14 research outputs found

    Global Motion Planning under Uncertain Motion, Sensing, and Environment Map

    Get PDF
    Motion planning that takes into account uncertainty in motion, sensing, and environment map, is critical for autonomous robots to operate reliably in our living spaces. Partially Observable Markov Decision Processes (POMDPs) is a principled and general framework for planning under uncertainty. Although recent development of point-based POMDPs have drastically increased the speed of POMDP planning, even the best POMDP planner today, fails to generate reasonable motion strategies when the environment map is not known exactly. This paper presents Guided Cluster Sampling (GCS), a new point-based POMDP planner for motion planning under uncertain motion, sensing, and environment map, when the robot has active sensing capability. It uses our observations that in this problem, the belief space B can be partitioned into a collection of much smaller subspaces, and an optimal policy can often be generated by sufficient sampling of a small subset of the collection. GCS samples B using two-stage cluster sampling, a subspace is sampled from the collection and then a belief is sampled from the subspace. It uses information from the set of sampled sub-spaces and sampled beliefs to guide subsequent sampling. Preliminary results suggest that GCS generates reasonable policies for motion planning problems with uncertain motion, sensing, and environment map, that are unsolvable by the best point-based POMDP planner today, within reasonable time. Furthermore, GCS handles POMDPs with continuous state, action, and observation spaces. We show that for a class of POMDPs that often occur in robot motion planning, GCS converges to the optimal policy, given enough time. To the best of our knowledge, this is the first convergence result for point-based POMDPs with continuous action space

    Two-Stage Focused Inference for Resource-Constrained Collision-Free Navigation

    Get PDF
    Long-term operations of resource-constrained robots typically require hard decisions be made about which data to process and/or retain. The question then arises of how to choose which data is most useful to keep to achieve the task at hand. As spacial scale grows, the size of the map will grow without bound, and as temporal scale grows, the number of measurements will grow without bound. In this work, we present the first known approach to tackle both of these issues. The approach has two stages. First, a subset of the variables (focused variables) is selected that are most useful for a particular task. Second, a task-agnostic and principled method (focused inference) is proposed to select a subset of the measurements that maximizes the information over the focused variables. The approach is then applied to the specific task of robot navigation in an obstacle-laden environment. A landmark selection method is proposed to minimize the probability of collision and then select the set of measurements that best localizes those landmarks. It is shown that the two-stage approach outperforms both only selecting measurement and only selecting landmarks in terms of minimizing the probability of collision. The performance improvement is validated through detailed simulation and real experiments on a Pioneer robot.United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-11-1-0391)United States. Office of Naval Research (Grant N00014-11-1-0688)National Science Foundation (U.S.) (Award IIS-1318392

    Health Aware Stochastic Planning For Persistent Package Delivery Missions Using Quadrotors

    Get PDF
    In persistent missions, taking system’s health and capability degradation into account is an essential factor to predict and avoid failures. The state space in health-aware planning problems is often a mixture of continuous vehicle-level and discrete mission-level states. This in particular poses a challenge when the mission domain is partially observable and restricts the use of computationally expensive forward search methods. This paper presents a method that exploits a structure that exists in many health-aware planning problems and performs a two-layer planning scheme. The lower layer exploits the local linearization and Gaussian distribution assumption over vehicle-level states while the higher layer maintains a non-Gaussian distribution over discrete mission-level variables. This two-layer planning scheme allows us to limit the expensive online forward search to the mission-level states, and thus predict system’s behavior over longer horizons in the future. We demonstrate the performance of the method on a long duration package delivery mission using a quadrotor in a partially-observable domain in the presence of constraints and health/capability degradation

    Robust online belief space planning in changing environments: Application to physical mobile robots

    Full text link

    In-silico behavior discovery system

    Get PDF

    Belief Space Scheduling

    Get PDF
    This thesis develops the belief space scheduling framework for scheduling under uncertainty in Stochastic Collection and Replenishment (SCAR) scenarios. SCAR scenarios involve the transportation of a resource such as fuel to agents operating in the field. Key characteristics of this scenario are persistent operation of the agents, and consideration of uncertainty. Belief space scheduling performs optimisation on probability distributions describing the state of the system. It consists of three major components---estimation of the current system state given uncertain sensor readings, prediction of the future state given a schedule of tasks, and optimisation of the schedule of the replenishing agents. The state estimation problem is complicated by a number of constraints that act on the state. A novel extension of the truncated Kalman Filter is developed for soft constraints that have uncertainty described by a Gaussian distribution. This is shown to outperform existing estimation methods, striking a balance between the high uncertainty of methods that ignore the constraints and the overconfidence of methods that ignore the uncertainty of the constraints. To predict the future state of the system, a novel analytical, continuous-time framework is proposed. This framework uses multiple Gaussian approximations to propagate the probability distributions describing the system state into the future. It is compared with a Monte Carlo framework and is shown to provide similar discrimination performance while computing, in most cases, orders of magnitude faster. Finally, several branch and bound tree search methods are developed for the optimisation problem. These methods focus optimisation efforts on earlier tasks within a model predictive control-like framework. Combined with the estimation and prediction methods, these are shown to outperform existing approaches
    corecore