22 research outputs found

    A prototype to integrate a wireless sensor network with civil protection grid applications

    Get PDF
    The present work was performed in the context of the CYCLOPS project, which aimed to exploit the Grid capabilities for Global Monitoring for Environment and Security (GMES) applications. The scenario exploited in the present work was the existence of remote wireless sensor networks, which could monitor and transmit real-time data from remote places, in order to prevent or react more accurately to situations of natural disasters. Considering a Wireless Sensor Network (WSN) as an instrument, we used the DORII middleware to integrate this instrument with gLite-based Grid computing and storage, allowing an effective and user friendly access to the instrument, as it is required by Civil Protection applications. The mentioned goal was achieved by (i) implementing an Instrument Element and several Instrument Managers, which virtualize the WSN; (ii) developing a Custom Java Interface to connect the Instrument Managers with sensors, performing the translation of the commands/data exchanged between them; (iii) implementing additional modules to permit a long duration (or offline) monitoring, saving the observed data in a database; (iv) implementing a Sensor Observation Service, following the OGC standards, providing the users with access to the database

    Sensorml-Nt: Innovative Cloud Service Sensor Description For Mobile Devices Handling Environmental Issues.

    Get PDF
    Peranti mudah alih hari ini boleh didapati di mana-mana dan semakin banyak dilengkapi dengan set pengesan terbenam yang berkuasa. Today’s mobile devices are pervasive and equipped with growing sets of powerful embedded sensors

    Grid and sensor web technologies for environmental monitoring

    Get PDF

    Sensor web geoprocessing on the grid

    Get PDF
    Recent standardisation initiatives in the fields of grid computing and geospatial sensor middleware provide an exciting opportunity for the composition of large scale geospatial monitoring and prediction systems from existing components. Sensor middleware standards are paving the way for the emerging sensor web which is envisioned to make millions of geospatial sensors and their data publicly accessible by providing discovery, task and query functionality over the internet. In a similar fashion, concurrent development is taking place in the field of grid computing whereby the virtualisation of computational and data storage resources using middleware abstraction provides a framework to share computing resources. Sensor web and grid computing share a common vision of world-wide connectivity and in their current form they are both realised using web services as the underlying technological framework. The integration of sensor web and grid computing middleware using open standards is expected to facilitate interoperability and scalability in near real-time geoprocessing systems. The aim of this thesis is to develop an appropriate conceptual and practical framework in which open standards in grid computing, sensor web and geospatial web services can be combined as a technological basis for the monitoring and prediction of geospatial phenomena in the earth systems domain, to facilitate real-time decision support. The primary topic of interest is how real-time sensor data can be processed on a grid computing architecture. This is addressed by creating a simple typology of real-time geoprocessing operations with respect to grid computing architectures. A geoprocessing system exemplar of each geoprocessing operation in the typology is implemented using contemporary tools and techniques which provides a basis from which to validate the standards frameworks and highlight issues of scalability and interoperability. It was found that it is possible to combine standardised web services from each of these aforementioned domains despite issues of interoperability resulting from differences in web service style and security between specifications. A novel integration method for the continuous processing of a sensor observation stream is suggested in which a perpetual processing job is submitted as a single continuous compute job. Although this method was found to be successful two key challenges remain; a mechanism for consistently scheduling real-time jobs within an acceptable time-frame must be devised and the tradeoff between efficient grid resource utilisation and processing latency must be balanced. The lack of actual implementations of distributed geoprocessing systems built using sensor web and grid computing has hindered the development of standards, tools and frameworks in this area. This work provides a contribution to the small number of existing implementations in this field by identifying potential workflow bottlenecks in such systems and gaps in the existing specifications. Furthermore it sets out a typology of real-time geoprocessing operations that are anticipated to facilitate the development of real-time geoprocessing software.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC) : School of Civil Engineering & Geosciences, Newcastle UniversityGBUnited Kingdo

    Élaboration d'un intergiciel pour relier les instruments aux grids

    Get PDF
    Les logiciels Grid sont en train de devenir une partie intégrale de la science électronique puisque la science moderne a besoin d'une grande capacité de calcul et une grande base de données d'information. Afin d'avoir des logiciels Grid capables de s'intégrer avec la science d'aujourd'hui, il faut que les instruments de mesure soient accessibles et représentés grâce à des intergiciels Grid de façon à ce qu'ils fassent partie de la Grid. Ce mémoire présente un résumé de la technologie des Grids, la conception du modèle et l'implémentation initiale de l'intergiciel appelé Grid Resource Instrument Model (GRIM) bâti à l'aide du WSRF pour les instruments et capteurs et inspiré par les standards IEEE1451, SensorML et TML. Le résultat de cette recherche est un intergiciel qui peut être utilisé par des applications Grid à des fins telles la planification et partage de laboratoires, le contrôle à distance d'instruments et la surveillance de capteurs

    BIM data model requirements for asset monitoring and the circular economy

    Get PDF
    © 2020, Emerald Publishing Limited. Purpose: The purpose of this paper is to review and provide recommendations to extend the current open standard data models for describing monitoring systems and circular economy precepts for built assets. Open standard data models enable robust and efficient data exchange which underpins the successful implementation of a circular economy. One of the largest opportunities to reduce the total life cycle cost of a built asset is to use the building information modelling (BIM) approach during the operational phase because it represents the largest share of the entire cost. BIM models that represent the actual conditions and performance of the constructed assets can boost the benefits of the installed monitoring systems and reduce maintenance and operational costs. Design/methodology/approach: This paper presents a horizontal investigation of current BIM data models and their use for describing circular economy principles and performance monitoring of built assets. Based on the investigation, an extension to the industry foundation classes (IFC) specification, recommendations and guidelines are presented which enable to describe circular economy principles and asset monitoring using IFC. Findings: Current open BIM data models are not sufficiently mature yet. This limits the interoperability of the BIM approach and the implementation of circular economy principles. An overarching approach to extend the current standards is necessary, which considers aspects related to not only modelling the monitoring system but also data management and analysis. Originality/value: To the authors’ best knowledge, this is the first study that identifies requirements for data model standards in the context current linear economic model of making, using and disposing is growing unsustainably far beyond the finite limits of planet of a circular economy. The results of this study set the basis for the extension of current standards required to apply the circular economy precepts
    corecore