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Abstract: Recently, convolutional neural networks (CNNs) have performed well in object 
classification and object recognition. However, due to the particularity of geographic data, the labeled 
samples are seriously insufficient, which limits the practical application of CNN methods in remote 
sensing (RS) image processing. To address the problem of small sample RS image classification, a 
discrete wavelet-based multi-level deep feature fusion method is proposed. First, the deep features are 
extracted from the RS images using pre-trained deep CNNs and discrete wavelet transform (DWT) 
methods. Next, a modified discriminant correlation analysis (DCA) approach is proposed to 
distinguish easily confused categories effectively, which is based on the distance coefficient of 
between-class. The proposed approach can effectively integrate the deep feature information of various 
frequency bands. Thereby, the proposed method obtains the low-dimensional features with good 
discrimination, which is demonstrated through experiments on four benchmark datasets. Compared 
with several state-of-the-art methods, the proposed method achieves outstanding performance under 
limited training samples, especially one or two training samples per class. 

Keywords: remote sensing scene classification; deep feature fusion; discriminant correlation analysis; 
discrete wavelet transform 
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1. Introduction  

Remote sensing (RS) images play a significant role in urban planning, land cover and land use 
(LCLU), agriculture management, etc. [1−4], not only due to the high spatial resolution, but also 
abundant structural patterns. To use these RS images sufficiently, remote sensing scene classification 
(RSSC) is imperative. The appropriate feature representation method plays a key role in RSSC. Due 
to the limited labeled RS images, it is still a challenging and complex issue to represent and classify 
RS scenes by using more intelligent and convenient methods.  

Various efforts have been devoted to developing various methods for feature representation. 
Traditional methods are bag-of-the-visual words (BoVW) and many improvements or extensions of 
BoVW [1,5,6]. Since AlexNet [7] got the best score in the Large-Scale Visual Recognition Challenge 
in 2012, plenty of deep learning methods have sprung up [8−11]. Generally, CNN-based methods can 
be classified into three categories: training CNNs from scratch, fine-tuning pre-trained CNNs, and 
using pre-trained CNNs as feature extractors. Full-training-based methods mainly focused on the 
building of deep networks to enhance accuracy. Such methods usually improve currently available 
advanced models or rebuild the CNN structure to obtain astonishing scene classification results [12−16]. 
Wu et al. [16] took convolutional neural networks (CNNs) as a backbone to construct a deep-learning-
based framework for multimodal RS data classification. Fine-tuning methods usually involve adjusting 
pre-trained CNNs or optimizing their loss functions to improve classification accuracy [17−21]. 
However, they generally require a significant number of labeled training samples, high-performance 
computer equipment, and take a very long time to fine-tune pretrained CNNs or train a new network.  

The CNN-based methods mentioned above utilize practical features to classify remote sensing 
scenes. However, it is nontrivial to obtain the features that can adequately represent the scene in the 
case of few training samples. The lack of available data will make the neural network overfitting, 
which will lead to performance degradation. To tackle this problem, many few-shot based methods 
have been developed [22–25]. Wu et al. [26] proposed a “U-Net in U-Net” framework to detect small 
objects in infrared images. Mei et al. [27] presented a sparse representation-based framework and 
obtained a satisfactory result. However, in the case of very few samples, this method is not enough to 
describe the key semantic features, and there is still a lack of discrimination for remote sensing images 
of the same category with the diversity of direction scales. Zeng et al. [28] proposed a prototype 
calibration to enhance the representation of feature in few-shot RSSC task. Yang et al. [29] emphasized 
the importance of the underlying features in the classification of small samples, which improves the 
ability to characterize the feature of small samples, but the computational complexity is large. The 
feature-wise transformation can be employed for RSSC and land-cover mapping tasks [30]. Tseng et 
al. [31] used feature-wise transformation layers for addressing the problem of few-shot classification 
under domain shifts for metric-based methods. Chen et al. [32] proposed a feature-wise transformation 
module address the difficulty of cross-domain RSSC tasks with few training samples, and pointed out 
that transfer-based methods may outperform sophisticated few-shot learners. Chowdhury et al. [33] 
proposed a library of pre-trained feature extractors combined with a feed-forward network to solve 
few-shot image classification task. Recently, few-shot learning is presented to address a series of few-
shot tasks. Discriminative learning of adaptive match network (DLA-MatchNet), an end-to-end 
network, was proposed for boosting a few-shot RSSC [34]. Deep nearest neighbor neural network 
(DN4) is proposed to exploit deep local descriptors and the image-to-class measure for classification, 
which is one of the most advanced networks for few-shot scene classification of remote sensing 
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images [35]. Huang et al. [25] proposed a meta-learning-based task-adaptive embedding network to 
enhance the generalization performance of the model for few-shot settings. These few-shot 
classification methods almost focused on the C-way K-shot problems. In addition, many studies 
focused on deep learning-based fusion strategy to generate a more comprehensive feature 
representation [36–39]. Hong et al. [39] proposed a cross fusion strategy to solve the multi-modality 
learning issue.  

