77 research outputs found

    Impact-Aware Online Motion Planning for Fully-Actuated Bipedal Robot Walking

    Full text link
    The ability to track a general walking path with specific timing is crucial to the operational safety and reliability of bipedal robots for avoiding dynamic obstacles, such as pedestrians, in complex environments. This paper introduces an online, full-body motion planner that generates the desired impact-aware motion for fully-actuated bipedal robotic walking. The main novelty of the proposed planner lies in its capability of producing desired motions in real-time that respect the discrete impact dynamics and the desired impact timing. To derive the proposed planner, a full-order hybrid dynamic model of fully-actuated bipedal robotic walking is presented, including both continuous dynamics and discrete lading impacts. Next, the proposed impact-aware online motion planner is introduced. Finally, simulation results of a 3-D bipedal robot are provided to confirm the effectiveness of the proposed online impact-aware planner. The online planner is capable of generating full-body motion of one walking step within 0.6 second, which is shorter than a typical bipedal walking step

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    Design and Implementation of the Powered Self-Contained AMPRO Prostheses

    Get PDF
    This thesis presents a complete methodology for translating robotic walking to powered prostheses, and demonstrates this framework on two novel custom built powered prostheses, AMPRO. Motivated by methods that have successfully generated dynamically stable walking gaits on bipedal robots, reference human locomotion data is collected via Inertial Measurement Units (IMU) and stable walking gaits are generated using the framework of human-inspired optimization and control. Next two novel transfemoral protheses are designed and custom built based on the understanding obtained from the collection of human data and gait generation. For experimental realization, the IMUs are mounted on the healthy human leg to estimate human intention during walking on-line, and serves as the feedback interaction point between human and prosthesis. The end result is the experimental verification of the proposed methodology in achieving stable and robust locomotion on a powered prosthesis. Furthermore it is concluded that reducing the weight of AMPRO I, through the design of AMPRO II, improves the performance of the prosthesis and comfort of the human subject

    System Identification of Bipedal Locomotion in Robots and Humans

    Get PDF
    The ability to perform a healthy walking gait can be altered in numerous cases due to gait disorder related pathologies. The latter could lead to partial or complete mobility loss, which affects the patients’ quality of life. Wearable exoskeletons and active prosthetics have been considered as a key component to remedy this mobility loss. The control of such devices knows numerous challenges that are yet to be addressed. As opposed to fixed trajectories control, real-time adaptive reference generation control is likely to provide the wearer with more intent control over the powered device. We propose a novel gait pattern generator for the control of such devices, taking advantage of the inter-joint coordination in the human gait. Our proposed method puts the user in the control loop as it maps the motion of healthy limbs to that of the affected one. To design such control strategy, it is critical to understand the dynamics behind bipedal walking. We begin by studying the simple compass gait walker. We examine the well-known Virtual Constraints method of controlling bipedal robots in the image of the compass gait. In addition, we provide both the mechanical and control design of an affordable research platform for bipedal dynamic walking. We then extend the concept of virtual constraints to human locomotion, where we investigate the accuracy of predicting lower limb joints angular position and velocity from the motion of the other limbs. Data from nine healthy subjects performing specific locomotion tasks were collected and are made available online. A successful prediction of the hip, knee, and ankle joints was achieved in different scenarios. It was also found that the motion of the cane alone has sufficient information to help predict good trajectories for the lower limb in stairs ascent. Better estimates were obtained using additional information from arm joints. We also explored the prediction of knee and ankle trajectories from the motion of the hip joints

    Trajectory Optimization and Machine Learning to Design Feedback Controllers for Bipedal Robots with Provable Stability

    Full text link
    This thesis combines recent advances in trajectory optimization of hybrid dynamical systems with machine learning and geometric control theory to achieve unprecedented performance in bipedal robot locomotion. The work greatly expands the class of robot models for which feedback controllers can be designed with provable stability. The methods are widely applicable beyond bipedal robots, including exoskeletons, and prostheses, and eventually, drones, ADAS, and other highly automated machines. One main idea of this thesis is to greatly expand the use of multiple trajectories in the design of a stabilizing controller. The computation of many trajectories is now feasible due to new optimization tools. The computations are not fast enough to apply in the real-time, however, so they are not feasible for model predictive control (MPC). The offline “library” approach will encounter the curse of dimensionality for the high-dimensional models common in bipedal robots. To overcome these obstructions, we embed a stable walking motion in an attractive low-dimensional surface of the system's state space. The periodic orbit is now an attractor of the low-dimensional state-variable model but is not attractive in the full-order system. We then use the special structure of mechanical models associated with bipedal robots to embed the low-dimensional model in the original model in such a manner that the desired walking motions are locally exponentially stable. The ultimate solution in this thesis will generate model-based feedback controllers for bipedal robots, in such a way that the closed-loop system has a large stability basin, exhibits highly agile, dynamic behavior, and can deal with significant perturbations coming from the environment. In the case of bipeds: “model-based” means that the controller will be designed on the basis of the full floating-base dynamic model of the robot, and not a simplified model, such as the LIP (Linear Inverted Pendulum). By “agile and dynamic” is meant that the robot moves at the speed of a normal human or faster while walking off a curb. By “significant perturbation” is meant a human tripping, and while falling, throwing his/her full weight into the back of the robot.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145992/1/xda_1.pd

    Motion Planning and Control for the Locomotion of Humanoid Robot

    Get PDF
    This thesis aims to contribute on the motion planning and control problem of the locomotion of humanoid robots. For the motion planning, various methods were proposed in different levels of model dependence. First, a model free approach was proposed which utilizes linear regression to estimate the relationship between foot placement and moving velocity. The data-based feature makes it quite robust to handle modeling error and external disturbance. As a generic control philosophy, it can be applied to various robots with different gaits. To reduce the risk of collecting experimental data of model-free method, based on the simplified linear inverted pendulum model, the classic planning method of model predictive control was explored to optimize CoM trajectory with predefined foot placements or optimize them two together with respect to the ZMP constraint. Along with elaborately designed re-planning algorithm and sparse discretization of trajectories, it is fast enough to run in real time and robust enough to resist external disturbance. Thereafter, nonlinear models are utilized for motion planning by performing forward simulation iteratively following the multiple shooting method. A walking pattern is predefined to fix most of the degrees of the robot, and only one decision variable, foot placement, is left in one motion plane and therefore able to be solved in milliseconds which is sufficient to run in real time. In order to track the planned trajectories and prevent the robot from falling over, diverse control strategies were proposed according to the types of joint actuators. CoM stabilizer was designed for the robots with position-controlled joints while quasi-static Cartesian impedance control and optimization-based full body torque control were implemented for the robots with torque-controlled joints. Various scenarios were set up to demonstrate the feasibility and robustness of the proposed approaches, like walking on uneven terrain, walking with narrow feet or straight leg, push recovery and so on
    • …
    corecore