6 research outputs found

    Domain Adaptive Transfer Attack (DATA)-based Segmentation Networks for Building Extraction from Aerial Images

    Full text link
    Semantic segmentation models based on convolutional neural networks (CNNs) have gained much attention in relation to remote sensing and have achieved remarkable performance for the extraction of buildings from high-resolution aerial images. However, the issue of limited generalization for unseen images remains. When there is a domain gap between the training and test datasets, CNN-based segmentation models trained by a training dataset fail to segment buildings for the test dataset. In this paper, we propose segmentation networks based on a domain adaptive transfer attack (DATA) scheme for building extraction from aerial images. The proposed system combines the domain transfer and adversarial attack concepts. Based on the DATA scheme, the distribution of the input images can be shifted to that of the target images while turning images into adversarial examples against a target network. Defending adversarial examples adapted to the target domain can overcome the performance degradation due to the domain gap and increase the robustness of the segmentation model. Cross-dataset experiments and the ablation study are conducted for the three different datasets: the Inria aerial image labeling dataset, the Massachusetts building dataset, and the WHU East Asia dataset. Compared to the performance of the segmentation network without the DATA scheme, the proposed method shows improvements in the overall IoU. Moreover, it is verified that the proposed method outperforms even when compared to feature adaptation (FA) and output space adaptation (OSA).Comment: 11pages, 12 figure

    A Robust and Low Complexity Deep Learning Model for Remote Sensing Image Classification

    Full text link
    In this paper, we present a robust and low complexity deep learning model for Remote Sensing Image Classification (RSIC), the task of identifying the scene of a remote sensing image. In particular, we firstly evaluate different low complexity and benchmark deep neural networks: MobileNetV1, MobileNetV2, NASNetMobile, and EfficientNetB0, which present the number of trainable parameters lower than 5 Million (M). After indicating best network architecture, we further improve the network performance by applying attention schemes to multiple feature maps extracted from middle layers of the network. To deal with the issue of increasing the model footprint as using attention schemes, we apply the quantization technique to satisfies the number trainable parameter of the model lower than 5 M. By conducting extensive experiments on the benchmark datasets NWPU-RESISC45, we achieve a robust and low-complexity model, which is very competitive to the state-of-the-art systems and potential for real-life applications on edge devices.Comment: 8 page

    Few-shot remote sensing scene classification based on multi subband deep feature fusion

    Get PDF
    Recently, convolutional neural networks (CNNs) have performed well in object classification and object recognition. However, due to the particularity of geographic data, the labeled samples are seriously insufficient, which limits the practical application of CNN methods in remote sensing (RS) image processing. To address the problem of small sample RS image classification, a discrete wavelet-based multi-level deep feature fusion method is proposed. First, the deep features are extracted from the RS images using pre-trained deep CNNs and discrete wavelet transform (DWT) methods. Next, a modified discriminant correlation analysis (DCA) approach is proposed to distinguish easily confused categories effectively, which is based on the distance coefficient of between-class. The proposed approach can effectively integrate the deep feature information of various frequency bands. Thereby, the proposed method obtains the low-dimensional features with good discrimination, which is demonstrated through experiments on four benchmark datasets. Compared with several state-of-the-art methods, the proposed method achieves outstanding performance under limited training samples, especially one or two training samples per class

    Change detection and landscape similarity comparison using computer vision methods

    Get PDF
    Human-induced disturbances of terrestrial and aquatic ecosystems continue at alarming rates. With the advent of both raw sensor and analysis-ready datasets, the need to monitor ecosystem disturbances is now more imperative than ever; yet the task is becoming increasingly complex with increasing sources and varieties of earth observation data. In this research, computer vision methods and tools are interrogated to understand their capability for comparing spatial patterns. A critical survey of literature provides evidence that computer vision methods are relatively robust to scale and highlights issues involved in parameterization of computer vision models for characterizing significant pattern information in a geographic context. Utilizing two widely used pattern indices to compare spatial patterns in simulated and real-world datasets revealed their potential to detect subtle changes in spatial patterns which would not otherwise be feasible using traditional pixel-level techniques. A texture-based CNN model was developed to extract spatially relevant information for landscape similarity comparison; the CNN feature maps proved to be effective in distinguishing agriculture landscapes from other landscape types (e.g., forest and mountainous landscapes). For real-world human disturbance monitoring, a U-Net CNN was developed and compared with a random forest model. Both modeling frameworks exhibit promising potential to map placer mining disturbance; however, random forests proved simple to train and deploy for placer mapping, while the U-Net may be used to augment RF as it is capable of reducing misclassification errors and will benefit from increasing availability of detailed training data

    Global-Local Attention Network for Aerial Scene Classification

    No full text
    corecore