Although the above methods have acquired high accuracy, the features extracted from the deep 
learning approaches are usually high-dimensional and redundant. To further improve the classification 
performance of RSSC, there is still a thorny road to go between improving feature utilization and 
reducing computational complexity. Chaib et al. [40] adopted discriminant correlation analysis (DCA) 
to combine the deep features extracted from different fully connected layers CNNs, which provide an 
efficient and low-cost feature fusion strategy. However, the categories with a small distance between 
classes are become closer in the mapping space, which leads to overlap in the mapping space. 
Motivated by this, an improved DCA strategy is proposed in this paper. The key difference from the 
related method lies in that it reconstructed the between-class scatter matrix by introducing the distance 
coefficient, which helps adjusting the distance between classes and avoiding cross overlap in mapping 
space. In our approach, the features from different CNNs and different frequency bands are integrated 
by the improved DCA, thus enriches the expression of feature semantics and overcomes the limitation 
of the number of categories, especially for small number of categories in the remote sensing data set. 
Specifically, a discrete wavelet-based multilevel feature fusion (DWMLFF) strategy is proposed to 
fuse multi-sub-band features extracted from different CNNs for few-shot RSSC. The discrete wavelet 
transform (DWT) is employed as a decomposer to extend the multi-sub-band information of limited 
samples to surmount the problem of insufficient features in few-shot RSSC. The transfer learning-
based CNN model is used as a feature extractor to generated the deep feature of original image and 
multi-sub-bands. Furthermore, an improved DCA method is proposed to integrate all the obtained deep 
feature. In the improved DCA method, we reconstruct the between-class scatter matrix by introducing 
distance coefficient, which addresses the overlap of categories in the mapping space to distinguish 
easily confused categories. The proposed method gives full play to the advantages of different wavelet 
sub-bands, and utilizes an improved DCA strategy to deeply integrate different frequency components 
to obtain low-dimensional and high-discriminative features for few-shot RSSC. 

2. Materials and methods 

The proposed method is comprised of the following parts: discrete wavelet transform, feature 
extraction from the pretrained deep CNNs, and feature fusion. Figure 1 is the framework of our 
approach. The discrete wavelet transform is employed to decompose the original image into 
various components at different frequency intervals. Then, the original image, and the generated 
low-low (LL) subbands in different level are fed into pre-trained CNNs to obtain the deep features, 
separately. Next, all the obtained feature are integrated by the improved DCA method. Finally, The 
LIBSVM is employed for replacing the softmax layer of CNN and monitoring classification on 
well-known datasets. 
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Figure 1. The framework of the proposed method. 

2.1. Discrete wavelet transform 

In image processing, the discrete wavelet transform (DWT) is proposed to decompose an image 
into various components at different frequency intervals. Figure 2 shows an example of low frequency 
components of the RS image. Wang et al. [41] validates that the low-frequency component is much 
more generalizable than the high-frequency component. The low-frequency components of the images 
obtained by discrete wavelet transform, which are used for deep feature extraction, can take full 
advantage of the image feature information. The low-frequency components of the images obtained 
by DWT, which are used for deep feature extraction, can take full advantage of the image feature 
information. Inspired by this, CNN features of low-frequency components at different levels can be 
used to construct feature pyramids. 

