due to the fact that “if we cannot entirely trust our gold-standard data, then we cannot

place too much trust in the results of evaluations carried out using that data” (Dale et al., 2012,

p.58).

The current section will describe different approaches in light of Balkan (1994)’s work.

According to the author there are three possible approaches when constructing test suites: the

bottom up approach; the top down approach; and the mixed approach.

The bottom up approach tests the system and analyzes its functions while considering

them as attributes. As an example, take into consideration the case with spell checkers. Their

functions consist of detecting misspelled words and providing plausible corrections, therefore

their reportable attributes consist of detected misspelled words and of the corresponding correct

form, found among the corrections the system proposes. Thereafter, each attribute is associated

with a value, usually a percentage, which is calculated in comparison with a standard, e.g. test

suites. However, to use test suites in evaluation of either spell checkers or MT systems in

general, “the phenomena included will be of particular importance for that application” (p.3). In

other words, for test suites to fulfill their purpose, they must compile representative examples of

51

the phenomena/content one wishes to evaluate. One example of the bottom up approach is the

already described work of King and Falkedal (1990).

There are multiple system-specific test suites’ construction options in the bottom up

approach, as they depend on the type of required evaluation. Nonetheless, two evaluation

scenarios can be distinguished: the “black box” scenario, in which the evaluator does not have

access to the internal workings of the system, but is still able to test hypotheses about internal

workings of the system; and, on the other hand, the “glass box” scenario, in which the evaluator

has access to the system rules. In regards to the latter, the test suite’s writer is able to tune his/her

test suite to the rules of the system and, thus, the evaluation will often be done to test the rules’

reliability. Thus, the evaluation will be of diagnostic value to locate the source of the system’s

error, i.e. a root-cause analysis. Note that even some black box system’s users might still be able

to have access to lexical rules and possibly intermediate representations, as is the case with the

previously mentioned Systran MT system. Nonetheless, “the more access an evaluator has to a

system's internal workings, the more error diagnosis he can perform” (p.4).

Unlike the bottom up approach, in the top down approach the user is not able to tune the

test suite to a specialized domain. Instead, this type of test suites’ construction starts with a list of

linguistic phenomena, not related to any application nor system, in order to retrieve the

vocabulary from a general domain. Balkan (1994) provides two examples of test suites’

construction that follow the top down approach: the Hewlett Packard (HP) test suite (Flickinger

et al., 1987); and the DITO test suite (Nerbonne et al., 1992). While the HP test suite covers

syntactic, semantic and discourse phenomena (focusing mostly on the former), the DITO test

suite solely focuses on syntactic phenomena, but covers them in greater depth. Additionally, the

author reveals one disadvantage of this type of test suite construction due to the fact that it makes

it impossible to relate the test suite’s phenomena with the system or application being tested.

In an attempt to combine the advantages of both approaches, Regnier and Dauphin

(1994), cited in Balkan (1994), created the mixed approach, “in that the phenomena in the test

suite are known to be problematic for a particular application, but are dealt with on a general

level, that could potentially be used for a range of applications” (ibidem, p.5). This is only

possible as the mixed test suite construction approach starts by identifying test sentences that are

problematic for translations, then uses them to create generic test sentences, in order to isolate

52

phenomena and, thereafter, associate phenomenon with other illustrative sentences. Thus, for all

variations of one phenomenon, an exhaustive list of test sentences are written.

3.3. MT’s improvement with Grammatical Error Detection and Correction

Despite all the investment in MT’s research and development so far, systems cannot yet

guarantee sentence’s fluency and coherence in MT outputs. Although there is also a general

consensus regarding the automation of grammatical error detection (GED) and correction (GEC),

most work on error detection and correction is focused on specific types of errors such as

prepositions and determiners. Thus, there has been limited work on systems that could handle all

error types at once.

3.3.1. GED

For an MT system to accurately correct translation errors, it needs to properly identify

those errors beforehand. Hence, GED systems become involved in order to take potentially

erroneous sentences as input and identify the tokens that do not follow certain linguistic rules,

i.e. that are grammatically incorrect. However, this detection task is a quite complex process as it

involves various NLP tools and dependencies between tokens. Take the following example into

consideration:

(1) *This are a gramatical sentence.

We can pinpoint the errors in this sentence solely through intuition, without explicitly knowing

grammatical and language rules. On the other hand, that is not possible for a system as it is not

capable of intuitively making decisions, but instead relies on a multitude of explicit universal

dependencies, word classifications and language rules to detect errors.

The first step in error detection is tokenization, or in other words, splitting the sentence

into words/tokens. This is a relatively simple process for languages such as English, since words

are separated from each other with whitespaces. However, for languages such as Chinese, the

tokenization task is a lot more complex, as there is no clear separator between words.

Another crucial step in error detection relies on parsing the sentence, i.e. breaking a

sentence into its component parts. Each token can be classified according to the POS it belongs

to. Therefore, the tokens from the example given above may be classified as:

(2) DET VERB DET ADJ NOUN

53

It is also possible to do an even more in depth analysis for each token by detailing that the

first determiner is a demonstrative, that the verb is conjugated using the 3rd person singular in the

present, and so on. Through this analysis, the system can check if words agree in number, gender

and person with one another. At this point, the system would be able to identify in example (1)

one spelling error regarding *‘gramatical’ and an inconsistency between the determiner and the

verb, thus classifying it as an agreement error. Thus, parsing tools can be used to analyze large

volumes of text without human interference, to reveal error patterns and other issues that may be

overlooked otherwise.

While some error detection systems rely on corpora as reference, others do not. Tezcan

(2017) states that “the detection of grammatical errors in MT output, without relying on

reference translations, can be considered as a QE task that caters for a particular MT error type”

(ibidem, p.134). This is due to the fact that by calculating the number of errors detected in a text

in relation to the total number of words, it is possible to estimate the post-editing effort at

segment level to filter low quality translations (Specia et al., 2009) and identify which error

types are the most problematic.

Rei and Yannakoudakis (2016) proposed a framework for token-level error detection

using neural compositional models. Following the long-short term memory (LSTM) neural

network by Hochreiter and Schmidhuber (1997), the authors created a bi-directional framework,

Bi-LSTM, in which each sentence’s token was labeled as “correct” or “incorrect”. This binary

sequence labeling achieved state-of-the-art results by capturing dependencies over longer

distances. Soon after, Kaneko et al. (2017) extended Rei and Yannakoudakis’ research by adding

grammaticality and error patterns to their work, thus improving GED accuracy.

Over time, there has been an effort to identify all error types at once in texts using GED.

However, this was not always the case. In 2011, a pilot shared task was carried out by Dale and

Kilgarriff (2011) entitled Helping Our Own (HOO) that focused on manually detecting,

identifying and correcting errors from non-native English speakers. By analyzing fragments of

texts from publications of the Association for Computational Linguistics, different teams focused

on analyzing a series of error types. However, due to the task’s manual nature, the cost of data

annotation was considerably high and very labor intensive. To overcome this, Dale et al. (2012)

carried out the HOO 2012 shared task, focused on preposition and determiner error detection and

54

correction. Instead of trying to cover such a wide range of error types, it was decided that it

would be beneficial to target solely a reduced number of them.

The following year, the Computational Natural Language Learning (CoNLL) shared task

(Ng et al., 2013) continued to work with data from students of English as a second language

focusing on five error type categories: determiners, prepositions, noun numbers, verb forms, and

subject-verb agreement. The main goal was to detect and correct errors regarding natural

language processing, named entity recognition, semantic role labeling, dependency parsing and

coreference resolution. Their work was extended the year after with the CoNLL 2014 shared task

(Ng et al., 2014), in which the focal point was changed to the evaluation of algorithms and

systems for automatically detecting and correcting errors of all types.

In an effort to combine both HOO’s and CoNLL’s work, the Building Educational

Applications (BEA) shared task (Bryant et al., 2019) not only provided a platform where systems

could be evaluated under more controlled conditions, but it also introduced a new annotated

dataset with more diverse examples, that allowed systems to better generalize unseen data and

achieve better results.

Kasewa et al. (2018), focusing on error detection research, decided to supplement

existing manual annotations with synthetic instances in an attempt to improve GED accuracy. In

other words, using NMT to learn the distribution of errors in texts and to generate appropriate

errors of various types, the authors were able to improve overall systems’ metrics and achieve

even better results.

Thus far, the majority of error detection research focused on English. Therefore, Tezcan

et al. (2016) decided to detect errors using dependency parsing and treebank querying for MT

outputs in Dutch. Representing the abstract grammatical relation between constituents with these

structures, the authors were able to overcome the MT’s limitation of requiring manual correction

when producing grammatically correct sentences. A few years later, Zhao et al. (2018) decided

to focus on detecting grammatical errors in essays from non-native Mandarin Chinese speakers

instead, by carrying out the Natural Language Processing and Chinese Computing (NLPCC)

shared task. As most involved teams treated error correction as an MT task, it was made possible

to automatically return the corrected texts and broaden GED and GEC’s research field.

GED can be considered a low/mid-resource task, as the total number of correct tokens in

a text often outweighs the number of incorrect ones (Leacock et al., 2014). However, as stated in

55

Bell et al. (2020), GED is a monolingual (statistical or neural) MT problem nonetheless. In order

to extend the current state of the art for error detection, Bell et al. (2020) decided to incorporate

contextual embeddings to the Bi-LSTM framework already mentioned above. The authors

demonstrated that by using word representations previously constructed based on the context the

words appear - i.e. contextual embeddings -, it was possible to substantially improve GED

performance and, consequently, achieve new state-of-the-art results. Thereby concluding that

“contextual embeddings bring the possibility of leveraging information learned in an

unsupervised manner from high volumes of unlabeled data, by large and complex models,

trained for substantial periods of time” (ibidem, p.7).

Recently, Yuan et al. (2021) achieved significant improvements in binary GED and new

state-of-the-art results on different benchmark datasets. While demonstrating the influence of

multi-class GED, the authors also proposed a new multi-encoder GEC model for the English

language. In order to achieve this, they used pretrained transformer-based language models - e.g.

ELECTRA (Clark et al., 2020) -, and extended them to multi-class detection using different error

type tagsets. Hence, overcoming the previous system’s limitation of attaining high accuracy

results solely when detecting specific error types.

3.3.2. GEC

Once GED systems fulfill their assigned task of identifying errors within the input text,

the following step is the sole responsibility of GEC systems. They must accurately correct the

identified errors, while maintaining the original meaning of the sentence intact.

To train GEC models, two types of datasets can be used as described in Ailani et al.

(2019): error-coded text or parallel datasets. The former consists of texts with errors generally

coded by human annotators, while the latter combines the raw original text with its

corresponding reference, a corrected version of the text with no explicit errors identified.

GEC’s research has achieved growing relevance in the MT field. Currently, there are

three major approaches when studying these systems: rule based approach, classifier based

approach, and MT approach. The latter can be further subdivided into SMT and NMT. The rule

based approach consists in hand-coded grammar rules with simple pattern matching (Bustamante

and León, 1996), and it is mainly focused on syntactic analysis. Although it is considered to be

relatively simple to implement, it cannot detect complex errors nor generalize well. This is due to

56

the fact that it is not possible to create rules that account for every combination of errors in a text

(Ailani et al., 2019). The second approach mentioned, i.e. the classifier based approach,

considers words as class labels and n-grams, POS tags, and grammatical relations as features.

This approach has two main limitations: it assumes each error as being independent (which is not

always the case, e.g. context dependent issues) and, on the other hand, each classifier is only

capable of detecting one single type of error while considering the remainder of the sentence to

be error-free. To overcome such limitations, Rozovskaya et al. (2013) built multiple classifiers,

each responsible for correcting one error type, all combined into one single pipeline.

Nonetheless, the classifier based approach’s limitation of not performing well with dependent

errors still remains. The third and last approach on GEC’s research concerns different MT

models and systems. On the one hand, SMT models are used to solve all error types, instead of

focusing on a single one. Each error is classified within two types: either it is an error that can be

solved efficiently solely by increasing corpus size, or it is an error dependent on contextual

information (Mizumoto et al., 2012). On the other hand, NMT systems are developed using an

encoder-decoder mechanism (Chollampatt and Ng, 2018), where the encoder reads the sentence

and encodes it into a vector, and the decoder outputs a translation, based on the encoders vector

and on previous predicted words.

In an attempt to further improve GEC’s research and achieve state-of-the-art results,

Grundkiewicz and Junczys-Dowmunt (2018) created a hybrid approach between SMT and NMT.

According to the authors, the MT’s output would be corrected by SMT and passed as input to

NMT. In this manner, it would be possible to increase recall and, consequently, improve GEC’s

overall performance.

57

4. Methodology

The main purpose of the automatic evaluation metrics is to compare the output of an MT

system with human-reviewed translations, by measuring how close this MT output is to the

reference translation. One way to achieve this is through the use of test suites or, in other words,

by relying on good quality annotations. Smartcheck depends heavily on annotations and on their

typology for classifying errors in order to provide suggestions that mirror those of editors. The

current section aims to find Smartcheck’s strengths and weaknesses in light of a data curation

process developed along the work conducted with this dissertation, in order to improve overall

machine translation quality.

