35,003 research outputs found

    Analyzing collaborative learning processes automatically

    Get PDF
    In this article we describe the emerging area of text classification research focused on the problem of collaborative learning process analysis both from a broad perspective and more specifically in terms of a publicly available tool set called TagHelper tools. Analyzing the variety of pedagogically valuable facets of learners’ interactions is a time consuming and effortful process. Improving automated analyses of such highly valued processes of collaborative learning by adapting and applying recent text classification technologies would make it a less arduous task to obtain insights from corpus data. This endeavor also holds the potential for enabling substantially improved on-line instruction both by providing teachers and facilitators with reports about the groups they are moderating and by triggering context sensitive collaborative learning support on an as-needed basis. In this article, we report on an interdisciplinary research project, which has been investigating the effectiveness of applying text classification technology to a large CSCL corpus that has been analyzed by human coders using a theory-based multidimensional coding scheme. We report promising results and include an in-depth discussion of important issues such as reliability, validity, and efficiency that should be considered when deciding on the appropriateness of adopting a new technology such as TagHelper tools. One major technical contribution of this work is a demonstration that an important piece of the work towards making text classification technology effective for this purpose is designing and building linguistic pattern detectors, otherwise known as features, that can be extracted reliably from texts and that have high predictive power for the categories of discourse actions that the CSCL community is interested in

    Acquiring Correct Knowledge for Natural Language Generation

    Full text link
    Natural language generation (NLG) systems are computer software systems that produce texts in English and other human languages, often from non-linguistic input data. NLG systems, like most AI systems, need substantial amounts of knowledge. However, our experience in two NLG projects suggests that it is difficult to acquire correct knowledge for NLG systems; indeed, every knowledge acquisition (KA) technique we tried had significant problems. In general terms, these problems were due to the complexity, novelty, and poorly understood nature of the tasks our systems attempted, and were worsened by the fact that people write so differently. This meant in particular that corpus-based KA approaches suffered because it was impossible to assemble a sizable corpus of high-quality consistent manually written texts in our domains; and structured expert-oriented KA techniques suffered because experts disagreed and because we could not get enough information about special and unusual cases to build robust systems. We believe that such problems are likely to affect many other NLG systems as well. In the long term, we hope that new KA techniques may emerge to help NLG system builders. In the shorter term, we believe that understanding how individual KA techniques can fail, and using a mixture of different KA techniques with different strengths and weaknesses, can help developers acquire NLG knowledge that is mostly correct

    Probabilistic framework for image understanding applications using Bayesian Networks

    Get PDF
    Machine learning algorithms have been successfully utilized in various systems/devices. They have the ability to improve the usability/quality of such systems in terms of intelligent user interface, fast performance, and more importantly, high accuracy. In this research, machine learning techniques are used in the field of image understanding, which is a common research area between image analysis and computer vision, to involve higher processing level of a target image to make sense of the scene captured in it. A general probabilistic framework for image understanding where topics associated with (i) collection of images to generate a comprehensive and valid database, (ii) generation of an unbiased ground-truth for the aforesaid database, (iii) selection of classification features and elimination of the redundant ones, and (iv) usage of such information to test a new sample set, are discussed. Two research projects have been developed as examples of the general image understanding framework; identification of region(s) of interest, and image segmentation evaluation. These techniques, in addition to others, are combined in an object-oriented rendering system for printing applications. The discussion included in this doctoral dissertation explores the means for developing such a system from an image understanding/ processing aspect. It is worth noticing that this work does not aim to develop a printing system. It is only proposed to add some essential features for current printing pipelines to achieve better visual quality while printing images/photos. Hence, we assume that image regions have been successfully extracted from the printed document. These images are used as input to the proposed object-oriented rendering algorithm where methodologies for color image segmentation, region-of-interest identification and semantic features extraction are employed. Probabilistic approaches based on Bayesian statistics have been utilized to develop the proposed image understanding techniques

    Capturing and Treating Unobserved Heterogeneity by Response Based Segmentation in PLS Path Modeling. A Comparison of Alternative Methods by Computational Experiments

    Get PDF
    Segmentation in PLS path modeling framework results is a critical issue in social sciences. The assumption that data is collected from a single homogeneous population is often unrealistic. Sequential clustering techniques on the manifest variables level are ineffective to account for heterogeneity in path model estimates. Three PLS path model related statistical approaches have been developed as solutions for this problem. The purpose of this paper is to present a study on sets of simulated data with different characteristics that allows a primary assessment of these methodologies.Partial Least Squares; Path Modeling; Unobserved Heterogeneity

    Accurate video object tracking using a region-based particle filter

    Get PDF
    Usually, in particle filters applied to video tracking, a simple geometrical shape, typically an ellipse, is used in order to bound the object being tracked. Although it is a good tracker, it tends to a bad object representation, as most of the world objects are not simple geometrical shapes. A better way to represent the object is by using a region-based approach, such as the Region Based Particle Filter (RBPF). This method exploits a hierarchical region based representation associated with images to tackle both problems at the same time: tracking and video object segmentation. By means of RBPF the object segmentation is resolved with high accuracy, but new problems arise. The object representation is now based on image partitions instead of pixels. This means that the amount of possible combinations has now decreased, which is computationally good, but an error on the regions taken for the object representation leads to a higher estimation error than methods working at pixel level. On the other hand, if the level of regions detail in the partition is high, the estimation of the object turns to be very noisy, making it hard to accurately propagate the object segmentation. In this thesis we present new tools to the existing RBPF. These tools are focused on increasing the RBPF performance by means of guiding the particles towards a good solution while maintaining a particle filter approach. The concept of hierarchical flow is presented and exploited, a Bayesian estimation is used in order to assign probabilities of being object or background to each region, and the reduction, in an intelligent way, of the solution space , to increase the RBPF robustness while reducing computational effort. Also changes on the already proposed co-clustering in the RBPF approach are proposed. Finally, we present results on the recently presented DAVIS database. This database comprises 50 High Definition video sequences representing several challenging situations. By using this dataset, we compare the RBPF with other state-ofthe- art methods

    Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation

    Full text link
    Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local observations are matched to a general tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 2100\,m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12\,cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5\,m/s. The accuracy and speed limit is realistic during forest operations
    corecore