(a) (b) (c)  

Figure 2. An example of low-frequency components of different subbands. The low-
frequency components are obtained by the Haar wavelet function. (a) the original image, 
(b) the first low-low component, (c) the second low-low component.  

For the input image X  , the basic wavelet function wf   is used for DWT to calculate kLL  
coefficients as follows.  
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  1 1 1 1, , , ( , )wLL LH HL HH DWT X f  (1) 

  1, , , ( , ), 2,3,...k k k k k wLL LH HL HH DWT LL f k  ,   (2) 

where kLL  , kLH  , kHL   and kHH   are the low-low, low–high, high-low and high-high filter 
coefficients of the k th  level. Low-low subbands are used for the subsequent feature extraction. 

2.2. Feature extraction 

In the past decade, several typical CNN models have been developed, such as AlexNet [7], VGG-
Net [9], GoogleNet [10], Resnet [11], etc. These models have different structures and different 
representational abilities. The CNNs pre-trained on ImageNet already can obtain powerful and rich 
features. Our approach focuses on the fusion of multiple subband deep features extracted from distinct 
off-the-shelf CNN models. In order to reduce computational complexity and improve recognition 
accuracy, AlexNet, VGG-Net, and ResNet 50 are introduced for feature extraction. There is a 
correlation between different features of convolutional networks. These features extracted from diverse 
CNN models are redundant and different, and their fusion can be applied to represent the RS images. 

2.3. Improved DCA method 

The basis for the combination of different features is their redundancies and differences. The DCA 
method [42] contributes to further disperse classes that are far away from each other in the mapping 
space, which provide an efficient and low-cost feature fusion strategy. However, the categories that are 
less distinct from each other are closer together. To address the superposition of categories in the 
mapping space, we reconstructed the between-class scatter matrix.  

Assuming an image set I, c is the number of categories in I, n the number of trained features, we 
defined two feature matrices, X and Y, respectively. 

The between-class scatter matrix in X is expressed as 

   ( ) 1

Tc T
bx p p i disc i i disc bx bxi

S n w x x x x W 
      . (3) 

       1 1 2 2, ,...... c cbx p c n x x n x x n x x
       , (4) 

( ( , ))

arctan( ( , ))

i
disc

i

erf dist x x
W

dist x x
                                    (5) 

where ( , ) ( ) ( )T
i i idist x x x x x x   . (.)erf  is the error function. discW  is the distance coefficient. 

ix   and x   are the mean of the feature vector in the i th   category and in the whole X set, 
respectively.  

In order to separate the classes, X is projected into a new space. The projection 'X  is described 
as [42] by mapping matrix bxW .  
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' T
r n bx r p p nX W X                                        (6) 

in which 
1 2

bx bxW A    unitizes bxS  and reduces the dimension of X  from p n  to r n . 
r  is the feature length of the transformed features [42]: 

    min 1, ,r c rank X rank Y  .                              (7) 

The other feature set Y is processed in a similar way.  

Supposing ' ' 'T
xyS X Y  is the between-set covariance matrix of the transformed feature set. To 

maximize the pairwise correlation across X  and Y , '
xyS  needs to be diagonalized.  

 
' 'T T

xyxy r rS U V U S V      .                                 (8) 

Similar to the previous step, let 1/2
cxW U   , 1/2

cyW V   , then  

   1/2 ' 1/2T

xyU S V I    .                                    (9) 

Next, the transformed feature set can be described as: 

* 'T T T
cx cx bx xX W X W W X W X                                 (10) 

* 'T T T
cy cy by yY W Y W W Y W Y                                  (11) 

where xW   , and yW   are the last transformation matrices for X   and Y  , respectively, thereby 
minimizing the correlation between-class. 

The transformed features are fused to obtain the combination. There are two classic fusion 
approaches: parallel strategy and serial strategy. The parallel strategy is to add the feature vectors, and 
the serial strategy is to concatenate different features into one single feature. The final feature 
dimension is related to the number of classes. If the number of classes is small, the fusion features will 
not be rich enough, which will affect the subsequent classification performance. To enrich the 
information of fusion features, the proposed method is performed by concatenation after transforming. 