The translation quality assessment presented in the current section merges the reliability

of verified gold standard annotations with the time and cost effectiveness of an automated

system. Thus, this methodology consists in the evaluation and analysis of Smartcheck’s

grammar-checking rules in production, through the creation of test suites built on gold standard

annotations to cover every language pair Unbabel supports.

The current study seeks to respond to the following research question, which emerged

upon analyzing the results from the first baseline evaluation: Is the dataframe being used to

evaluate Smartcheck rules, i.e. the test suites, appropriate for its purpose?

In an attempt to answer this issue, the methodology was divided into three main stages:

1. Baseline analysis of previous Surfboard rules

2. Root-cause analysis regarding the results obtained from the previous analysis

3. Creation of a new and improved evaluation dataframe following the bottom down

approach, with curated data and revised annotations, i.e. creation of new test suites

following a reliable and methodological process.

We have chosen to refer to the previous and new test suites as ‘previous evaluation

dataframe’ and ‘new evaluation dataframe’, respectively. Moreover, the data analyzed in this

study was produced by different MT systems proprietary to Unbabel. Unbabel’s MT engines are

transformer-based models (Vaswani et al., 2017) trained with the Marian toolkit

(Junczys-Dowmunt et al., 2018).

The following will be discussed in this chapter: Section 4.1 will describe the pilot

analysis conducted to assess the Surfboard rule’s precision and effectiveness when detecting

translations issues. The results obtained upon evaluating each rule will then be presented in

58

Section 4.1.1. Due to the fact that the results were not up to expectations, a root-cause analysis

was conducted in Section 4.2 to identify the possible underlying causes of the problem. Hereby,

we hypothesized that the low metric values could be the result of an inadequate evaluation

standard, i.e. a faulty evaluation dataframe. Therefore, Section 4.2.1 and Section 4.2.2 describe

the methodology used to assess the dataframe’s suitability. The former consisted in the

preparation of the data for ease of convenience regarding the subsequent section, where the

dataframe analysis was in fact performed. Once the annotations revision was completed, it was

concluded that creating a new evaluation dataframe with up-to-date and revised examples would

be the best approach to achieve higher metric values. Thus, Section 4.3 is dedicated to the

creation of a new evaluation dataframe for the assessment of Surfboard rules. First, the data

retrieved consisted of current content translated by Unbabel’s MT systems and so it was

important to filter out irrelevant data and organize the remaining elements (the data curation

process is described in Section 4.3.1). The annotation curation methodology followed is

thoroughly explained in Section 4.3.2, where every criteria applied is defined along with various

examples. Finally, the analysis’ results are shown in Section 4.3.3.

4.1. Previous Surfboard Rules’ Evaluation

Firstly, it is important to notice that a baseline analysis was conducted on Smartcheck and

its associated rules, reason for dedicating a subsection of the current chapter to the obtained

results and for not including them in the following chapter. We have chosen to present the

baseline results in our methodology since the root-cause analysis of the outcomes guided our

steps in designing and driving our methodological procedures. The pilot analysis or baseline

analysis is of crucial importance for the decisions guiding how to structure the new evaluation

dataframe (EDF).

The core of the study is based upon the results derived from the evaluation of the

Surfboard built-in quality metrics. In this regard, and to better understand what needs to be

improved in the system, thirty nine enabled rules in the platform - by November 5th, 2021 - were

both validated and evaluated.

Surfboard rules were created to account for translation issues regarding a variety of

different target languages. Figure 10 compiles the number of language rules on Surfboard that

were evaluated for the current baseline analysis. For some rules to be applied, it was required

59

that a translation followed a particular register - formal or informal -, while other rules were

created to be applied to translations in general. In other words, for each accounted target

language, there could be either one or more of: a general language rule; a rule to be applied

specifically in formal registers; and another rule for informal registers. Note that for every

language pair, the source language was always English (EN).

Figure 10. Surfboard Rules: Number of rules per Target Language

The following examples show the difference between each type of rule mentioned above:

(1) Undefined Register

Target language: DA; Category: Punctuation

Rule: No punctuation mark must be used after the greeting.

(2) Formal Register

Target language: IT; Category: Lexical Register - Formal

Rule: Must use "Cordiali saluti" or "Distinti saluti" in closings

(3) Informal Register

Target language: IT; Category: Lexical Register - Informal

Rule: Must use "Ciao", "Saluti" or "Arrivederci" in closings

60

4.1.1. Surfboard Rule’s Evaluation Results

Every rule in production was possible to evaluate, leading us to the conclusion that the

syntax used to create them was correct. However, the overwhelming majority of these rules

revealed severely low metrics, shown in Table 1. Nonetheless, it is worth mentioning that the

obtained values in the current section are specific to each rule’s individual performance and not

regarding a set of translated sentences. In other words, the metric values will increase as soon as

said rules were to be applied to erroneous tokens in a text. For instance, consider a rule that

covers spelling issues regarding a specific word to have 0.5 for Precision. If said rule is triggered

in a text multiple times, its P value will increase the more the token is correctly detected. Thus,

the values obtained in evaluations such as the current one will inevitably be lower than those

obtained in a set of translations.

In fact, as it is summarized in Figure 11, seventeen different rules scored 0 for every

metric, i.e. for P, R and F1-score, and nine other rules resulted in a production time out, so no

values could be obtained. The remaining thirteen rules that were evaluated achieved extremely

low values for each metric, with no rule scoring higher than 0.1 for F1-score and R except for

rule 11, and solely three rules scoring higher than 0.4 for P.

Figure 11. Surfboard Rules: Baseline Results Summary

61

Target Language Rule ID P R F1

AR 117 No metrics

CS
118 No metrics

125 No metrics

DA 115 No metrics

DE

2 0.477 0.046 0.083

3 0.089 0.078 0.083

12 0 0 0

ES

4 No metrics

5 No metrics

35 No metrics

73 No metrics

91 No metrics

ES-LATAM

28 0 0 0

32 0.078 0.013 0.022

33 0.133 0.029 0.047

110 0.25 0.002 0.005

113 0.014 0.001 0.001

FR

7 0.04 0.001 0.002

44 0 0 0

45 0.123 0.073 0.092

46-58 0 0 0

IT
8 0.026 0.005 0.008

9 0.156 0.063 0.09

PT-BR 25 0.474 0.013 0.026

PT

10 0.002 0.001 0.001

11 0.448 0.103 0.168

31 0 0 0

Table 1. Surfboard Rules: Baseline Analysis Results

62

On the other hand, the evaluation’s outcome also provided values for how many times the

rules were triggered (correctly - cases of TPs - and incorrectly - cases of FPs) and how many

times errors were annotated, but no rule was able to account for them and thus did not fire - cases

of FNs. For an MT system to achieve high metric values, cases of FPs and FNs are expected to

be reduced when compared to those of TPs. However this was not the case as there were

significantly less cases of TPs than any other. This is shown in Figure 12, where the y axis

accounts for each time a specific rule (each associated to a correspondent ID in the x axis) is

fired or should have been fired, but it was not.

Figure 12. Surfboard Rules: TPs, FNs and FPs per rule

Therefore, the results obtained from the baseline analysis show severely low metric

values. To understand the reason behind Surfboard rules not flagging existing errors in MT

outputs or incorrectly flagging correct tokens, a pilot analysis was performed to identify the main

possible issue.

63

4.2. Root-cause Analysis for the Low Evaluation Metrics

The EDF contains annotated data for multiple language pairs on both registers (formal

and informal) and it must be considered the gold standard of annotated tickets, with fit for

purpose and representative examples of the content the systems translate in order to properly

evaluate error detection systems. This is due to the fact that, as previously mentioned,

Smartcheck relies on annotations to give out suggestions to editors regarding possible errors in

ticket translations. However, as shown in the Section 4.1.1, Surfboard’s rules failed to meet

quality expectations.

The first research question was raised after looking into the results of the baseline

analysis and aiming to find where the main problems lie. For this reason, the methodology

follows a root-cause analysis type of approach, in which the influencing factors are identified

and further analyzed. The hypothesis is that the results gathered may be affected by multiple

factors, and particularly by the evaluation standard currently being used.

For any evaluation set to fulfill its purpose, the data must be periodically updated, so that

we can assure its suitability. It is expected for a business to adjust to different situations and

conditions as it expands on the market. Thus, variables such as new clients, products, and

provided services are likely to change over time, culminating in a constant need for an evaluation

of quality, for an improvement on accuracy and revision of mistakes. With this in mind, the

annotations in the EDF must be revised to constantly represent the annotations’ gold standard.

Therefore, it can be assumed that one reason for the low metric values is that the data included in

the EDF does not fully represent current Unbabel’s translations and, more specifically, it is not

representative of the tickets translated nowadays. Hence, the EDF used can be considered as

partially outdated.

Another reason to justify the need for updating the EDF’s data is related to the fact that

the common errors found in translations are constantly changing. When certain expressions and

structures are problematic for MT systems, they must be recognized in order for a solution to be

found. However, identifying errors and solving them is a continuous process, because new issues

are constantly arising and retraining the MT systems frequently involves creating new data.

All things concerned, we hypothesize that the low metrics obtained may be substantially

related to the evaluation metric being used for Surfboard rules’ evaluation. Hence, the first

research question is related to the EDF’s suitability.

64

With that in mind, the dataframe used was analyzed by considering six aspects: i) the

translation step (if the translation was provided only by an MT system or if the MT output has

been edited and the text is the final translation33); ii) segment’s duplications; iii) correct

annotations (there was an issue with the MT output and it was correctly identified and classified),

iv) incorrect annotations (there was no MT output related issues, but the word/token was

considered as having an error) and v) missing annotations according to the standard asserted by

typologies and guidelines; and, finally vi) the severities (minor, major or critical) associated with

each translation error. As such, the analysis was divided into two different steps:

1. Preparing the EDF for annotation revision by sorting it according to language pair

and register

2. Annotation Revision according to the previous Unbabel Annotation Error

Typology (version 2) and Language Guidelines.

Note that the first step in the EDF’s analysis served the sole purpose of assisting the

annotation’s revision process, so no annotations were corrected thus far.

4.2.1. EDF’s Preparation

Prior to the actual analysis, the dataframe was filtered and prepared to have its focus

solely on the relevant data for the research, hence the need for a curation process. The EDF

consisted of tsv (tab separated values) files with information regarding the translation step,

source and target languages regarding associated segments, source and target positions and

tokens, as well as target error tags and severities. The first step on the EDF’s analysis was to

concatenate all files into one single dataframe using VSCode34 along with pandas35, as shown in

Figure 13. For each file, an alias was created for functionality purposes with a corresponding

number. Thus, one file was named df1, another one was named df2 and so on until df7. This

action was done using the following:

35 Pandas: An open source Python package widely used for data analysis and machine learning tasks, such as data

cleaning, data fill, merges and joins, statistical analysis, data visualization, and more. For more information, please

refer to: https://pandas.pydata.org/

34 VSCode: A source code editor with features to support debugging, syntax highlighting, intelligent code

completion, snippets, and code refactoring. For more information, please refer to: https://code.visualstudio.com/

33 Final Translation: When the target text has already been translated by MT and, if needed, reviewed by the

editor’s community. The final translation is the translated text that the customer will receive.

65

https://pandas.pydata.org/
https://code.visualstudio.com/

dfnumber = pd.read_csv(“file_name”, delimiter=‘\t’)

The next step in the data curation process was to merge all files into one single dataframe, titled

df_out. This was done by using the expression:

df_out = pd.concat([df1, df2, df3, df4, df5, df6, df7], axis=1)

Figure 13. Data curation process: Merge of files into one dataframe

The subsequent data analysis was done resorting to ModernCSV36, and so the file type

was changed from tsv to csv (comma separated values), with: df_out.to_csv("df_out.csv").

From here on, df_out was renamed as df and it was filtered in order to separate final translations

from MT outputs, as illustrated in Figure 14.

Figure 14. Data curation process: Filtering of translation step

36 ModernCSV: A tabular file editor/viewer application used to analyze data, check files for uploading to databases,

modify configuration files, maintain customer lists, and more. For more information, please refer to:

https://www.moderncsv.com/

66

https://www.moderncsv.com/

Separating translations steps was crucial in the curation process, due to the focus of this

research being on Smartcheck, a tool applied only to MT outputs. From then on, mt was filtered

to separate registers and two new files were created, as shown in Figure 15, namely mtF and

mtINF for the formal and informal registers, respectively.

Figure 15. Data curation process: Filtering of registers

This way, it was possible to look into the target texts and respective annotations and

severities more conveniently. Thereby, the EDF’s analysis began by looking into each language’s

content and adding new auxiliary columns in Google Sheets to assist in the data verification

process. All modifications to the EDF mentioned so far served the purpose of averting possible

mistakes, given that the review of the annotations was to be done manually, following the

Unbabel Annotation Error Typology. These auxiliary columns consisted of four columns

regarding each annotation per segment/token and two new ones regarding the associated

severities. The former were as follows: one to account for the total number of current

annotations; two other columns for the total number of correct and incorrect ones; and the last

one to account for missing annotations. As for the columns concerning severities, the additions

made followed a similar arrangement: one new column to account for the total number of

existing severities; and another new one for the total number of correctly attributed severities.

