3,663 research outputs found

    A Grammatical Inference Approach to Language-Based Anomaly Detection in XML

    Full text link
    False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the eXtensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learnability. Our contributions are an XML Schema compatible lexical datatype system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or datatypes.Comment: Paper accepted at First Int. Workshop on Emerging Cyberthreats and Countermeasures ECTCM 201

    On Multilingual Training of Neural Dependency Parsers

    Full text link
    We show that a recently proposed neural dependency parser can be improved by joint training on multiple languages from the same family. The parser is implemented as a deep neural network whose only input is orthographic representations of words. In order to successfully parse, the network has to discover how linguistically relevant concepts can be inferred from word spellings. We analyze the representations of characters and words that are learned by the network to establish which properties of languages were accounted for. In particular we show that the parser has approximately learned to associate Latin characters with their Cyrillic counterparts and that it can group Polish and Russian words that have a similar grammatical function. Finally, we evaluate the parser on selected languages from the Universal Dependencies dataset and show that it is competitive with other recently proposed state-of-the art methods, while having a simple structure.Comment: preprint accepted into the TSD201

    Complexity of Equivalence and Learning for Multiplicity Tree Automata

    Full text link
    We consider the complexity of equivalence and learning for multiplicity tree automata, i.e., weighted tree automata over a field. We first show that the equivalence problem is logspace equivalent to polynomial identity testing, the complexity of which is a longstanding open problem. Secondly, we derive lower bounds on the number of queries needed to learn multiplicity tree automata in Angluin's exact learning model, over both arbitrary and fixed fields. Habrard and Oncina (2006) give an exact learning algorithm for multiplicity tree automata, in which the number of queries is proportional to the size of the target automaton and the size of a largest counterexample, represented as a tree, that is returned by the Teacher. However, the smallest tree-counterexample may be exponential in the size of the target automaton. Thus the above algorithm does not run in time polynomial in the size of the target automaton, and has query complexity exponential in the lower bound. Assuming a Teacher that returns minimal DAG representations of counterexamples, we give a new exact learning algorithm whose query complexity is quadratic in the target automaton size, almost matching the lower bound, and improving the best previously-known algorithm by an exponential factor

    Concepts of structural underspecification in Bantu and Romance

    Get PDF

    MBT: A Memory-Based Part of Speech Tagger-Generator

    Full text link
    We introduce a memory-based approach to part of speech tagging. Memory-based learning is a form of supervised learning based on similarity-based reasoning. The part of speech tag of a word in a particular context is extrapolated from the most similar cases held in memory. Supervised learning approaches are useful when a tagged corpus is available as an example of the desired output of the tagger. Based on such a corpus, the tagger-generator automatically builds a tagger which is able to tag new text the same way, diminishing development time for the construction of a tagger considerably. Memory-based tagging shares this advantage with other statistical or machine learning approaches. Additional advantages specific to a memory-based approach include (i) the relatively small tagged corpus size sufficient for training, (ii) incremental learning, (iii) explanation capabilities, (iv) flexible integration of information in case representations, (v) its non-parametric nature, (vi) reasonably good results on unknown words without morphological analysis, and (vii) fast learning and tagging. In this paper we show that a large-scale application of the memory-based approach is feasible: we obtain a tagging accuracy that is on a par with that of known statistical approaches, and with attractive space and time complexity properties when using {\em IGTree}, a tree-based formalism for indexing and searching huge case bases.} The use of IGTree has as additional advantage that optimal context size for disambiguation is dynamically computed.Comment: 14 pages, 2 Postscript figure

    Producing power-law distributions and damping word frequencies with two-stage language models

    Get PDF
    Standard statistical models of language fail to capture one of the most striking properties of natural languages: the power-law distribution in the frequencies of word tokens. We present a framework for developing statisticalmodels that can generically produce power laws, breaking generativemodels into two stages. The first stage, the generator, can be any standard probabilistic model, while the second stage, the adaptor, transforms the word frequencies of this model to provide a closer match to natural language. We show that two commonly used Bayesian models, the Dirichlet-multinomial model and the Dirichlet process, can be viewed as special cases of our framework. We discuss two stochastic processes-the Chinese restaurant process and its two-parameter generalization based on the Pitman-Yor process-that can be used as adaptors in our framework to produce power-law distributions over word frequencies. We show that these adaptors justify common estimation procedures based on logarithmic or inverse-power transformations of empirical frequencies. In addition, taking the Pitman-Yor Chinese restaurant process as an adaptor justifies the appearance of type frequencies in formal analyses of natural language and improves the performance of a model for unsupervised learning of morphology.48 page(s

    Learning Moore Machines from Input-Output Traces

    Full text link
    The problem of learning automata from example traces (but no equivalence or membership queries) is fundamental in automata learning theory and practice. In this paper we study this problem for finite state machines with inputs and outputs, and in particular for Moore machines. We develop three algorithms for solving this problem: (1) the PTAP algorithm, which transforms a set of input-output traces into an incomplete Moore machine and then completes the machine with self-loops; (2) the PRPNI algorithm, which uses the well-known RPNI algorithm for automata learning to learn a product of automata encoding a Moore machine; and (3) the MooreMI algorithm, which directly learns a Moore machine using PTAP extended with state merging. We prove that MooreMI has the fundamental identification in the limit property. We also compare the algorithms experimentally in terms of the size of the learned machine and several notions of accuracy, introduced in this paper. Finally, we compare with OSTIA, an algorithm that learns a more general class of transducers, and find that OSTIA generally does not learn a Moore machine, even when fed with a characteristic sample

    Principles and Implementation of Deductive Parsing

    Get PDF
    We present a system for generating parsers based directly on the metaphor of parsing as deduction. Parsing algorithms can be represented directly as deduction systems, and a single deduction engine can interpret such deduction systems so as to implement the corresponding parser. The method generalizes easily to parsers for augmented phrase structure formalisms, such as definite-clause grammars and other logic grammar formalisms, and has been used for rapid prototyping of parsing algorithms for a variety of formalisms including variants of tree-adjoining grammars, categorial grammars, and lexicalized context-free grammars.Comment: 69 pages, includes full Prolog cod

    Higher-Order Operator Precedence Languages

    Get PDF
    Floyd's Operator Precedence (OP) languages are a deterministic context-free family having many desirable properties. They are locally and parallely parsable, and languages having a compatible structure are closed under Boolean operations, concatenation and star; they properly include the family of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations between any two consecutive terminal symbols, which assign syntax structure to words. We extend such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally testable regular languages of order k at least 3. The new corresponding class of Higher-order Operator Precedence languages (HOP) properly includes the OP languages, and it is still included in the deterministic (also in reverse) context free family. We prove Boolean closure for each subfamily of structurally compatible HOP languages. In each subfamily, the top language is called max-language. We show that such languages are defined by a simple cancellation rule and we prove several properties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP languages are a candidate for replacing OP languages in the various applications where they have have been successful though sometimes too restrictive.Comment: In Proceedings AFL 2017, arXiv:1708.0622
    corecore