2.4. Discrete wavelet-based multilevel feature fusion 

Motivated by the idea of DWT in image processing, the discrete wavelet-based multilevel 
feature fusion (DWMLFF) method is proposed. This method can fuse the information extracted from 
different wavelet subbands. Figure 3 shows the details of the DWMLFF method. The method is 
explained as follows: 
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Figure 3. Details of the DWMLFF method  

Step 1: Read each image from the remote sensing data set. For the input image X , the Haar 
wavelet function is used for DWT to calculate kLL  coefficient. 

Step 2: Generate Semantic features from each image. Given a scene image, the original image 

iI , and the generated k th  low-low (LL) subbands are fed into pre-trained CNNs, separately. The 

features are generated from FC layers of pre-trained models. The output of k th  on the FC layer 

extracted by the pre-trained model can be represented as if . The out of the k th  approximate image 

on the FC layer extracted by the pre-trained model can be described as 
kLLf . 

Step 3: The discrete wavelet-based multi-level feature fusion. For original image iI , the deep 
features obtained from different CNNs, 1

if  and 2
if , are combined into a single feature by DCA. The 

same method is used to get the initial fusion features of the k th  approximate image. Finally, the 
fusion features are concatenated to construct the final feature.  

The maximum dimension of the initial fusion features is 2 ( 1)c  , and the full size of the final 
features is 2 ( 1) ( 1)c k    . For small sample datasets, this value is much less than the dimension of 
the features directly extracted from the CNN model.  

Finally, The LIBSVM library [43] is employed for replacing the softmax layer of CNN and 
monitoring classification on well-know datasets. 

2.5. Data sets 

To verify the feasibility of the DWMLFF method, four famous public datasets, the UC Merced 
dataset [1], the WHU-RS19 dataset [44], the AID dataset [4] and the NWPU-RESISC45 dataset [45], 
are employed in our experiments, respectively. The training ratios of these datasets are similar to [27].  

The UC Merced dataset is extracted from a lot of optical images of the US Geological Survey 
National Map Urban Area Imagery. It includes 21 scene classes, and each category contains 100 RGB 
images with 256  256 pixels. The spatial resolution of these images is 1 foot per pixel. Figure 4 
shows an example image for each category. It can be clearly seen that there are many similarities 
among ‘forest’, ‘medium residential’ and ‘mobile home park’. Similarities can lead to severe difficulty 
in distinguishing them.  
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Figure 4. Some example images from UC Merced dataset. (a) agricultural, (b) airplane, (c) baseball 

diamond, (d) beach, (e) buildings, (f) chaparral, (g) dense residential, (h) forest, (i) freeway, (j) golf 

course, (k) harbor, (l) intersection, (m) medium residential, (n) mobile home park, (o) overpass, (p) 

parking lot, (q) river, (r) runway, (s) sparse residential, (t) storage tanks, (u) tennis court. 

The WHU-RS19 dataset contains 19 challenging categories, which are exported from Google 
Earth. In this dataset, the size of the images is 600 600  pixels. The image samples in the same class 
are collected from different regions of satellite images with various resolutions. These samples contain 
different orientations, scales, and illumination. Some example images from this dataset are shown in 
Figure 5. The resolution of the images in this dataset is variable, which causes more challenges for 
RSSC in RS19 than that in the UC Merced dataset.  

(s)(o) (q) (r)(p)

(l)(h) (j) (k)(i) (m) (n)

(e)(a) (c) (d)(b) (f) (g)

 

Figure 5. Samples of WHU-RS19 dataset. (a) airport, (b) beach, (c) bridge, (d) commercial, (e) 

desert, (f) farmland, (g) football field, (h) forest, (i) industrial, (j) meadow, (k) mountain, (l) park, 

(m) parking, (n) pond, (o) port, (p) railway station, (q) residential, (r) river, (s) viaduct.  
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The AID dataset, which are acquired from Google Earth, consists of 10,000 images within 30 
aerial scene types. The pixel-resolution changes from about 0.5 to 8 m. The size of each image in 
AID30 is the same as that in RS19. The scene classes include: airport, bare land, baseball field, beach, 
bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial, and so on. 
The images in AID dataset are extracted at different time and seasons under different conditions, which 
increases the intra-class diversities of the data.  