These changes in the EDF allowed for a more thorough analysis, both for the errors’

classification and for the severities. This is especially true in regards to the latter, because the

number of total severities must be equal to the total number of correct annotations.

4.2.2. Annotation Revision

Once the step of preparing the EDF for revision had been completed, the annotations had

to be reviewed. Only seven different languages were revised due to time constraints - namely,

67

German (DE), Spanish (ES), Latin American Spanish (ES-LATAM), French (FR), Italian (IT),

European Portuguese (PT), and Brazilian Portuguese (PT-BR) - and the total number of

annotations per register was fairly equal to each other, with a total of 4358 annotations for the

formal register and 4297 for the informal one. Tables 2 and 3 show the distribution of correct,

incorrect and missing annotations per target language, as well as information regarding

associated severities and the total number of duplicates in the dataframe. Moreover, these

duplications were collected using the following expression:

=IF(COUNTIFS(source_text_column$cell:cell, cell, target_text_column$ cell:cell,cell)>1, "DUPLICATE", "-")

Tone:

Formal

Target

Language

Total

Ann.

Correct

Ann.

Incorrect

Ann.

Missing

Ann.

Correct

Severities

Incorrect

Severities
Duplicates

DE 555 498 57 49 448 50 157

ES 15 13 2 2 12 1 0

ES-LATAM 1104 609 495 122 589 20 84

FR 575 511 64 125 332 179 128

IT 893 650 243 154 229 421 207

PT 541 453 88 53 72 381 36

PT-BR 675 519 156 212 488 31 277

TOTAL 4358 3253 1105 717 2170 1083 889

Table 2. EDF’s Analysis: Totals - Tone: Formal (Note: “Ann.” stands for “annotations”)

Due to the abundance of duplications and of incorrect annotation and severities, it can be

concluded that there is a considerable amount of inaccurate and noisy data in the EDF.

Additionally, even some target text segments contained errors and, as such, the issues in their

respective target were not related to the annotations done, but to the source itself. Removing

noisy data from evaluation sets is of crucial importance, as “when noise is present, the classifier

built from this data would be less accurate a description of the target concept and thus be of a

lower utility” (Teng, 1999). Ergo, the research question raised previously regarding the

68

suitability of the EDF used to evaluate Surfboard rules can now be answered. Not only are there

copious amounts of data that needed improvement, but also the existing repetitions are

detrimental for data-based systems, since a “larger amount of memory will be required to store

the data, as well as the complexity of the data, will increase” (Bhoi et al., 2017).

Tone:

Informal

Target

Language

Total

Ann.

Correct

Ann.

Incorrect

Ann.

Missing

Ann.

Correct

Severities

Incorrect

Severities
Duplicates

DE 1424 1370 54 139 1309 61 155

ES 75 67 8 3 65 2 0

ES-LATAM 798 572 226 127 534 38 105

FR 202 198 4 227 160 38 4

IT 781 525 256 90 400 125 251

PT 762 730 32 81 481 249 161

PT-BR 255 211 44 114 191 20 257

TOTAL 4297 3673 624 781 3140 533 933

Table 3. EDF’s Analysis: Totals - Tone: Informal (Note: “Ann.” stands for “annotations”)

Instead of reviewing annotations and severities belonging to a dataframe loaded with

duplicated and unrevised data, it was decided that it would be better to do so on more recent

annotations. In the interest of being time-efficient and due to the fact that every segment had to

be reviewed regardless, the existing EDF was dismissed.

In sum, the noisy and deprecated data definitely needed to be upgraded into a more

defined and revised dataframe. As such this process will be thoroughly explained in the

following section.

4.3. Test Suites’ Construction - New Evaluation Dataframe

The following step in the methodology was to create a new and improved EDF following

the bottom down approach referred to in Section 3.2.3.2, due to the inadequacy and problems

found in the previous one. In order to accomplish this, an entire batch of annotations for every

69

language pair Unbabel supports was retrieved from Jupyter Notebook by filtering out solely the

relevant data - MT outputs. The new EDF’s creation consisted in two consecutive operations:

1. Compiling already annotated segments into one single batch

2. Reviewing annotations to remove incorrect categorization of MT errors and

annotate overlooked issues.

It is worth noting that the new EDF does not contain gold translations, i.e. translations in which

the existing error has been corrected, since it would be out of scope of the work presented here.

Although the new EDF follows a similar approach as described in Avramidis et at.

(2019), our work is conducted by manually identifying and classifying errors through

annotations. As such, no error type was identified using regular expressions and no data was

augmented - as all EDF’s content comes from real data, retrieved from messages sent by

in-house agents.

4.3.1. Data Curation

Similarly to the process of curating the data from the previous EDF, the data retrieved

from Jupyter Notebook was collected from January 1st, 2021 to February 28th, 2022 and it was

filtered using pandas (refer back to Section 4.2.1) to separate registers - Figure 16 - and sorting

out target languages - Figure 17. Afterwards, new files were created for each language pair (lp)

using the following expressions:

df = register

registerTARGET_LANGUAGE = df[df.lp == “language_pair”]

registerTARGET_LANGUAGE.to.csv(“registerTARGET_LANGUAGE.csv”)

This separation was done purely for operational purposes, due to the fact that manually

reviewing annotations requires a higher level of effort and control over the data.

70

Figures 16 and 17. New EDF: Filtering data by register (left Figure) and sorting language pairs

(right Figure)

The process of reviewing annotations was constant throughout all languages. New

columns were added to facilitate the verification of total severities, similarly to the modifications

done when analyzing the previous EDF. In addition, all duplicates were identified from the

dataframe using the same expression referred previously, as well as filtering values with

“DUPLICATE” and removing them.

Upon cleaning the EDF, some annotations were found to be context-dependent, i.e. they

needed information beyond their segment, and that limitation was not being taken into account.

To overcome this, annotations that involved document-level information were analyzed and it

was concluded that the following error types were either fully or occasionally conditioned by

context: Inconsistency, Capitalization and Agreement. As for Inconsistency annotations, all

errors classified as such were found to always be susceptible to nearby segments, while the

remaining two only relied upon context in particular instances. Regarding Capitalization, this

dependency only existed in greetings and closing due to language specificities for tickets. For

instance, in German and Finnish, if a comma is used in the greeting, the following sentence starts

in lowercase, but if an exclamation mark is used, the following word must be capitalized. The

third and last error type that depends on context is Agreement. However, the majority of these

annotations do not depend on context and thus it is important to define which ones actually have

such limitations. Only segments containing one Agreement annotation depend on context. For

example, the token “encantada” (adj. fem. sing.) in “Estaré más que encantada de ayudarle.”

was annotated as Agreement, while referring to a male speaker, mentioned later in a forthcoming

segment.

71

After this analysis was completed, auxiliary columns were added to the EDF to account

for each one of the occurrences mentioned above. Therefore, to find instances of Inconsistency,

the following expression was used:

=REGEXMATCH(typology_error_column,"inconsistency")

Identifying context-dependent Capitalization errors involved three separate operations, in

that the first one (A) was meant to retrieve the first tokens from two different columns - target

text and error -, the second one (B) verified if the first annotated error corresponded to a

capitalization error, and finally a third column to check if both of these conditions were true (C).

In other words, the first word of the translated segment must be that segment’s first error as well

as be annotated as Capitalization. Hence, the need for the following expressions:

(A) =REGEXEXTRACT(target_text_column,"[\w]*")=REGEXEXTRACT(error_column,"[\w]*")

(B) =REGEXEXTRACT(typology_error_column,"[\w]*")="capitalization"

(C) =IF(result_from_(A)=TRUE,result_from_(B)=TRUE)

In relation to Agreement, due to the fact that a segment must only contain one error of

this type to be considered as context-dependent, the following expression was applied:

=IF(COUNTIF(typology_error_column,"agreement")=1, "yes", "no")

Lastly, a final column entitled “needs_context” was added to verify if one or more of

these conditions occur. For that last verification, the following was used:

=IF((OR(inconsistency_result=TRUE, capitalization_result=TRUE, agreement_result=“yes”)), "yes", "no")

Finally, the last operation in the creation of a new EDF was the combination of all files’

data. Auxiliary verification columns were excluded, formal and informal registers were merged

together, every language pair was combined into one single dataframe, and finally the values

from the “needs_context” column were added. This last step is of most importance because,

although Smartcheck can check for context-dependent errors at a document level, SURF rules

72

cannot do so thus far. This last step concludes the creation of the new EDF and opens the

opportunity to meticulously curate data and review every annotation.

Thus, the new and curated EDF shall include balanced formal and informal segments,

where some may be considered context-dependent while others are not. The dataframe, as shown

in Figure 18, consists of a total of 27 511 segments in which less than half were annotated and

only 2,5% (a total of 693 segments) are context-dependent, according to the totals retrieved from

the expressions above.

Figure 18. EDF’s Content: number of total segments, annotated segments and context-dependent

segments

4.3.2. Annotation Curation

Once the preparation of the dataframe was complete, the following step in the data

curation process consisted in the analysis of annotations and associated severities. This analysis

was based on Annotation and Language Guidelines created by Unbabel, prioritizing the revision

of annotations and severities related to Orthography, Punctuation, Register and localization

challenges, i.e. locale conventions, such as date and time formats, currency and numeral related

issues. Note that for some target languages, the revision was done in more detail by three

different linguists and translators, in particular for DE, ES, ES-LATAM, FR, IT, JA, KO, PT,

73

PT-BR, ZH-CN, and ZH-TW. This is due to the fact that even “assuming that we agree an error is

present—and this is not always in itself straightforward—there is often more than one way to

correct that error” (Dale et al., 2012, p.58). Cases of ambiguity related to error categorization

were also discussed throughout the revision process to ensure general consensus.

To try and achieve gold annotations, the annotation process was divided into two

progressively more detailed assessments: A) the first phase focuses on the general

comprehension of the message the translated text is trying to convey, following Unbabel’s

Annotation Guidelines, and also accounts for language specificities described in the proprietary

Language Guidelines; B) the second and last phase is dedicated to customer support issues, such

as translations related to greetings and closings. In other words, the main goal of this curation

was to double-check if the annotations done by annotators were correct, necessary and

appropriate.

Furthermore, every annotation done was associated with one of three different severity

levels, i.e. minor, major, or critical, according to the Unbabel Annotations Guidelines. The

severity level of an error depends on how much the accuracy, the fluency and/or the style of the

translated text is affected by that error. In other words, the greater the negative impact an error

has on the perceived quality of the text, the higher is the severity attributed to it. For a definition

of each severity level, please refer to Section 2.2.1.1.2.

Note that the content for Tables 4, 5, 6, 7, and 8 was retrieved from Unbabel’s Annotation

Guidelines (from typology version 2 in use until June 2022) when reviewing the annotations.

A. General Assessment

The first phase consisted of reviewing annotations and ensuring that they were correctly

attributed to one of four major categories, namely Accuracy, Fluency, Style, and Localization.

Note that for every given example, the source language is always English.

● Accuracy

Annotations are classified as having an accuracy issue when the target text does not

reflect the meaning of the source. For example, in instances where units are added and/or omitted

in relation to the source text, as shown in the examples:

74

Addition - DE (target):

(1) Source: Hey Hannah,

Target: Hallo Hannah,:)

Omission - PT (target):

(2) Source: button.

Target: [botão].

Moreover, Accuracy annotations also account for cases of Untranslated content that

should have been translated and MT Hallucinations, where the content of the target text does not

match with the source’s content because of a disturbance in the MT system itself.

Untranslated - KO (target):

(3) Source: Hi There,

Target:안녕하세요There,

MT Hallucinations - PT-BR (target):

(4) Source: Happy Playing!

Target: Atenciosamente,

Lastly, mistranslations such as the ones shown in Table 4 fit within this category of

Accuracy and significantly impair the comprehension of the translated text, because the target

content does not represent the source.

75

Mistranslation
Error Type

When to apply
Examples

TL Source Target

Named Entity

When names, places,
locations and other
named entities do not
match between the
source and the target

PT-BR "Chok" "Escolha"

When any other type of
error (e.g.

capitalization) falls
upon a named entity

TR "Press the PrtScn key" "Prtscn tuşuna bas"

False Friend

When the translation has
a graphically similar

word, but the meaning is
different from the source

word

NL

"Our customers and
their experiences are
really valuable to us
and ourmotive is to
provide a delightful
customer service
experience to them in
every possible way."

"Onze klanten en hun
ervaringen zijn erg
waardevol voor ons en
onzemotief is om ze op
elke mogelijke manier
een geweldige
klantenservice-ervaring te
bieden."

Overly Literal When the translation is
too literal

EL
"Here is the account
I'm seeing:"

"Εδώ είναι ο
λογαριασμός που βλέπω:"

Lexical
Selection

The target word does not
convey the correct

meaning of the source
SV

"They should then be
able to begin an
investigation with the
aim of retrieving your
funds."

"De bör då kunna påbörja
en undersökning i syfte
att hämta dina pengar."

