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Abstract—Long-term operations of resource-constrained
robots typically require hard decisions be made about which
data to process and/or retain. The question then arises of how
to choose which data is most useful to keep to achieve the
task at hand. As spacial scale grows, the size of the map will
grow without bound, and as temporal scale grows, the number
of measurements will grow without bound. In this work, we
present the first known approach to tackle both of these issues.

The approach has two stages. First, a subset of the variables
(focused variables) is selected that are most useful for a particular
task. Second, a task-agnostic and principled method (focused
inference) is proposed to select a subset of the measurements
that maximizes the information over the focused variables. The
approach is then applied to the specific task of robot navigation in
an obstacle-laden environment. A landmark selection method is
proposed to minimize the probability of collision and then select
the set of measurements that best localizes those landmarks. It
is shown that the two-stage approach outperforms both only
selecting measurement and only selecting landmarks in terms
of minimizing the probability of collision. The performance
improvement is validated through detailed simulation and real
experiments on a Pioneer robot.

I. INTRODUCTION

One of the core enabling capabilities for mobile robots
operating in uncertain and GPS-denied environments is the
ability to autonomously build a map and then subsequently use
this map to achieve some objective. The required fidelity and
choice of map representation are, in general, domain specific,
and furthermore may not even be constant across a given
application. Consider the following tasks:

e A robot is navigating through an uncertain environment
consisting of some open areas and some narrow hallways.

e An autonomous car is operating on a road network
consisting of highways and local roads.

e A marine robot is localizing a set of underwater mines
amongst clutter.

In each of these cases, there is some notion of priority of
landmarks in the map. In the indoor navigation scenario, it
is more important to have accurate estimates of landmark
locations in tight corridors to avoid collisions. Similarly on
the road network, landmarks on more highly traveled roads
are more useful [1] and in the underwater scenario it is more
important that the robot localize the mines as opposed to the
clutter. Consequently, the robot can save resources, such as

-

Fig. 1: Localization of some landmarks is more important than
others. In the figure, it is more important to localize landmarks in
narrow hallways than large rooms. As a result, far fewer measure-
ments (blue) are required for landmarks in the open area as compared
with the narrow hallway. (Landmarks are red stars, gray dashed
path is trajectory of robot. Black and red dashed ellipses represent
uncertainty in robot position and landmarks position respectively.
memory and computational effort, by focusing the mapping
operation to more explicitly support the task.

Such complicated scenarios often require high dimensional
models to represent robot poses, landmarks, and obstacles.
Graphical models are a powerful tool in this case because they
can explicitly represent conditional independences between
variables resulting in fast inference on large scale problems
[2, 13, 4]. However naively applying these methods will re-
sult in an unbounded growth in memory and computational
requirements, which will ultimately result in failure for a
resource-constrained system.

Recent work on map reduction either uses some criterion to
discard incoming measurements [3. 6], or selectively removes
nodes from the graph through marginalization followed by
a sparsification procedure to maintain efficiency [7, I8, [9].
In all of these cases, the objective is map reduction while
minimizing the impact on the overall quality of the map and
robot trajectory.

This paper presents a more flexible map reduction frame-
work that supports task-specific landmark prioritization. The
framework is applied to the task of robot navigation and it is
demonstrated that the procedure reduces the resource require-
ments without significantly impacting the task performance
(navigation) by focusing on the important parts of the map.

The workflow is shown in Fig. [2| Assume that a prior data
collection operation has been carried out. The next step is
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Fig. 2: Two-stage focused inference

to select the focused variables that are deemed important for
task execution. Sec. |IV|discusses the specific case of selecting
landmarks to support collision-free navigation. The third step
is to select the subset of measurements that are most useful
for estimating the focused variables, as described in general
terms in Sec. The last steps are to build a map using the
reduced set of variables and measurements, and then finally
execute the desired task, in this case navigation. Note that in
general the task may be executed many times, but the data
only needs to be collected once.
In summary we claim the following contributions:

o A framework for measurement selection in the case that
some variables are deemed higher priority than others
(focused inference),

e« A method for landmark (focused variable) selection to
support the task of collision-free navigation,

o We show that focused inference over focused variables is
able to minimize the probability of collision as compared
to either in isolation.

II. RELATED WORK

This section reviews related work on SLAM map reduction,
landmark selection and its application to autonomous naviga-
tion, and planning with uncertainty.

A. Map Reduction

Graph-based optimization approaches [10] have become
popular for SLAM problems. These methods provide a nat-
urally sparse representation of the SLAM problem that can
be solved online efficiently [[L1]. Nevertheless, these methods
do not scale constantly with time and space, and ultimately
require some form of graph reduction to enable longterm
operation. Such graph compression techniques can be sepa-
rated into two main groups: those that incorporate each mea-
surement and then selectively marginalize variables from the
graph (SLAM back-end), and those that discard measurements
directly (SLAM front-end).