The NWPU-RESISC45 dataset (NR45) was created by the researchers of Northwestern 
Polytechnical University. It contains 31,500 RGB images, covering 45 scene categories with 700 
images in each class. The scene classes include: airplane, airport, baseball diamond, basketball court, 
beach, bridge, chaparral, church, circular farmland, cloud, commercial area, and so on. The spatial 
resolution varies from 0.2 to 30 m for most of the scene classes. The size of each image in NR45 is the 
same as that in the UC Merced dataset.  

According to the above analysis, the images of these datasets show many low-level features of 
ordinary optical images. The features extracted by the CNNs pre-trained on ImageNet can be used for 
scene classification of these datasets. 

3. Results and discussion 

3.1. Experimental results of the UC Merced dataset 

The recognition accuracy of different methods based on the UC Merced data set is shown in Table 1, 
in which the best results are highlighted in bold. The training ratio is from 2 to 10%, and the results 
show that the ratio of train samples affects the classification accuracy. The lower proportion of training 
samples leads to more complex scene recognition and a lower recognition ratio. Due to the limited 
number of classes in the dataset, the feature dimensions of the DCA method is small, which makes the 
DCA method cannot obtain sufficient discriminant information. However, the DWMLFF method by 
introducing different frequency band features from multiple sub-bands, is not only better than single 
feature without fused, but also better than the DCA method. The recognition accuracy of the DWMLFF 
method is more than 10% higher than that of the single CNN method. 

Table 1. Comparison of different methods on the UC Merced dataset. 

The per-class recognition accuracies using the single feature, DCA, and DWMLFF methods are 
shown in Figure 6. In Figure 6, the training rate is 4%, the single feature is generated from AlexNet, 

Models Method 2% 4% 6% 8% 10% 

AlexNet Pretrained 60.617 71.181 78.227 82.702 84.698 
VGG-19 Pretrained 54.995 66.486 77.902 80.342 84.392 
ResNet50 Pretrained 54.982 66.445 69.048 72.913 74.544 
AlexNet & VGG-19 DCA 64.609 70.357 76.813 81.191 83.951 
 DWMLFF 66.102 71.233 78.292 82.613 84.523 
ResNet 50 & VGG-19 DCA 65.892 74.453 80.168 82.081 85.343 
 DWMLFF 66.629 77.434 80.678 83.022 85.439 
AlexNet & ResNet 50 DCA 66.803 74.211 80.152 82.392 85.195 
 DWMLFF 67.185 77.996 81.521 83.536 86.067 
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the DCA method and DWMLFF method fuse the features extracted from AlexNet and ResNet50. 
It can be seen that the classification accuracies of most classes have been enhanced by using 

DWMLFF. However, the performance of DCA on the categories of ‘runway’, ‘intersection’ and 
‘storage tanks’ is better than that of the DWMLFF method. It can be explained that the multi-subband 
low-frequency components of these images cannot provide enough additional effective features but 
increase redundancy, leading to the degradation of classification performance. 

 

Figure 6. Per-class recognition accuracy of the UC Merced data set based on different methods. 

3.2. Experimental results of the WHU-RS19 data set 

The classification accuracy of different methods on the WHU-RS19 data set is described in Table 2, 
in which the training ratio is from 2 to 10%. The results of the experiment demonstrate that feature 
fusion between different networks can effectively improve classification performance. As shown in 
Table 2, the recognition performance of the DWMLFF method is obviously better than that of the DCA 
method and the single feature method. For example, compared to ResNet 50, ‘AlexNet & ResNet 50’ 
by DWMLFF improves the overall accuracy by more than 11% under different training ratios. 
Compared to DCA method and individual CNNs, the DWMLFF method has outstanding advantages 
in small sample RSSC. By comparing Tables 1 and 2, it is worth mentioning that our DWMLFF method 
achieves a greater signification gain on WHU-RS19 than on UC Merced. That can be explained by the 
fact that the WHU-RS19 dataset has fewer categories than the UC Merced dataset, and there are less 
images in each class of the WHU-RS19 dataset than in the first dataset. 