Shouldn't Have
Been Translated

The translated text
should have been left

untranslated
FI

"- Serial number
(S/N) (Directly from
the device, not from
the product
packaging):"

"- sarjanumero
(sarjanumero) (suoraan
laitteesta, ei tuotteen
pakkauksesta):"

Source/Target
Disagreement

There are either gender
and/or number

mismatches between the
source and target

NO
"Proper Cleaning
Instructions:"

"Riktig
rengjøringsinstruksjon:"

Table 4. Accuracy - Segment annotation for different types of mistranslation (Note: “TL” stands

for Target Language)

76

● Fluency

Translations with Fluency issues are not well suited to the target language and may lead

to an unnatural reading experience, therefore jeopardizing the text’s readability and

comprehension. This major category holds four other subcategories, namely: Duplication,

Inconsistency, Grammar, and Typography.

Annotations must be classified as Duplication when, as the name suggests, a word or a

bigger portion of the text is repeated unintentionally.

Duplication - TR (target):

(5) Source: S/N (Serial Number): (Under the left outer earplate)

Target: S/N (seri numarası) (seri numarası): (Sol kulak plakasının altında)

When a target text has inconsistencies regarding the translation of the same terms or, in

other words, when the same word is translated differently throughout the same text, the

inconsistent segment must be annotated as Inconsistency.

Inconsistency - CS (target), where both examples belonged to the same translated text:

(6a) Source: **Refund in URL-0 Credit**

Target: Vrácení peněz v URL-0 kreditech.

(6b) Source: We'll cancel your booking and instantly refund you with URL-0 Credit.

Target: Zrušíme vaši rezervaci a okamžitě vám vrátíme peníze v kreditu URL-0.

The second broadest subcategory within Fluency is related to grammar and syntax issues

and is, therefore, called Grammar. This subcategory can be divided into three different types of

classifications, as described in Table 5, i.e. Function Words, Word Form, and Word Order.

77

Grammar Error Type When to apply

Function Words

Wrong Preposition

When a [function word] is used incorrectly
and another [function word of the same
category] should have been used instead

Wrong Conjunction

Wrong Determiner

Wrong Pronoun

Wrong Auxiliary Verb

Word Form

Agreement
When two or more words do not agree,
regarding number, gender, person or case (if
applied)

Tense/Mood/Aspect
When a verbal form displays the wrong tense,
mood, or aspect

Part of Speech

When the part of speech is wrong, i.e. when a
word is wrongly classified as an adjective, an
adverb, a conjunction, a noun, an interjection,
a preposition, a pronoun, or a verb

Word Order When the order of the words is incorrect in
the target sentence

Table 5. Fluency - Grammar subcategories and criteria for annotating segments

Finally, the last category related to Fluency accounts for issues related to the presentation

of the text itself and is called Typography. This subcategory contains tags such as Capitalization,

Diacritics, Hyphenation, Orthography, Punctuation, and Whitespace. These issue types will be

explained further and examples will be provided for each one of them.

Capitalization - “Wrong use of capital letters or absence of capital letters.”

HU (target):

(7) Source: Province:

Target: tartomány:

78

Diacritics - “Issues related to the use of diacritics (i.e. any mark placed over, under, or

through a letter)”. This tag must be applied when the diacritic is incorrect, missing or

unnecessarily added to a letter.

ES (target):

(8) Source: We should be able to see signs of stick drift through the software.

Target: Deberíamos ser capaces de ver los signos de por qué esta suelta a través del

software.

Hyphenation - Must use this tag when “the target text is hyphenated incorrectly, has a

hyphen missing or has an extra hyphen”

FR (target):

(9) Source: Please respond directly from the email and reference this ticket number.

Target: Veuillez répondre directement par email et mentionner ce numéro du ticket.

Orthography - “Words spelled incorrectly. This category does not apply to errors related

to diacritics or hyphens.”

NL (target):

(10) Source: To help us get back to you faster, my response today is going via a translation

tool.

Target: Om u sneller ondersteuning te bieden maken wij vandaag gebruik van een

vertaalsprogramma.

Punctuation - This tag is used when the punctuation used is incorrect or missing (e.g. “ ”,

‘ ’, (), [], { }, ¿ ?, or ¡ !).

PT-BR (target):

(11) Source: Hi João,

Target: Olá, João [,]

Whitespace - When a whitespace is incorrectly added or is missing.

SV (target):

(12) Source: - Unpair/repair or disconnect/reconnect hardware.

79

Target: -Para ifrån/para ihop eller koppla ifrån/koppla tillbaka hårdvaran.

● Style

When the translated text has stylistic problems and/or issues related to addressing

customers. There are three different categories the errors must fall in: Grammatical Register,

Lexical Register and Wrong Language Variety. While the Grammatical Register subcategory

must be used if “the text uses pronouns and verb forms that are not compliant with the register

required”, the Lexical Register tag is used when the same occurs with lexical expressions instead.

For example:

Grammatical Register - AR (target): The translation should have been done following a

formal register, but the pronoun used has an informal tone.

(13) Source: We look forward to hearing back from you.

Target: ًمنكأسمعأنننتظر قریبا

Lexical Register - ID (target): The translation should have been done following a formal

register, but the expression has an informal tone.

(14) Source: Hi there

Target: Hai,

Regarding the Wrong Language Variety tag, a word/expression must be classified as such

when the language variety is not the requested one. This tag is often associated with the

following three language pairs: ES and ES-LATAM, PT and PT-BR, and ZH-TW and ZH-CN.

ES and ES-LATAM

(15) Source: It generally takes 5-10 business days for the payment processor to credit the

money back to your account.

ES Target: (...) para que el procesador de pagos acredite el dinero a tu cuenta.

ES-LATAM Target: (...) para que el procesador de pagos acredite la plata a tu cuenta.

80

PT and PT-BR

(16) Source: The username on your original account

PT Target: O nome de utilizador (...)

PT-BR Target: O nome de usuário (...)

ZH-TW and ZH-CN

(17) Source: You can read more about account deactivation on our help center

ZH-TW Target:我們正在努力盡快更新此信息。

ZH-CN Target:我們正在努力盡快更新此資料。

● Localization

The Localization category consists of five different annotation types that can be

considered as locale conventions, such as Numerals, Symbols, Currency, Date and Time Formats.

It is worth mentioning that localization and translation are two concepts that can lead to

confusion. Although translation is indeed part of localization, multiple aspects are required for a

term to be locally accepted. This is due to the fact that translations are related to the message the

text is trying to convey, whereas localization transforms this message for a more tailored

customer experience.

The Numerals category is annotated as Wrong Number and changes depending on the

text’s target language, as described in Table 6. This tag is used when there is an inconsistency

between the source’s numbers and the target’s or when the translation does not follow the target

language rules. Note that a language may allow more than one option in regards to the separator

used, and therefore, it may appear twice in the following table. In addition, some Language

Guidelines did not include information about this matter, which is the reason for their respective

target language not being included in the table.

81

To indicate
groups of
thousands: Target Languages

To indicate the
decimal place: Target Languages

Comma [,]
ES-LATAM / JA / KO /
TH / ZH-TW

Comma [,]

DA / DE / EL / ES / FI / FR /
HU / ID / IT / NO / PL / PT /
PT-BR / RO / RU / SV / TR /
VI

Period [.]
AR / DA / DE / EL / HU /
ID / IT / NL / NO / RO /
TR / VI

Period [.]
ES / ES-LATAM / JA / TH /
ZH-CN

Whitespace []
CS / ES / FI / FR / HU /
KO / NO / PL / PT / RO /
RU / SV

Whitespace [] -

No punctuation
[ø]

ZH-CN
No punctuation

[ø]
ZH-TW

Table 6. Localization - Numerals: Language specificities when indicating groups of thousands

and decimal places

The second category mentioned, Symbols, does not have a direct correlation with a

specific tag. Instead, the annotation is classified depending on the issue associated with the

symbol in question. In other words, symbols such as “%”, “‰”, “&”, “+”, “-”, “±”, “/”, “|”, “()”,

“{ }”, “[]”, “ºC” and “ºF” can be preceded or followed by numbers and/or whitespaces,

depending on the target language. If the order between symbol and number is incorrect, then the

expression must be tagged as Word Order, whereas if the problem is related to existing or

missing whitespaces, then the annotation used must be Whitespace instead.

Moreover, translation issues related to currency belong to the category Currency, albeit

not having an associated annotation type, similarly to the former category. If there is an error

involving the substitution of currency symbol conversions, the currency must be tagged as

Wrong Unit Conversion. However, this tag can also be applied to other unit conversion issues,

such as the one given in the example below, related to metrics.

Wrong Unit Conversion - VI (target):

82

(18) Source: If your position is just a little inaccurate (less than 100 inches) we recommend

you to enable WiFi on your device.

Target: Nếu vị trí của bạn chỉ không chính xác một chút (dưới 100 mét), chúng tôi

khuyên bạn nên bật WiFi trên thiết.

The last two localization categories concerning formatting issues are Date Format and

Time Format. Translations where either dates or times do not match with the source text, must be

annotated as Wrong Date/Time. The former can be influenced by either one or two variables: the

separator used for distinguishing days, months and years, and the order in which these numbers

are presented. Table 7 covers all possibilities for the target languages Unbabel supports.

Date Order Date Separator Target Languages

Year Month Day

yyyy/mm/dd AR / JA

yyyy. mm. dd HU / KO

yyyy-mm-dd SV

YYYY年MM月 DD日 ZH-TW / ZH-CN

Day Month Year

dd.mm.yyyy DA / DE / ES / FI / PL / RU

dd. mm. yyyy CS / NO

dd/mm/yy
EL / ES / ES-LATAM / FR / HI / IT / PT /
PT-BR / RO / TH / TR / VI

dd-mm-yyyy ES / ID / NL

dd mm yyyy ID

Table 7. Localization - Date Format: Language specificities when referring to dates

Lastly, the Time Format followed depends once more on the target language the text is

being translated into. Some languages require that the time must be stated in a 24-hour format,

while others require a 12-hour format. However, there is also the possibility of using both, for

83

languages such as ES-LATAM and JA, with the condition of maintaining one format throughout

the same text to ensure consistency throughout the translation.

● Language-specific Assessment

The last step in the annotation curation within the General Assessment accounts for

language specificities described in the proprietary Language Guidelines.

For each target language, Unbabel’s guidelines consist of rules related to grammar,

namely agreement issues with verbs, nouns and adjectives, and the use of determiners,

prepositions and pronouns. For instance, the sentence’s verb in languages such as French, Italian,

or Portuguese must always be governed by the subject, and the adjective agrees in gender and

number with the related noun or pronoun. If in a given translation for such languages those

grammar rules are not met, then the incorrect tokens must be annotated accordingly.

B. Assessment on Customer Support rules

The Customer Support guidelines that will now be described apply only to tickets, i.e.

emails from customers. They gather some of the previously mentioned rules above and refine

them to fit customer support’s needs and, thereby, guarantee a more fluent interaction between

the client and the brand. These rules are related to a context focused on greetings and closings

and are created upon Lexical Register, Punctuation, and Capitalization rules.

● Lexical Register

A translation’s register reveals how brands address their customers and the type of

relationship they have. Register may vary depending on multiple factors such as the company,

the brand’s image, the service being offered, the customers, and the target language. Therefore, it

is important to be familiar with the different lexical choices, adopt the correct register and adjust

accordingly. With this in mind, Unbabel created a list of appropriate words and expressions to

use in greetings and closings, depending on the register requested, ranging from a formal register

84

to a more colloquial one. For a list of selected expressions depending on the required register,

please refer to Table 1 in Annexes.

Some examples of this difference between formal and informal greetings and closings

for Portuguese are given below.

Lexical Register - PT (target):

Greetings - Formal Register

(21a) Source: Hello Maria

Target: Cara Maria

Greetings - Informal Register

(21b) Source: Hello

Target: Olá

Closings - Formal Register

(21c) Source: Warmly

Target: Cordialmente

Closings - Informal Register

(21d) Source: Bye

Target: Até breve

All these concerns need to be taken into account, and thus, it is crucial for a brand to

follow a detailed list of required expressions to promote positive first-impressions and to

improve overall customer satisfaction.

● Punctuation

When addressing customers, correcting punctuation errors in greetings and closings is as

essential as following the just mentioned Lexical Register convention. In a customer service’s

context, each language requires a specific composition to greet and/or send off the addressee,

85

specifically made to ensure the best first impression possible. For example, in Polish, greetings

must be followed by an exclamation mark or a comma (22a), unless there is a proper noun, and

in that case there must be an additional comma between the greeting and the vocative (22b). On

the other hand, closings either occur without any punctuation mark (23a) or with a comma (23b).

There is however an exception with closing expressions such as “serdecznie pozdrawiam” or

“pozdrawiam”, in which an exclamation mark may be used (23c).

Punctuation - PL (target):

Greetings

(22a) Source: Hello again,

Target: Witam ponownie,

(22b) Source: Hi Zofia,

Target: Witaj, Zofia,

Closings

(23a) Source: Best regards,

Target: Z wyrazami szacunku

(23b) Source: Have a nice day,

Target: Miłego dnia,

(23c) Source: Regards,

Target: Pozdrawiam!

These rules are key when translating customer-service related content, for the reasons

already mentioned and also due to the fact that the Capitalization criterion, may vary depending

on the punctuation mark used in the translation.

