4 research outputs found

    Goal-seeking Behavior-based Mobile Robot Using Particle Swarm Fuzzy Controller

    Get PDF
    Behavior-based control architecture has successfully demonstrated their competence in mobile robot development. Fuzzy logic system characteristics are suitable to address the behavior design problems. However, there are difficulties encountered when setting fuzzy parameters manually. Therefore, most of the works in the field generate certain interest for the study of fuzzy systems with added learning capabilities. This paper presents the development of fuzzy behavior-based control architecture using Particle Swarm Optimization (PSO). A goal-seeking behaviors based on Particle Swarm Fuzzy Controller (PSFC) are developed using the modified PSO with two stages of the PSFC process. Several simulations and experiments with MagellanPro mobile robot have been performed to analyze the performance of the algorithm.  The promising results have proved that the proposed control architecture for mobile robot has better capability to accomplish useful task in real office-like environment

    Goal Seeking for Robots in Unknown Environments

    No full text
    We consider the problem of goal seeking by robots in unknown environments. We present a frontier based algorithm for finding a route to a goal in a fully unknown environment, where information about the goal region (GR), the region where the goal is most likely to be located, is available. Our algorithm efficiently chooses the best candidate frontier cell, which is on the boundary between explored space and unexplored space, having the maximum ``goal seeking index'', to reach the goal in minimal number of moves. Modification of the algorithm is also proposed to further reduce the number of moves toward the goal. The algorithm has been tested extensively in simulation runs and results demonstrate that the algorithm effectively directs the robot to the goal and completes the search task in minimal number of moves in bounded as well as unbounded environments. The algorithm is shown to perform as well as a state of the art agent centered search algorithm RTAA*, in cluttered environments if exact location of the goal is known at the beginning of the mission and is shown to perform better in uncluttered environments

    Goal seeking for robots in unknown environments

    No full text
    corecore