Figure 7 shows the per-class recognition accuracy on the WHU-RS19 dataset of different methods. 
Obviously, for almost categories of the WHU-RS19 dataset, the recognition accuracy of the fused 
method is better than the single feature method. Furthermore, the DWMLFF method performs better 
than the DCA and single feature methods in all categories except the ‘river’ class. It is due to the fact 
that the number of classes in this dataset is such small that the dimensions of the feature which is fused 
by the DCA method is too small to provide sufficient discriminant information. The DWMLFF method 
of introducing different frequency band features from multiple subbands is superior to the DCA method.  
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Table 2. Comparison with other methods on the WHU-RS19 data set (Bold indicates the 
best results). 

 

Figure 7. Per-class recognition performance on the WHU-RS19 data set based on single 
feature and fusion features. 

In order to clearly observe the dispersion of different methods on the WHU-RS19, the image 
features are visualized. In Figure 8, features generated from different methods of the WHU-RS19 data 
set are visualized for comparison. Various colors on the graphs represent different categories in the 
data set, and the points represent the feature of images in the data set. 

As shown in Figure 8, the single feature extracted from AlexNet or ResNet50 forms some 
overlaps that are in a confused order. On the contrary, the fusion feature generated by DCA and 
DWMLFF forms clusters that are clearly separated. Compared to the DCA method, the DWMLFF 
method using the multi-subband information of images can be utilized to achieve a better 
representation, obtain a higher convergence among the identical classes, and gain a greater distinguish 
among different classes. 

0
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Models Method 
Accuracy (%) 

2% 4% 6% 8% 10% 

AlexNet Pretrained 58.904 73.485 76.772 81.097 81.481 

VGG-19 Pretrained 59.079 71.067 77.764 81.576 83.158 

ResNet50 Pretrained 64.483 74.767 78.713 81.765 83.209 

AlexNet & VGG-19 DCA 65.945 77.594 82.131 84.563 88.419 

 DWMLFF 72.110 85.866 90.126 90.079 93.536 

ResNet50 & VGG-19 DCA 67.809 80.331 84.894 87.648 90.231 

 DWMLFF 72.738 85.274 90.549 92.467 94.239 

AlexNet & ResNet50 DCA 68.357 81.489 84.958 88.741 89.835 

 DWMLFF 75.587 86.580 91.368 92.514 94.519 
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(a) (b)

(c) (d)  

Figure 8. Visualization of features generated from different methods on the WHU-RS19 
data set. (a) single feature of AlexNet, (b) single feature of ResNet50, (c) fusion feature by 
DCA, (d) fusion feature by DWMLFF. 

3.3. Experimental results of the AID dataset and the NR45 dataset 

The experimental results of different methods on AID and NR45 are shown in Tables 3 and 4, 
respectively. The training ratio is from 2 to 10%. 

Table 3. Comparison with other methods on the AID data set (Bold indicates the best results). 

Similar to the above experiments, the classification performance of the DWMLFF method on the 
AID dataset and the NR45 dataset is significantly superior to that of the DCA method and the single 
feature method. By comparing the classification results in Tables 1–4, it can be found that the 
DWMLFF method achieves a greater signification gain on WHU-RS19 than on other datasets. It 
indicates that in the case of small samples and fewer categories, our method has more obvious 
advantages. 

Models Method 
Accuracy (%) 

2% 4% 6% 8% 10% 

AlexNet Pretrained 68.90 76.48 79.97 81.87 82.95 

VGG-19 Pretrained 68.90 75.49 78.25 79.92 81.96 

ResNet50 Pretrained 64.83 75.07 78.71 78.77 82.21 

AlexNet & VGG-19 DCA 68.63 76.61 80.19 82.83 84.58 

 DWMLFF 71.39 78.63 82.43 84.72 85.91 

ResNet50 & VGG-19 DCA 69.41 78.314 81.92 83.81 83.24 

 DWMLFF 71.42 79.265 83.13 85.12 86.03 

AlexNet & ResNet50 DCA 72.203 78.97 82.89 83.96 84.22 

 DWMLFF 73.895 80.253 83.58 85.99 86.17 



12901 

Mathematical Biosciences and Engineering  Volume 20, Issue 7, 12889-12907. 