● Capitalization

The last step in the annotations’ curation process in regards to customer support was to

validate if the capitalization rules were being compliant with. Depending on the POS category or

the preceding sentence’s punctuation, a token must be capitalized or kept in lowercase. Usually

86

the first word of the sentence following the greeting is capitalized, however there are some

exceptions. For instance, in Italian the first word after the greeting must always be kept in

lowercase if the closing ends with a comma, in contrast to English (24). Similarly, the first

sentence’s word in German must be written in lowercase if the greeting ends with a comma, but

with a period it must be capitalized (25). Table 8 compiles the complete list of which languages

require lowercase/uppercase letters after a greeting.

Capitalization - IT (target)

(24) Source: “Hello,

Thank you for contacting [].”

Target: “Salve,

grazie per aver contattato il supporto di [].”

Capitalization - DE (target)

(25) Source: “Hello,

Kindly find the invoice attached.”

Target: “Hallo[./,]

[Bitte/bitte] schau dir die Rechnung im Anhang an.”

Lowercase Uppercase Condition Not Applicable

IT

AR / DA / EL / ES
/ ES-LATAM / FI /
FR / HI / HU / ID /
NL / NO / PT /

PT-BR / RO / RU /
SV / TH / TR / VI

CS
The first word after the greeting must
be written in lowercase, unless it is a
proper noun.

JA / KO / ZH-CN /
ZH-TW

DE
If the greeting ends with a comma, the
following word must be written in
lowercase.

PL
If the greeting ends with a comma, the
following word must be written in
lowercase.

Table 8. Capitalization for Customer Support: Required casing for sentences following greetings

87

4.3.3. EDF Totals: Target Languages and Registers

Once the annotations’ revision was completed, the EDF was ready to be used as a test

suite to evaluate Surfboard rules. The new EDF, coming to a total of almost thirty thousand

segments - Table 9 - for twenty eight different target languages - Figure 19 -, now contained a

well balanced and representative number of curated examples for formal and informal MT

translations.

Formal Segments 13894

Informal Segments 13617

Grand Total 27511

Table 9. Evaluation Dataframe’s Content: Grand total of formal and informal segments

Figure 19 illustrates the total number of segments for each target language, separated by

registers. Although the data for the formal register in HI is significantly lower in number than for

the informal register, the overwhelming majority of languages have a well balanced total of

segments.

88

Figure 19. EDFs Content: Total of formal and informal segments per target language

In sum, the methodology presented throughout this section was established to analyze

Smartcheck’s performance. The first step consisted in a baseline analysis to allow for future

comparisons. Once these results were gathered, we hypothesized that the reason for the low

metric values obtained could lie in the evaluation dataframe being used to evaluate the system’s

performance, instead of the actual grammar-checking rules. Thereby, the initial dataframe (prior

EDF) was analyzed, and it was concluded that the data was in need of being revised and updated.

For this reason, new test suites were created in a systematic and methodical manner, with

representative examples for the usual content the systems translate. These changes were made on

the basis of detailed and thorough typologies in order to ensure the best possible quality.

The following section will present the results obtained after the implementation of the

new test suites, i.e. new EDF, comparing baseline results and once again evaluating Smartcheck’s

performance.

89

5. Results and Discussion

The current chapter compares the impact of the new EDF with the previous one, and aims

to analyze results obtained using the new curated data to evaluate different error detection

systems. First, a comparison was made in Section 5.1 regarding Surfboard rules in production

comparing the results gathered from the baseline analysis in Section 4.1 and the evaluation

results gathered after the new EDF’s implementation. Thereafter, Smartcheck was tested using

the new and curated EDF as the gold standard in Section 5.2, in order to check its overall

performance in detecting translation issues. This evaluation was done using a confusion matrix to

measure this proprietary tool’s performance, described in Section 5.2.1. The predicted

annotations gathered from the confusion matrix were used to analyze the contrast between what

Smartcheck considered as erroneous tokens/segments and which of those tokens/segments were

indeed incorrect - Section 5.2.1.1. Once the results were gathered, cases of TPs, FNs, and FPs

were used to calculate different accuracy measures for all target languages Unbabel supports in

Section 5.2.1.2, namely Precision, Recall and F1-score. Following this comparative analysis

between Smartcheck and gold annotations, Section 5.3 describes the EDF’s implementation in

order to fulfill its purpose as a test suite and, therefore, evaluate other error detection systems,

i.e. spell checkers. Finally, Section 5.4 describes the importance of gathering reliable gold data to

trust forthcoming rule’s evaluations in order to monitor their quality and coverage, and assess

whether there is a need for revisions or changes in any of them.

5.1. Rule’s Evaluation Comparison between Baseline Analysis and new EDF

The results obtained in the baseline analysis were, as previously stated, not ideal for an

error detection system. The elevated number of FN and FP cases show that Smartcheck was not

yet capable of identifying most translation issues and, worse still, it detected problems where

there were none. With this in mind, we hypothesized that the data being used to evaluate

Smartcheck’s rules might be one of the underlying causes of this problem. The previous EDF

was, therefore, replaced by a new set of gold annotations, curated and revised by linguists for all

language pairs supported by Unbabel. Thus, the first portion of the current section is dedicated to

the rule’s evaluation, after revamping the EDF, and to the comparison between the prior and the

new results.

90

By the time the new EDF was implemented, it was important to check if the thirty nine

rules previously evaluated were still enabled in production, since the baseline analysis had been

done a few months prior to the new EDF’s implementation.

After the verification was completed, Smartcheck was run through numerous new MT

outputs from a given notebook and the metric values were gathered and compared. For a better

understanding, take the following example into consideration: regarding the MT outputs used to

evaluate rules in the baseline analysis, consider that there was an issue regarding a punctuation

mark in greetings for the X target language; in order to automatically identify this language

specific translation problem, Smartcheck retrieves Rule A (liable for punctuation demands in

greetings for X target language) from Surfboard and gives a trigger warning. Consider that Rule

A was one of the rules being evaluated in the baseline analysis. Following this, upon the new

EDF’s implementation, Smartcheck was run through new MT outputs and, once more, there was

a punctuation issue for the same target language regarding greetings. In other words, both sets of

MT outputs presented the same issues and, therefore, the same rule (Rule A) was triggered in

both. If such conditions were met for other existing rules, then it would allow for a direct

comparison of results between them. This is the case for the seven rules, presented in Table 10,

out of the thirty nine previously evaluated. In other words, for an unambiguous comparison

between rule’s evaluation, solely those seven rules that were triggered in both evaluations will be

compared.

It is also important to mention that the baseline comparison will focus solely on TP, FN,

and FP cases.

91

Prior EDF New EDF

Target
Language Rule ID TPs FNs FPs TPs FNs FPs

AR 117 No metrics 4 8 2

CS 125 No metrics 0 40 2

DA 115 No metrics 2 12 1

DE 12 0 0 899 0 21 1

ES-LATAM
28 0 16 1297 3 2 6

110 3 9 1294 45 8 0

FR 45 59 420 750 123 67 1

Table 10. Rules’ Comparison between baseline analysis and the new EDF

Once the results from both evaluations were placed against each other, three inferences

were made: there is a notable difference regarding cases of FPs between the two evaluations; it is

now possible to evaluate previously not-possible-to-evaluate rules; and, finally, the results

obtained are significantly more reliable.

On one hand, the number of TPs, FNs and FPs were considerably different in both

evaluations. FP cases in the baseline analysis were fairly high and, therefore, detrimental to the

system’s performance. However, the number of FPs in the second evaluation (post-new EDF’s

implementation) were significantly reduced. FN cases decreased as well, with the exception of

rule 12 for DE. Moreover, the cases of TPs increased substantially for rules 110 and 45. As such,

Surfboard rules (or at least those that were evaluated) do not have such low quality as previously

stated. In other words, solely by changing the evaluation standard, the EDF, and with no

alteration to the rules themselves, the rules Smartcheck relies on for error detection, although not

perfect, are better than anticipated.

On the other hand, as was the case for the first three rules in Table 10, no results were

available to assess if a rule had good or bad precision, coverage or overall value for a tool such

as Smartcheck, since no metrics were obtained. Due to the new EDF however, every rule in

Surfboard can now be evaluated. This was a key step in the quality assurance process, as MT

systems can only improve if existing problems are correctly identified and the necessary changes

are made. Knowing if a rule is not being triggered when it should be or if it considers good

92

quality translations as problematic is extremely important, because it allows us to know to a

certain degree what to look for when revising rules.

Nevertheless, to draw any conclusions from the results obtained upon evaluation also

means that the results are trustworthy enough to do so. Since the current EDF contains non

duplicated data, representative examples that are up-to-date with Unbabel’s content and

annotations reviewed by linguists, it can be concluded that the new evaluation standard, and

consequently its results, are proved to be much more reliable and accurate than the previous

ones.

5.2. Testing Smartcheck with the new EDF

The following step was to analyze another correlation of interest regarding Smartcheck

predictions. Without changing Surfboard rules, we decided to evaluate Smartcheck’s annotations

in comparison to the EDF’s. In other words, one error detection system would be fed with the

already existing Smartcheck’s data, while a second error detection system would contain the

EDF’s reviewed data. Afterwards, each system would make predictions for the same translated

segments, i.e. forecast which tokens would be detected by the system as having errors and

annotate them accordingly. Therefore, our goal was to check how much this grammar-checking

tool’s annotations would differ in comparison to a new and curated standard. To that end,

Smartcheck and the EDF were run through several translated segments and the results were

gathered and separated into three parts: performance measurement with cases of TPs, FPs, and

FNs; comparison between Smartcheck’s and EDF’s predicted annotations; and recalculation of

metric values related to P, R, and F1-score.

5.2.1. Performance Measurement using a Confusion Matrix

Upon running Smartcheck and the EDF through translated segments, the values were

gathered and, for purposes of facilitating this comparison, a confusion matrix37 - Figure 20 - was

calculated to give a better overview of the results. The process of calculating a confusion matrix

involves three different steps: i) acquiring a validation dataset with expected outcome values, i.e.

the new EDF with the gold annotations (y axis called “True label”); ii) making predictions for

37 Confusion Matrix: A technique used for summarizing the performance of a classification algorithm, in order to

check what a classification model is capable of accounting for and what types of errors it is making.

93

each row in said dataset, or in our particular case, check Smartcheck’s predictions - annotations -

in comparison with the validation dataset (x axis called “Predicted Label”); and finally, iii)

counting the number of correct and incorrect predictions for each annotation type.

Figure 20. Confusion Matrix Example: Annotations for EN-ES (informal register)

Confusion matrices provide the number of FN and FP cases in the following manner: FN

cases correspond to the first column “OK”, while FPs correspond to the first row “OK”.

94

Regarding TPs, these were divided into two groups: Labeled TPs, in which both the error span

and the category were correctly detected according to the gold standard; and Unlabeled TPs in

which the error span was correctly detected, but the category Smartcheck attributed the error to

did not correspond to the “gold category”. The intersection between labels of the same

annotation type are instances of Labeled TPs, as is the case with the intersection between the row

and column for “lexical_selection”. However, regarding the row for “named_entity”, its

predicted label corresponds to a Spelling error annotation. In other words, Smartcheck correctly

identified an error, but classified it incorrectly - Unlabeled TP. Moreover, confusion matrices also

provide the number of gold instances of a label, i.e. the number of annotations Smartcheck would

ideally predict regarding a specific error type. For that, the total number of FNs must be added to

the total number of TPs.

Taking the confusion matrix’s content into account, the total number of Smartcheck

predictions came up to 4867 annotations, where FPs cases prevailed with 45.3%, FNs

corresponded to 35.3%, and Unlabeled TPs summed up to almost 20%, as shown in Figure 21.

Note that Labeled TPs, 8.3% of the total predictions, were accounted for within Unlabeled TPs,

as the error span is correctly identified in both cases, solely differing in the error category. In

other words, only 8.3% of Smartcheck’s annotations fully matched with the EDF’s.

By looking at the grand total of TPs, FNs and FPs in Figure 21, it is possible to conclude

that many correct tokens were considered to be incorrect by Smartcheck - i.e. FP cases. High

numbers of FPs are detrimental to any error detection system and must be avoided as much as

possible, since it misleads us into believing in statistical evidence that is not real. Additionally,

more than a third of all annotations were cases of FNs, thereby showing that the system

overlooked a great number of existing translation errors. However, FN cases are not as damaging

to a system’s performance as FPs. This is due to the fact that we can create new or review

already existing grammar checking rules in order to reduce said number of FN cases.

95

Figure 21. Grand Total of FNs, FPs and TPs when evaluating Smartcheck with the new EDF

5.2.1.1. Smartcheck versus EDF: Predicted Annotations Comparison

Upon the analysis of the different predictions, a comparison was made between every

annotation done by Smartcheck and those done according to the EDF using the same data from

the previous section. Note that for the current analysis we did not take into account specific

target languages nor registers. In other words, Figure 2238 shows the overall EDF’s ideal

annotation predictions in comparison to Smartcheck correctly detected annotations, i.e. labeled

TP cases.

