22,062 research outputs found

    Gradient Domain Methods for Image-based Reconstruction and Rendering

    Get PDF
    This thesis describes new approaches in image-based 3D reconstruction and rendering. In contrast to previous work our algorithms focus on image gradients instead of pixel values which allows us to avoid many of the disadvantages traditional techniques have. A single pixel only carries very local information about the image content. A gradient on the other hand reveals information about the magnitude and the direction in which the image content changes. Our techniques use this additional information to adapt dynamically to the image content. Especially in image regions without strong gradients we can employ more suitable reconstruction models and we can render images with less artifacts. Overall we present more accurate and robust results (both 3D models and renderings) compared to previous methods. First, we present a multi-view stereo algorithm that combines traditional stereo reconstruction and shading based reconstruction models in a single optimization scheme. By defining as gradient based trade off our model removes the need for an explicit regularization and can handle shading information without the need for an explicit albedo model. This effectively combines the strength of both reconstruction approaches and cancels out their weaknesses. Our second method is an image-based rendering technique that directly renders gradients instead of pixels. The final image is then generated by integrating over the rendered gradients. We present a detailed description on how gradients can be moved directly in the image during rendering which allows us to create a fast approximation that improves the quality and speed of the integration step. Our method also handles occlusions and compared to traditional approaches we can achieve better results that are especially robust for scenes with reflective or textureless areas. Finally, we also present a new model for image warping. Here we apply different types of regularization constraints based on the gradients in the image. Especially when used for direct real-time rendering this can handle larger distortions compared to traditional methods that use only a single type of regularization. Overall the results of this thesis show how shifting the focus from image pixels to image gradients can improve various aspects of image-based reconstruction and rendering. Some of the most challenging aspects such as textureless areas in rendering and spatially varying albedo in reconstruction are handled implicitly by our formulations which also leads to more effective algorithms

    Frequency Analysis of Gradient Estimators in Volume Rendering

    Get PDF
    Gradient information is used in volume rendering to classify and color samples along a ray. In this paper, we present an analysis of the theoretically ideal gradient estimator and compare it to some commonly used gradient estimators. A new method is presented to calculate the gradient at arbitrary sample positions, using the derivative of the interpolation filter as the basis for the new gradient filter. As an example, we will discuss the use of the derivative of the cubic spline. Comparisons with several other methods are demonstrated. Computational efficiency can be realized since parts of the interpolation computation can be leveraged in the gradient estimatio

    Neural View-Interpolation for Sparse Light Field Video

    No full text
    We suggest representing light field (LF) videos as "one-off" neural networks (NN), i.e., a learned mapping from view-plus-time coordinates to high-resolution color values, trained on sparse views. Initially, this sounds like a bad idea for three main reasons: First, a NN LF will likely have less quality than a same-sized pixel basis representation. Second, only few training data, e.g., 9 exemplars per frame are available for sparse LF videos. Third, there is no generalization across LFs, but across view and time instead. Consequently, a network needs to be trained for each LF video. Surprisingly, these problems can turn into substantial advantages: Other than the linear pixel basis, a NN has to come up with a compact, non-linear i.e., more intelligent, explanation of color, conditioned on the sparse view and time coordinates. As observed for many NN however, this representation now is interpolatable: if the image output for sparse view coordinates is plausible, it is for all intermediate, continuous coordinates as well. Our specific network architecture involves a differentiable occlusion-aware warping step, which leads to a compact set of trainable parameters and consequently fast learning and fast execution
    • …
    corecore