Table 4. Comparison with other methods on the NR45 data set (Bold indicates the best results). 

3.4. Comparison with advanced methods 

To effectively analyze the performance of our method, we conducted a comparison between the 
DWMLFF method and the state-of-the-art methods. The results of the accuracy comparison on UC 
Merced and WHU-RS19 are shown in Tables 5 and 6, respectively, in which the best results are 
highlighted in bold. In Tables 4 and 5, the methods with ‘*’ indicate that the experiments are performed 
around the 5-way K-shot, which indicates that K labeled samples are used to recognize samples from 5 
scene classes. For UC Merced, training ratios of 1 and 5% are added in experiments to obtain a more 
comprehensive comparison.  

Table 5. Comparison with the advanced methods on the UC Merced data set. The methods 
with ‘*’ indicate that the experiments are performed around the 5-way K-shot. 

Method 
Training ratios of labelled samples for each class 

1% 2% 4% 5% 6% 8% 10% 

MSCP [20] / 13.15 59.23 / 75.76 82.28 84.63 

ARCNet [22] / 47.667 60.119 / 73.45 75.77 84.01 

ICEL [21] / 45.86 61.31 / 70.06 78.14 82.12 

GLF+SRC [27] / 61.618 73.611 / 77.710 83.592 87.672 

SIFT & ResNet [29] / 66.07 73.4 / 77.68 81.01 84.85 

RS_MetaNet [46] 55.29 / / 71.42 / / 75.16 

*DLA [28] 53.76 / / 63.01 / / / 

*SPNet [47] 57.64 / / 73.52 / / / 

*DN4 [23] 57.25 / / 79.74 / / / 

*TAE-Net [25] 60.21 / / 77.44 / / / 

DWMLFF (Ours) 56.336 67.185 77.996 79.680 81.521 83.536 86.067 

As shown in Tables 5 and 6, the accuracy performance of the DWMLFF method is superior to 
that of most methods, the less the number of training samples, the more advantageous DWMLFF 
method is. Although the experiment results of the ‘GLF + SRC’ method and ‘5-way k-shot’ methods 
are better than that of our DWMLFF method in some cases, the DWMLFF method is simpler to 

Models Method 
Accuracy (%) 

2% 4% 6% 8% 10% 

AlexNet Pretrained 63.33 70.48 72.97 76.87 78.01 

VGG-19 Pretrained 64.91 71.49 73.67 77.29 77.68 

ResNet50 Pretrained 65.813 72.07 73.71 76.77 79.363 

AlexNet & VGG-19 DCA 66.31 72.18 74.22 76.56 79.11 

 DWMLFF 68.20 72.63 74.57 77.93 80.09 

ResNet50 & VGG-19 DCA 69.521 73.51 74.24 77.63 81.17 

 DWMLFF 71.735 74.97 75.49 78.28 83.35 

AlexNet & ResNet50 DCA 67.58 73.06 75.33 78.21 81.76 

 DWMLFF 70.74 75.46 76.83 79.76 83.48 
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implement, and generates smaller feature dimensions. 

Table 6. Classification performance of different methods on the WHU-RS19 dataset. The 
methods with ‘*’ indicate that the experiments are performed around the 5-way K-shot. 

Method 
number of labelled samples of each class 

1 2 3 4 5 

MSCP [20] / / 48.952 79.75 85.68 

ARCNet [22] 41.885 63.159 68.192 74.022 81.871 

ICEL [21] 24.801 63.158 66.523 75.315 75.866 

GLF+SRC [27] 69.387 80.482 85.682 86.842 88.655 

*DLA [28] 68.27 / / / 79.89 

*SPNet [47] 81.06 / / / 88.04 

*TAE-Net [25] 73.67 / / / 88.95 

DWMLFF (ours) 75.587 86.580 91.368 92.514 94.519 

3.5. Impact of multi-subband number 

The number of subbands k  can affect the final classification accuracy. In order to analyze the 
effect of k   on classification performance, and obtain better fusion results, experiments were 
conducted. The experimental configuration is the same as before, except for k . 