As illustrated in Figure 22, Smartcheck did not achieve the expected goal for any of the

forty three EDF’s detected error types. Wrong language variety annotations were the ones to

reach closest to their target, with a difference of 5 tokens that Smartcheck did not account for.

Other than that, the remaining Smartcheck annotations were far from achieving their target

number, as it was only able to correctly detect and classify a reduced number of tokens for

eleven error types: Addition, Agreement, Lexical Selection, Orthography, Other POS Omitted,

Overly Literal, Punctuation, Whitespace, Word Order, Wrong Preposition, and Untranslated.

38 Error Types’s Acronym Legend: TMA stands for Tense Mood Aspect, TWA for Term Wrongly Applied, WDT for

Wrong Date Time, SHBT for Shouldn’t Have Been Translated, WLV for Wrong Language Variety and

S.T.Disagreement for Source Target Disagreement.

96

Lastly, Smartcheck rules were not able to correctly predict any of the remaining thirty two error

types.

Figure 22. Smartcheck Labeled TP cases in comparison to gold annotations from the EDF

Analysis such as the one just described are extremely useful when testing an error

detection system’s performance, as it provides us with not only a general overview of the most

problematic error types, but also with the possibility to isolate issues that would be otherwise

concealed away.

5.2.1.2. Evaluating Smartcheck’s Accuracy in Error Detection

The final step in the Smartcheck’s testing process was to calculate the values for P, R and

F1-score measures by taking into account the previous section’s results, i.e. TP, FN and FP cases.

Therefore, such values were calculated individually for every supported target language,

focussing on the contrast between formal and informal registers. However, as sometimes there

was necessary data missing (number of TP cases) not every language was possible to evaluate,

97

namely EL, HI, NL, NO, TR and VI. This is due to the fact that if a given language is missing its

total number of TPs, then the values for P and R will not be possible to calculate and,

consequently, neither will it be for F1-score.

In addition, some languages were excluded when calculating the average scores, namely

CS and HU, and DA, ID, and PT, due to the fact that they only accounted for one of the

supported registers (formal register regarding the former languages, and informal register

regarding the latter) - as illustrated in Figures 23, 24, and 25.

● Precision (P)

To calculate the proportion of positive identifications done by Smartcheck that were

actually correct, we must use P. Once calculated, the P value for the formal register was slightly

higher on average in comparison to the average value for the informal register, as shown in Table

11.

Register P Average

Formal 0.30354

Informal 0.30240

Table 11. P Average Total per Register

Regarding languages such as ES, ES-LATAM, IT, PT-BR, SV, and TH, the achieved

values were notably higher for the informal register than for the formal register. However, this

was not the case for languages such as FI, FR, JA, KO, PL, RU and ZH-TW in which the formal

total was visibly higher.

98

Figure 23. P Average per Target Language

● Recall (R)

The R measure aims to find the proportion of actual positives that were correctly

identified by Smartcheck according to the new EDF. The R average is considerably higher for

the formal register then for the informal one, as shown in Table 12.

Register R Average

Formal 0.29626

Informal 0.24772

Table 12. R Average Total per Register

Similarly, but even more noticeable, the results obtained when calculating the P values

are higher for formal registers (eleven languages in total) than for informal ones, as illustrated in

99

Figure 24. This divergence is clear in particular for languages such as FI, FR, JA, KO, PT-BR,

SV, ZH-CN and ZH-TW.

Figure 24. R Average per Target Language

● F1-score

The harmonic mean between P and R described above corresponds to the F1-score

metric, used to statistically measure a systems’ performance. As shown in Table 13, the formal

register achieved a higher F1-score average in comparison to the informal register.

Register F1-score Average

Formal 0.28141

Informal 0.26356

Table 13. F1-score Average Total per Register

100

For each supported language, the F1-score results were as illustrated in Figure 25.

Languages such as FI, FR, JA, KO, ZH-CN, and ZH-TW consistently showed higher P and R

values for the formal register, therefore their F1-score was also higher regarding that same

register. However, for languages such as DE, ES, ES-LATAM, IT, and TH the same occurred for

the informal register.

Figure 25. F1-score Average per Target Language

5.3. Quality Monitoring Assessment of Smartcheck Rules

Once the new EDF was implemented as the standard for system’s evaluation, the results

obtained regarding P and R measures provided great insights into the Smartcheck rules’ value in

detecting errors from MT outputs. However, as the F1-score metric consists of the mean between

P and R, it does not take into account which of them is higher/lower, a crucial difference when

assessing any rule’s performance. For instance, consider Rule A to have 0.3 for P and 0.5 for R,

while Rule B has 0.5 for P and 0.3 for R. Although the F1-score value is the same for both, each

rule’s error detection accuracy differs and, therefore, such contrasts must be accounted for. For

101

this reason, we propose an approach when evaluating grammar rules for monitoring error

detection systems with reference to P and R values.

Consider only MT outputs that are revised by editors in post-edition to increase

translation’s quality. When a given rule is evaluated, the editor is provided with information

regarding the rule’s accuracy when detecting errors and, therefore, knows what to expect. In

other words, when editors are faced with rules that achieve higher values for R in comparison to

P, they know that, although noisy, that same rule will be able to detect the majority of instances

of a specific error. Therefore, they must verify if the tokens or segments identified by that rule

are indeed problematic and, if so, need to be corrected. On the other hand, if a rule achieves

higher P values than for R, the editor knows that they can rely on it to correctly detect translation

issues accounted for by that same rule and, therefore, there is not as much need to thoroughly

revise the highlighted segments compared to rules with higher R values.

For a better understanding regarding the importance of P and R analysis, consider the

following examples that show that it is much more problematic to have a system identify correct

segments as incorrect than to overlook some minor translation errors. In other words, FNs are

preferable to FP cases:

Example (1)

Rule A, created to identify critical errors, was evaluated as having a P value higher than

R. In other words, the segments that are detected by Rule A are extremely likely to be indeed

correct. It is also undeniable that overlooking critical errors leads to a great loss in the overall

translations’ quality. However, although Rule A is able to detect most of them, it cannot yet

account for every single instance, due to its lower R value. Thus, Rule A must be adjusted in

order to slightly increase R. Note that if we were to increase R to the point of surpassing P, then

Rule A would trigger too many FP cases and, therefore, do more harm than good.

Example (2)

Rule B was specifically created to detect minor errors in MT outputs that do not have a

strong impact in the fluency and comprehension of translated texts for a given language.

However, once Rule B was evaluated, its value for R was much higher than for P. This means

that Rule B considers many correct segments as incorrect and unnecessarily forces editors to

102

review correct translations. Therefore, increasing their time spent reviewing translations and,

consequently, becoming a disadvantage for them. With this in mind, adjustments to the rule in

question must be done to improve P and ideally decrease the number of FPs.

Thus, by accurately evaluating rules in error detection systems and analyzing the results,

it is possible to obtain valuable information about the system’s performance and make any

necessary adjustments. This evaluation is only made possible with a reliable standard, i.e. the

new and curated EDF.

5.4. Using the new EDF to Evaluate different Spell Checkers

As previously mentioned, the EDF contained reliable data regarding annotations of errors

from MT outputs and, for that reason, it must be used as the gold standard to evaluate other error

detection systems, i.e. fulfill its primary goal as a test suite. With this in mind, the gold data in

the EDF was recently implemented and used to evaluate four different spell checkers used at

Unbabel and, thereafter, choose which one would be the most appropriate to be deployed to

production.

The evaluation was done similarly to the rule’s assessment in the previous section, in

which the number of TP, FP, and FN cases - illustrated in Figures 26 - were obtained in order to

calculate the values for P, R and F1-score - Figure 27 - focusing on orthography annotations.

103

Figure 26. Spell Checkers Evaluation with new EDF as Gold Standard: Cases of TPs, FPs and

FNs

Regarding the data in Figure 26, it can be seen that FN cases reached the highest numbers

among the others, particularly regarding the first two spell checkers. Thus, this evaluation shows

that a great number of existing translation errors (according to the EDF’s data) are being

overlooked by these spell checkers. In addition, the low number of TP cases demonstrates the

lack of accuracy when identifying errors. In other words, using the EDF as the gold standard

allowed us to conclude that most errors were not being detected and, therefore, it would be

crucial to take corrective measures to recognize the root problem(s) in order to raise error

detection’s accuracy. This finding would not have been possible to reach had the standard being

used to evaluate each spell checker not been revised and curated accordingly.

For the second evaluation done regarding the four spell checkers, the assessment focused

on orthography errors contained in the EDF. As illustrated in Figure 27, the Hunspell Local Dict

achieved the highest P value (almost 61%), while the Hunspell Local spell checker achieved a

higher percentage of R and F1-score. Similarly to the previous evaluation, both the Spell

104

Checker Aspell Local and the Spell Checker Service demonstrated low equal results, thus

showing once more a necessity for improvement.

Figure 27. Spell Checkers Evaluation with new EDF as Gold Standard: P, R and F1-score

Both evaluations provided helpful insights regarding the performance of Unbabel’s spell

checkers, including the one currently in production - Aspell. However, one significant conclusion

that was drawn upon evaluation was that both Hunspell spell checkers achieved much better

results than the Aspell and the Spell Checker Service. For instance, the number of TPs for the

Hunspell was higher, the total of FNs was lower, and the values for P, R and consequently for

F1-score were considerably higher in comparison to the remainder. Upon this assessment, it was

concluded that it would be beneficial to change the spell checker in production, from Aspell to

Hunspell. Such a decision would not have been possible, had the EDF not been revised to

provide truthful evaluations.

105

6. Conclusions and Future Work

The objectives of this report were threefold: i) to implement a methodology on creating

reliable test suites for testing a proprietary tool on error detection and editing suggestions, named

Smartcheck; ii) to evaluate the performance of this tool; iii) to contribute to the improvement on

quality based on the edits suggested.

The work presented was implemented in several modules beyond the initial goal of

creating test suites for the evaluation of Smartcheck. It was also applied to spell checkers

evaluation and is now being applied also to measure the MT quality on the errors selected for the

test suites developed within this thesis. Ultimately, the work conducted is also in production to

evaluate in a suitable and consistent way the performance of each rule. As a future medium term

project, we are now working on semi-automatic annotations based on the methodology

conducted and the errors analyzed to provide assistance also to the annotators on semi-automatic

suggestions of error annotations. Additionally, as a follow-up project we will also create a system

to automatically check the viability of the rules by triggering different alerts, based on the

annotations from the test suites.

We have started with a baseline analysis with the existing datasets and we then were able

to verify that those datasets were not suitable nor reflected the core errors produced by the

editors. Consequently, we have noticed that Smartcheck lacked accuracy when detecting and

classifying errors. In an attempt to identify the root-cause of this system’s limitation, we verified

that the reason for the integrated rules not achieving ideal metric values might not be solely due

to the rules’ coverage and precision, but perhaps because the data being used to evaluate those

rules is not suitable for its purpose. As such, this dissertation had the main goal of improving the

methodology previously used when evaluating error detection systems, with particular attention

to Smartcheck, in order to draw reliable conclusions about grammar-checking rules’ coverage

and accuracy in detecting translation errors. Moreover, improving Smartcheck will also benefit

editors by assisting them on the editing process, reducing the time to identify translation errors,

thereby making each task more time efficient.

For an error detection system to correctly identify and classify erroneous segments, it is

crucial to first gather good quality and representative data for the content being dealt with, i.e.

gold annotations. These annotations are then fed to systems such as Smartcheck and must be

seen as their ideal outcome and used as the standard for evaluation, i.e. used as test suites. In

106

other words, Smartcheck heavily depends on annotated segments and the error typology used to

classify them in order to provide editors with reliable suggestions. Thus, the test suites were

created to be fine-grained selections of quality data.

With this in mind, the first step was to conduct a root-cause analysis of the existing

evaluation set. This analysis led us to conclude that numerous annotations were incorrectly

attributed, either due to the fact that there were no actual errors and the tokens were annotated

regardless or because of improper error classification; the span of the errors were often not

accurate and great number of associated severities were wrongly attributed to the annotations, in

particular regarding the formal register. Finally, the existing set compiled an abundance of

duplicated annotated segments, which is harmful to data evaluation corpora as it unnecessarily

overloads them by not increasing its content representation.

Upon analyzing the existing dataset used to evaluate Smartcheck and its rules, it was

found that there were indeed issues that needed to be addressed, data that needed to be filtered,

and annotations that were in need of revision. Thus, instead of changing incorrect annotations

and severities, adding missing annotations to overlooked errors, and removing duplicates from

the test suites it was decided that it would be far more productive to gather up-to-date

translations recently done at Unbabel, including content from Lingo24. In this manner, it was

possible to compile suitable non duplicated data whilst balancing the number of segments

between every language pair Unbabel supports and account for both registers (formal and

informal). The methodological process of creating the new EDF is thoroughly described and

explained in Section 4.3. In this manner, not only did it become possible to account for context

dependent annotations with the new EDF, but the annotation curation process (in Section 4.3.2)

that was followed assured that the data was trustworthy enough that any conclusions drawn from

future evaluations would be valid and accurate, as was shown in our results and the fact that now

the test suites created are in production for testing several modules of the pipeline.