Figure 9 shows that the number of subbands of DWT affects the classification accuracy. 
Figure 9(a),(b) shows the effect of different k  values on the overall accuracy on the two datasets, 
respectively. For different data sets, the impact of k  value on the classification accuracy is different. 
Due to the larger size and higher resolution of WHU-RS19, the low-frequency components from 
multiple subbands contain richer information, resulting in a more significant gain on WHU-RS19 than 
on UC Merced. 

  

(a) (b) 

Figure 9. Recognition rate of different subbands on two datasets. (a) UC Merced; (b) WHU-RS19. 
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When the number of subbands is small, the dimension of the feature is tiny, which cannot provide 
satisfactory semantic information, resulting in low classification accuracy. As the value of k  
increases, the feature dimension also increases, and the classification accuracy is improved. However, 
when the k   is too large, some redundant information will be introduced, resulting in no further 
significant improvement in accuracy. It is worth mentioning that if k  is greater than 3, the recognition 
accuracy will decrease to different degrees under the training ratio of 2–4%. When the training rate is 
set to 2%, there are only two images in each category in the UC Merced dataset as training samples. 
There are even fewer images in the WHU-RS19 dataset as training samples, with only one shot in each 
category. In this case, increasing different frequency components of the training samples to obtain 
more complex feature information will lead to overfitting, thus reducing the recognition accuracy. 

The dimension of fusion features obtained by our method is closely related to the number of 
wavelet subbands. According to Eq (7), the maximum dimension of the final feature fused by our 
strategy is 2 ( 1) ( 1) 36( 1)k c k      . The dimension of the features of various ways on the WHU-
RS19 data set under the 4% training ratio is depicted in Table 7. 

Table 7. Feature dimension of various methods on the WHU-RS19. 

Method k Accuracy (%) Dimension of feature 
AlexNet  72.4 4096 
VGG-19  70.6 4096 
DCA  76.2 36 
DWMLFF (AlexNet & VGG-19) 1 81.7 72 
 2 84.2 108 
 3 86.1 144 
 4 82.6 180 
 5 81.4 216 

Compared with the single feature extracted from pretrained CNNs, the recognition accuracy of 
the DWMLFF method dramatically increases, while the dimension of feature decreases significantly. 
Compared with the DCA method, the feature dimension of the DWMLFF method increases slightly, 
but the classification accuracy is greatly improved. As can be seen from Figure 9 and Table 7, we can 
find that the appropriate value of k  is helpful in improving the classification performance, which is 
the advantage of making full use of different frequency components from wavelet subbands. 

4. Conclusions 

In this paper, a multi-subband feature fusion method, namely DWMLFF, is proposed for few-shot 
RSSC. To surmount the problem of insufficient features in few-shot RSSC, the DWT is employed as 
a decomposer to obtain the multi-subband information of limited samples. The original image and the 
LL subbands of different level are fed into pretrained CNN models, which improves the feature 
generation capability of pretrained CNN models. In order to maximize the difference between 
categories, the improved DCA strategy is proposed. In the improved DCA strategy, the distance 
coefficient is introduced to reconstructed the between-class scatter matrix, which helps adjusting the 
distance between classes and avoiding cross overlap in the mapping space. Finally, the features 
extracted from different CNNs and different frequency components are fused by the improved DCA. 
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The proposed method gives full play to the advantages of different wavelet subbands, and utilizes an 
improved DCA strategy to obtain low-dimensional and high-discriminative features for RSSC. The 
experimental results on four well-known datasets indicate that the proposed method achieves 
outstanding performance in RSSC with few training data, especially with one or two training samples 
per category. In the future, we would focus on the relationship between different modalities to achieve 
automatic and accurate classification, which we would apply for post-disaster identification with 
limited training samples. 
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