The new evaluation standard allowed for every rule on Smartcheck to be possible to

evaluate (a limitation of the previous evaluation set) and to conclude that the results obtained in

the baseline analysis were in fact dubious. This is due to the fact that the metric values obtained

from the re-evaluation regarding the seven comparable rules were not as low as previously

stated. By solely changing the evaluation standard and with no alteration to the rules themselves,

the rules Smartcheck relies on for error detection were better than anticipated. Moreover,

107

Smartcheck’s performance was evaluated using the new EDF and the results were gathered

within a confusion matrix. Therefore, allowing for a comparison between Smartcheck’s

annotations and gold predictions from the EDF, as described in Section 5.2. The evaluation was

done considering cases of TPs, FNs and FPs (in order to calculate Precision, Recall and

F1-score), which enabled evaluators to know the error types that were considered to be more

problematic, and which languages and/or registers the error detection system could properly

cover, in order to make the necessary adjustments. This knowledge on problematic error types

can also be useful to editors, because we can alert them to pay more attention to specific errors

and even use the data to train them in the Evaluation Tool.

Beyond the scope of our initial work and due to the reliability of the test suites created,

the new EDF was also used to evaluate other error detection systems at Unbabel - spell checkers

- and, through benchmarking comparison, choose which one would benefit the translation’s

quality the most so it could be used in production. With a trustworthy evaluation standard, a

comparative analysis between systems’ performance was possible to be conducted. Such results

were gathered and it was possible to conclude which spell checkers performed better and should

therefore be selected for production, and which ones incorrectly detected the highest number of

tokens and must for this reason be improved. With solid evaluation methods for error detection

systems, it becomes possible to create quality monitoring tools based on the results obtained

from comparative analyses (that use curated data, such as the one compiled on the EDF, as its

standard).

All the work developed throughout the internship at Unbabel has been thoroughly

described and its relevance has been particularly demonstrated in the last two chapters. If the

data used for the system’s evaluation were to not be updated or revised, the results obtained

would not be neither authentic nor reliable. In other words, there needs to be a reliable evaluation

standard in order to assure that the conclusions drawn upon assessments are valid. The current

work was able to therefore contribute to replicability and visibility regarding the methodological

process for creating and curating test suites. As such, this dissertation provided a structured

methodology for creating test suites based on curated annotations when evaluating error

detection systems, whilst Lingo24’s integration with Unbabel was still in progress (since the test

suites that were created included gold curated data from both Unbabel’s translated content as

108

well as Lingo24’s). Additionally, tools from Lingo24’s framework were also integrated into

Smartcheck.

Future work will tackle a project on semi-automatic annotations to support the

community of annotators at Unbabel, by providing suitable annotated segments and the

corresponding error and severity type as a suggestion. Additionally, the work presented here

provides a starting point for gold translations. By using the new EDF’s data, it would only be

necessary to add the gold version of the translated text, since the error would already be properly

identified and classified. Efforts are now being conducted to use the test suites created to

evaluate QE and MQM modules. We believe our work can also be a contribution to the creation

of an alert system associated with concrete metrics and performance on the reliability of rules

and data annotated. We are aware that the test suites will need updates and data augmentation

strategies have already been tackled to cope with the challenges of the dynamics of data

generation. Our work is in the process of being applied to research projects at Unbabel,

especially the critical errors reduction on the Center for Responsible AI within the scope of the

Plan of Resilience.

109

Annexes

Greetings Closings

Formal Informal Formal Informal

DE
“Sehr geehrte/r”
“Guten Tag”
“Frau/Herr” (preferred)

“Hallo” / “Hi” /
“Hey” / “Liebe(r)”

“Mit freundlichen
Grüßen”

“Viele Grüße”
“Beste Grüße”
“Schöne Grüße”

ES
"Buenos días" / "Buenas
tardes" / "Buenas noches"
/ "Estimado(a)"

"Hola"
"Buenos días"

"Un saludo"
"Un cordial saludo
Saludos"
"Saludos cordiales"

"Hasta luego"
"Hasta pronto"

FR
"Cher Monsieur"
"Chère Madame"
"Bonjour"

"Salut"
"Coucou"

"Meilleures salutations"
"Au revoir"

"Salut"
"À bientôt"

IT

"Salve"
"Salve [name]"
"Gentile [signor/signore,
signora, sig., sig.ra, sig.na,
name]"

"Ciao"
"Ciao [name]"

"Cordiali saluti"
"Distinti saluti"

"Ciao"
"Saluti"
"Arrivederci"

PT

"Excelentíssimo(a)"
"Caro Senhor"
"Cara Senhora"
"Caro(a) [name]"

"Olá"

"Com os melhores
cumprimentos"
"Com elevada estima"
"Coloco-me à sua inteira
disposição para
quaisquer
esclarecimentos"
"Atenciosamente",
"Atentamente"
"Cordialmente"
"Respeitosamente"

"Até breve"
"Até à próxima"
"Cumprimentos"

PT-BR
"Olá"
"Caro/a"
"Prezado/a"

"Oi"
"Olá"

"Atenciosamente"
"Cordialmente"

"Até logo"
"Até breve"

Table 1. Lexical Register for Customer Support: Selected examples of required expressions for

Greetings and Closings, for both formal and informal registers

110

Target
Language Register FNs FPs Unlabeled TPs Labeled TPs

AR
Formal 11 9 8 6

Informal 4 3 2 2

CS
Formal 30 25 1 1

Informal 9 4 1 -

DA
Formal - - 3 -

Informal 31 45 51 34

DE
Formal 36 67 20 1

Informal 31 47 30 4

EL
Formal 4 10 - -

Informal 5 4 11 -

ES
Formal 62 20 24 14

Informal 56 14 25 15

ES-LATAM
Formal 23 42 16 6

Informal 24 18 15 10

FI
Formal 13 7 12 9

Informal 15 5 7 3

FR
Formal 49 94 46 22

Informal 49 107 29 9

HI
Formal 11 10 5 -

Informal 49 28 20 -

HU
Formal 7 8 1 1

Informal 4 4 - -

ID
Formal - 11 1 1

Informal 1 11 1 1

IT
Formal 16 20 8 6

Informal 19 11 16 10

JA
Formal 11 14 19 19

Informal 17 28 18 9

KO
Formal 19 16 26 19

Informal 20 24 59 11

111

NL
Formal 30 245 29 -

Informal 49 208 35 -

NO
Formal - - - -

Informal - - 1 -

PL
Formal 8 1 4 1

Informal 14 6 7 2

PT
Formal 45 65 4 -

Informal 17 16 7 4

PT-BR
Formal 1 1 4 1

Informal 4 2 6 3

RO
Formal 22 12 28 -

Informal 1 3 - -

RU
Formal 202 122 39 21

Informal 157 134 28 15

SV
Formal 3 12 3 1

Informal 14 13 11 3

TH
Formal 12 21 10 5

Informal 4 4 4 4

TR
Formal 6 16 1 -

Informal 6 14 3 -

VI
Formal 2 9 - -

Informal - - - -

ZH-CN
Formal 94 178 69 26

Informal 208 188 63 31

ZH-TW
Formal 74 128 64 45

Informal 119 103 47 29

TOTAL 1718 2207 942 404

Table 2. Testing Smartcheck with new EDF: Total cases of FNs, FPs and TPs per register and

target languages

112

Bibliography

Ailani, S., Dalvi, A., & Siddavatam, I. (2019). Grammatical error correction (GEC): research

approaches till now. In International Journal of Computer Applications, 178(40), (pp.

1-3)

Avramidis, E., Macketanz, V., Strohriegel, U., & Uszkoreit, H. (2019). Linguistic Evaluation of

German-English Machine Translation Using a Test Suite. In Proceedings of the Fourth

Conference on Machine Translation (2) (pp. 445–454)

https://doi.org/10.18653/v1/W19-5351

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to

Align and Translate. https://doi.org/10.48550/ARXIV.1409.0473

Balkan, L. (1994). Test Suites: some issues in their use and design. In Proceedings of the Second

International Conference on Machine Translation: Ten years on

Balkan, L., Arnold, D., & Meije, S. (1994). Test suites for natural language processing. In

Proceedings of Translating and the Computer 16

Banerjee, S., & Lavie, A. (2005). METEOR: An automatic metric for MT evaluation with

improved correlation with human judgments. In Proceedings of the acl workshop on

intrinsic and extrinsic evaluation measures for machine translation and/or summarization

(pp. 65-72)

Bar-Hillel, Y. (1952). The present state of research on mechanical translation. In Proceedings of

the Conference on Mechanical Translation

113

https://doi.org/10.18653/v1/W19-5351
https://doi.org/10.48550/ARXIV.1409.0473

Bar-Hillel, Y. (1960). The Present Status of Automatic Translation of Languages. Adv. Comput.

(1) (pp. 91-163)

Bell, S., Yannakoudakis, H., & Rei, M. (2019). Context is key: Grammatical error detection with

contextual word representations. arXiv:1906.06593

Bhoi, B., Vyawahare, P., Avhad, P., & Patil, N. (2017). Data duplication avoidance in larger

database. In 2017 International Conference on Innovations in Information, Embedded

and Communication Systems (ICIIECS) (pp. 1-4)

Bodrumlu, T., Knight, K., & Ravi, S. (2009, June). A new objective function for word alignment.

In Proceedings of the Workshop on Integer Linear Programming for Natural Language

Processing (pp. 28-35)

Bota, L., Schneider, C., & Way, A. (2013). COACH: Designing a new CAT tool with Translator

Interaction. In Proceedings of Machine Translation Summit XIV: User track.

Bryant, C., Felice, M., Andersen, Ø. E., & Briscoe, T. (2019). The BEA-2019 Shared Task on

Grammatical Error Correction. In Proceedings of the Fourteenth Workshop on Innovative

Use of NLP for Building Educational Applications (pp. 52–75)

https://doi.org/10.18653/v1/W19-4406

Burchardt, A., Macketanz, V., Dehdari, J., Heigold, G., Jan-Thorsten, P., & Williams, P. (2017).

A linguistic evaluation of rule-based, phrase-based, and neural MT engines. The Prague

Bulletin of Mathematical Linguistics, 108(1)

Bustamante, F. R., & León, F. S. (1996). GramCheck: A grammar and style checker. arXiv

preprint cmp-lg/9607001

114

https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406

Castilho, S., Doherty, S., Gaspari, F., & Moorkens, J. (2018). Approaches to human and machine

translation quality assessment. In Translation quality assessment (pp. 9-38)

Castilho, S., Moorkens, J., Gaspari, F., Calixto, I., Tinsley, J., & Way, A. (2017). Is Neural

Machine Translation the New State of the Art? The Prague Bulletin of Mathematical

Linguistics, 108(1), 109–120. https://doi.org/10.1515/pralin-2017-0013

Chatzikoumi, E. (2020). How to evaluate machine translation: A review of automated and human

metrics. Natural Language Engineering, 26(2) (pp. 137-161)

Chiang, D. (2005, June). A hierarchical phrase-based model for statistical machine translation. In

Proceedings of the 43rd annual meeting of the association for computational linguistics

(acl’05) (pp. 263-270)

Chollampatt, S., & Ng, H. T. (2018, April). A multilayer convolutional encoder-decoder neural

network for grammatical error correction. In Proceedings of the AAAI conference on

artificial intelligence 32(1)

Chollampatt, S., Wang, W., & Ng, H. T. (2019, July). Cross-sentence grammatical error

correction. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics (pp. 435-445)

Choshen, L., & Abend, O. (2018). Automatic metric validation for grammatical error correction.

arXiv:1804.11225

Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2020). Electra: Pre-training text encoders

as discriminators rather than generators. arXiv:2003.10555

115

https://doi.org/10.1515/pralin-2017-0013

Dale, R., Anisimoff, I., & Narroway, G. (2012, June). HOO 2012: A report on the preposition

and determiner error correction shared task. In Proceedings of the Seventh Workshop on

Building Educational Applications Using NLP (pp. 54-62)

Dale, R., & Kilgarriff, A. (2011, September). Helping our own: The HOO 2011 pilot shared task.

In Proceedings of the 13th European Workshop on Natural Language Generation (pp.

242-249)

Deek, F. P., & McHugh, J. A. M. (2007). Open Source: Technology and Policy (1st ed.).

Cambridge University Press https://doi.org/10.1017/CBO9780511619526

DeNeefe, S., Knight, K., Wang, W., & Marcu, D. (2007, June). What can syntax-based mt learn

from phrase-based mt?. In Proceedings of the 2007 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language

Learning (EMNLP-CoNLL) (pp. 755-763)

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In Proceedings of the 2019

Conference of the North (pp. 4171–4186) https://doi.org/10.18653/v1/N19-1423

Elbeck, M., & Bacon, D. (2015). Toward Universal Definitions for Direct and Indirect

Assessment. Journal of Education for Business, 90(5) (pp. 278–283)

https://doi.org/10.1080/08832323.2015.1034064

Felice, M., & Briscoe, T. (2015). Towards a standard evaluation method for grammatical error

detection and correction. In Proceedings of the 2015 Conference of the North American

116

https://doi.org/10.1017/CBO9780511619526
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1080/08832323.2015.1034064

Chapter of the Association for Computational Linguistics: Human Language

Technologies (pp. 578-587)

Flickinger, D., Nerbonne, J., Sag, I.A. and Wasow, T., (1987). Toward Evaluation of NLP

Systems. Hewlett-Packard Laboratories. In the 24th Annual Meeting of the Association

for Computational Linguistics (ACL), Stanford

Görög, A. (2014). Quality evaluation today: the dynamic quality framework. In Proceedings of

Translating and the Computer 36.

Grundkiewicz, R., & Junczys-Dowmunt, M. (2018). Near human-level performance in

grammatical error correction with hybrid machine translation. arXiv:1804.05945

Guillou, L., & Hardmeier, C. (2016). Protest: A test suite for evaluating pronouns in machine

translation. In Proceedings of the Tenth International Conference on Language Resources

and Evaluation (LREC'16) (pp. 636-643)

Guidelines for the implementation of quality assurance frameworks for international and

supranational organisations compiling statistics November (2009). In Committee for the

Coordination of Statistical Activities (CCSA)

Han, N. R., Chodorow, M., & Leacock, C. (2006). Detecting errors in English article usage by

non-native speakers. Natural Language Engineering, 12(2), (pp. 115-129)

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

(pp. 1735-1780)

117

House, J. (2014). Translation quality assessment: Past and present. In Translation: A

multidisciplinary approach (pp. 241-264)

Hutchins, W. J. (1995). Machine translation: A brief history. In Concise history of the language

sciences (pp. 431-445)

Hutchins, W. J. (2001). Machine translation over fifty years. In Histoire epistémologie langage,

23(1) (pp. 7-31)

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Neckermann, T.,

Seide, F., Germann, U., Aji, A. F., Bogoychev, N., Martins, A. F. T., & Birch, A. (2018).

Marian: Fast Neural Machine Translation in C++.

https://doi.org/10.48550/ARXIV.1804.00344

Kaneko, M., Sakaizawa, Y., & Komachi, M. (2017, November). Grammatical error detection

using error-and grammaticality-specific word embeddings. In Proceedings of the Eighth

International Joint Conference on Natural Language Processing (1) (pp. 40-48)

Kantor, Y., Katz, Y., Choshen, L., Cohen-Karlik, E., Liberman, N., Toledo, A., Menczel, A. &

Slonim, N. (2019). Learning to combine grammatical error corrections.

arXiv:1906.03897

Kasewa, S., Stenetorp, P., & Riedel, S. (2018). Wronging a right: Generating better errors to

improve grammatical error detection. arXiv:1810.00668

Kenny, D. (2019) The Routledge Handbook of Translation and Philosophy. Routledge (pp.

428-445)

118

https://doi.org/10.48550/ARXIV.1804.00344
https://doi.org/10.48550/ARXIV.1804.00344

Kepler, F., Trénous, J., Treviso, M., Vera, M., & Martins, A. F. T. (2019). OpenKiwi: An Open

Source Framework for Quality Estimation. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics: System Demonstrations (pp. 117–122)

https://doi.org/10.18653/v1/P19-3020

King, M., & Falkedal, K. (1990). Using test suites in evaluation of machine translation systems.

In COLING 1990: Papers presented to the 13th International Conference on

Computational Linguistics (2)

Koehn, P. (2009). Statistical Machine Translation (1st ed.). Cambridge University Press.

https://doi.org/10.1017/CBO9780511815829

Koehn, P. (2020). Neural Machine Translation (1st ed.). Cambridge University Press.

https://doi.org/10.1017/9781108608480

Koehn, P., Och, F. J., & Marcu, D. (2003). Statistical phrase-based translation. University of

Southern California Marina Del Rey Information Sciences Inst.

Lavie, A., & Denkowski, M. J. (2009). The Meteor metric for automatic evaluation of machine

translation. In Machine Translation, 23(2–3) (pp. 105–115)

https://doi.org/10.1007/s10590-009-9059-4

Leacock, C., Chodorow, M., Gamon, M., & Tetreault, J. (2014). Automated grammatical error

detection for language learners. In Synthesis lectures on human language technologies

7(1) (pp. 1-170)

119

https://doi.org/10.18653/v1/P19-3020
https://doi.org/10.1017/CBO9780511815829
https://doi.org/10.1017/CBO9780511815829
https://doi.org/10.1017/9781108608480
https://doi.org/10.1007/s10590-009-9059-4

Legrand, J., Auli, M., & Collobert, R. (2016). Neural network-based word alignment through

score aggregation. arXiv:1606.09560

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., &

Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.

arXiv:1907.11692

Lommel, A. (2018). Metrics for translation quality assessment: a case for standardising error

typologies. In Translation Quality Assessment (pp. 109-127) Springer, Cham

Lommel, A., Uszkoreit, H., & Burchardt, A. (2014). Multidimensional Quality Metrics (MQM):

A Framework for Declaring and Describing Translation Quality Metrics. In Tradumàtica:

Tecnologies de La Traducció (12) https://doi.org/10.5565/rev/tradumatica.77

Macketanz, V., Avramidis, E., Burchardt, A., & Uszkoreit, H. (2019). Fine-grained evaluation of

German-English machine translation based on a test suite. arXiv:1910.07460

Makhoul, J., Kubala, F., Schwartz, R., & Weischedel, R. (1999, February). Performance

measures for information extraction. In Proceedings of DARPA broadcast news

workshop, Herndon, VA (249)

McCord, M. C. (1985). LMT: a Prolog-based Machine Translation system. In Nirenburg (1985)

(pp. 179-182)

Melamed, I. D., Green, R., & Turian, J. (2003). Precision and recall of machine translation. In

Companion Volume of the Proceedings of HLT-NAACL 2003-Short Papers (pp. 61-63)

120

https://doi.org/10.5565/rev/tradumatica.77

Mizumoto, T., Hayashibe, Y., Komachi, M., Nagata, M., & Matsumoto, Y. (2012, December).

The effect of learner corpus size in grammatical error correction of ESL writings. In

Proceedings of COLING 2012: Posters (pp. 863-872)

Naber, D. (2003). A rule-based style and grammar checker.

Nerbonne, J., Netter, K., Kader Diagne, A., Klein, J., & Dickman, L. (1992). A Diagnostic Tool

for German Syntax. Report DFKI D-92-03, Saarbr ucken. Also in: Neal, J. and Walter, S.

eds. (1991). Natural Language Processing Systems Evaluation Workshop, Berkeley,

Rome Laboratory. Report RL-TR-91-362, New York

Ng, H. T., Wu, S. M., Briscoe, T., Hadiwinoto, C., Susanto, R. H., & Bryant, C. (2014, June).

The CoNLL-2014 shared task on grammatical error correction. In Proceedings of the

Eighteenth Conference on Computational Natural Language Learning: Shared Task (pp.

1-14)

Ng, H. T., Wu, S. M., Wu, Y., Hadiwinoto, C., & Tetreault, J. (2013). The CoNLL-2013 Shared

Task on Grammatical Error Correction. In Proceedings of the Seventeenth Conference on

Computational Natural Language Learning: Shared Task (CoNLL-2013 Shared Task).

Sofia, Bulgaria

Okpor, M. D. (2014). Machine translation approaches: issues and challenges. In International

Journal of Computer Science Issues (IJCSI), 11(5) (pp. 159-165)

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). BLEU: a method for automatic

evaluation of machine translation. In Proceedings of the 40th annual meeting of the

121

Association for Computational Linguistics (pp. 311-318)

https://doi.org/10.3115/1073083.1073135

Rawling, P., & Wilson, P. (Eds.) (2019). The Routledge Handbook of Translation and

Philosophy. London: Routledge.

Regnier, S. and Dauphin, E. (1994). Test Suite Design at Aerospatiale, In Input Paper for WP2,

TSNLP

Rei, M., & Yannakoudakis, H. (2016). Compositional sequence labeling models for error

detection in learner writing. arXiv:1607.06153

Rei, R., Farinha, A. C., de Souza, J. G., Ramos, P. G., Martins, A. F., Coheur, L., & Lavie, A.

(2022). Searching for COMETINHO: The Little Metric That Could. In Proceedings of

the 23rd Annual Conference of the European Association for Machine Translation (pp.

61-70).

Rei, R., Farinha, A. C., Stewart, C., Coheur, L., & Lavie, A. (2021). MT-Telescope: An

interactive platform for contrastive evaluation of MT systems. In Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing: System Demonstrations,

(pp. 73–80) https://doi.org/10.18653/v1/2021.acl-demo.9

Rei, R., Stewart, C., Farinha, A. C., & Lavie, A. (2020). COMET: A Neural Framework for MT

Evaluation. Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP) (pp. 2685–2702)

https://doi.org/10.18653/v1/2020.emnlp-main.213

122

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.acl-demo.9
https://doi.org/10.18653/v1/2020.emnlp-main.213

Rothe, S., Mallinson, J., Malmi, E., Krause, S., & Severyn, A. (2021). A simple recipe for

multilingual grammatical error correction. arXiv:2106.03830

Rozovskaya, A., Chang, K. W., Sammons, M., & Roth, D. (2013, August). The University of

Illinois system in the CoNLL-2013 shared task. In Proceedings of the Seventeenth

Conference on Computational Natural Language Learning: Shared Task (pp. 13-19)

Rozovskaya, A., & Roth, D. (2014). Building a state-of-the-art grammatical error correction

system. Transactions of the Association for Computational Linguistics (2) (pp. 419-434)

Schäler, R. (2004). Language resources and localisation. In Proceedings of the Second

International Workshop on Language Resources for Translation Work, Research and

Training (pp. 18-25)

Sellam, T., Das, D., & Parikh, A. P. (2020). BLEURT: Learning robust metrics for text

generation. arXiv:2004.04696.

Simard, M., & Isabelle, P. (2009). Phrase-based machine translation in a computer-assisted

translation environment. In Proceedings of Machine Translation Summit XII: Papers

Slocum, J. (1985). A survey of machine translation: Its history, current status and future

prospects. In Computational linguistics, 11(1) (pp. 1-17)

Snover, M., Madnani, N., Dorr, B., & Schwartz, R. (2009). Fluency, adequacy, or HTER?

Exploring different human judgments with a tunable MT metric. In Proceedings of the

Fourth Workshop on Statistical Machine Translation (pp. 259-268).

123

Specia, L., Scarton, C., & Paetzold, G. H. (2018). Quality Estimation for Machine Translation.

Springer International Publishing https://doi.org/10.1007/978-3-031-02168-8

Specia, L., Turchi, M., Cancedda, N., Cristianini, N., & Dymetman, M. (2009). Estimating the

sentence-level quality of machine translation systems. In Proceedings of the 13th

annual conference of the European association for machine translation

Stewart, C., Gonçalves, M., Buchicchio, M., & Lavie, A. (2022). Business Critical Errors: A

Framework for Adaptive Quality Feedback. In Proceedings of the 15th Biennial

Conference of the Association for Machine Translation in the Americas (2) (pp.

231–256)

Tan, Z., Wang, S., Yang, Z., Chen, G., Huang, X., Sun, M., & Liu, Y. (2020). Neural machine

translation: A review of methods, resources, and tools. In AI Open (1) (pp. 5-21)

Teng, C. M. (1999). Correcting Noisy Data. In ICML (99) (pp. 239-248)

Tetreault, J., & Chodorow, M. (2008, August). The ups and downs of preposition error detection

in ESL writing. In Proceedings of the 22nd International Conference on Computational

Linguistics (Coling 2008) (pp. 865-872)

Tezcan, A., Hoste, V., & Macken, L. (2017). A neural network architecture for detecting

grammatical errors in statistical machine translation. In The Prague bulletin of

mathematical linguistics (108) (pp. 133-145)

124

https://doi.org/10.1007/978-3-031-02168-8
https://aclanthology.org/2022.amta-upg.17
https://aclanthology.org/2022.amta-upg.17

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &

Polosukhin, I. (2017). Attention Is All You Need.

https://doi.org/10.48550/ARXIV.1706.03762

Wang, H., Wu, H., He, Z., Huang, L., & Ward Church, K. (2021). Progress in Machine

Translation. In Engineering (pp. 2095-8099) https://doi.org/10.1016/j.eng.2021.03.023

Weaver, W. (1999). Warren Weaver Memorandum, July 1949. In MT News International,

22(5-6)

Yamada, K., & Knight, K. (2001, July). A syntax-based statistical translation model. In

Proceedings of the 39th Annual Meeting of the Association for Computational Linguistics

(pp. 523-530)

Yuan, Z., Taslimipoor, S., Davis, C., & Bryant, C. (2021, November). Multi-class grammatical

error detection for correction: A tale of two systems. In Proceedings of the 2021

Conference on Empirical Methods in Natural Language Processing (pp. 8722-8736)

Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019). Bertscore: Evaluating text

generation with bert. arXiv:1904.09675.

Zhao, Y., Jiang, N., Sun, W., & Wan, X. (2018, August). Overview of the nlpcc 2018 shared task:

Grammatical error correction. In CCF International Conference on Natural Language

Processing and Chinese Computing (pp. 439-445). Springer, Cham

125

https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1016/j.eng.2021.03.023