In general, marginalization induces a fully connected sub-
graph over the Markov blanket of the marginalized variable.
Most back-end map reduction approaches employ a convex
optimization formulation, similar to the method introduced in
[12] for sparsification, where the Kullback-Leibler divergence
(KLD) between the dense subgraph and a sparse approx-
imation is minimized subject to a consistency constraint.
Carlevaris and Eustice [7] present a method called generic
linear constraints that sparsifies the dense subgraph using a

Chow-Liu tree (CLT) approximation. Alternately, sparsity can
be enforced through an /¢;-regularization term in the KLD
minimization [8]], which is appealing because it does not
impose a specific graph structure on the sparse approximation
(e.g., a CLT). More recently, Mazuran et al. [9] improved
upon previous methods by allowing non-linear measurements
to approximate the dense subgraph which can be defined
arbitrarily and then formulating the KLD minimization with
respect to the measurement, rather than state, information
matrix.

These graph reduction techniques are not concerned with
selecting the nodes to be removed from the graph. Performance
can degrade if the wrong landmarks are removed through
marginalization since they are no longer available for sub-
sequent loop-closures.

Front-end algorithms discard measurements before they are
processed by the SLAM optimizer. Kretzschmar et al. [6]
propose a pose-graph compression where laser scans are se-
lectively removed by utilizing an approximate marginalization
based on a CLT, and Ila et al. [5] use an information criterion
to remove uninformative loop closures.

The method proposed in this paper is a front-end approach
because it directly removes measurements (either incremen-
tally or in batch). However, the key difference as compared
to [5, 6] is that measurements are selected based on how
useful they are to support localization of specific landmarks,
which are selected to support a specific task (e.g. collision-free
navigation).

B. Landmark Selection

The notion of selecting landmarks to support localization
and/or mapping has been proposed to accomplish a number
of different objectives. For example, Carlone et al. [13] use
a measurement selection formulation to find a maximal set
of coherent measurements in the hope that this coherent set
will be outlier-free. Another popular application in vision-
based systems is to down-sample landmarks based on some
measure of visual saliency in the hope of improving loop
closure detection. Specific applications include active gaze
control [14], area coverage [15)], and lifelong operation of
service robots [16]].

More related to our motivation is the application of
resource-constrained inference. For a localization and map-
ping objective, proposed approaches include uniform landmark
selection [17] (will be referred to as “downsampling”), and
entropy-based landmark selection [[18]].

A small number of previous works have considered
resource-constrained selection of landmarks to support nav-
igation. Strasdat et al. [19] propose a reinforcement learn-
ing based landmark selection policy to minimize the robot
position error at the goal. Lerner et al. [20] consider single
camera frame based landmark selection in terms of a “severity
function.” Sala et al. [21]] aim to choose the minimal set
of landmarks such that at least k are viewable from every
point in the configuration space. None of these previous works
[19} 20, 21], consider the obstacles, obstacle uncertainty, or
probability of collision in the landmark selection process. In
contrast, our method chooses landmarks that will maximize



the probability of reaching a goal without collision, which
inherently accounts for metric properties of the map, such as
constrictions and tight corridors.

C. Planning with Uncertainty

This work specifically considers navigation under map and
pose uncertainty as the motivating application for the focused
inference framework. Much of the current literature addresses
the problem of finding collision free paths in the presence of
robot pose uncertainty assuming the landmark map is given.
A standard measure in finding a safe path is to define a
probability of collision with an obstacle. Resulting paths can
be chosen that balance optimality and risk [22} 23]. In [24],
an optimal path is found subject to a maximum allowable
probability of collision (typically called a “chance constraint”).
In [25} 26], measurement uncertainty is taken into account to
compute a more accurate estimate of robot pose. The path
is planned in advance assuming accurate stochastic models
for motion dynamics and sensor measurements. Finally, there
is a small class of planning algorithms that consider motion,
measurement, and map uncertainty (e.g., [27]]). However, these
approaches are mainly limited to problems with small discrete
state, action, or measurement spaces.

The paper presents a mapping scheme that is specifically
designed to be utilized in any probabilistic navigation module.
We provide a rigorous treatment of the coupling between
trajectory and landmark map uncertainties, which is achieved
within memory and computational constraints, making our
approach applicable to low-cost robots operating with limited
sensing in realistic environments.

III. MEASUREMENT SELECTION FOR INFERENCE ON
FOCUSED VARIABLES

We begin, perhaps counter-intuitively, by assuming that
selection of focused variables has already been performed,
and then proceed to formulate the problem of measurement
selection to support inference over these focused variables.
This section leaves the formulation as general as possible with
regards to task execution and focused variable selection, which
will be discussed in the following sections.

A. Problem Formulation

Denote X = {Xi,---,Xn} as a set of hidden random
variables that are (partially) observable through measurements
z = {z1, - ,2zK} which are collected in the initial data
collection phase, where K can be very large. Following the
previous motivation, we also have a set of variables, the “fo-
cused” variables X I which are a more compact representation
of the variables in X: X = {X;,---Xg}, with N < N.
To maintain generality, we represent the mapping from the
unfocused variables to the focused variables by a prioritization
function w : RN — RN, For example, in the degenerate
case of landmark selection, X = w(X) = WX where W
is an N x N matrix with a single 1 in each row. However,
the formulation allows for more complex mappings from the
unfocused to the focused set.

I'The ~ notation is used throughout to refer to the focused set of variables.
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Fig. 3: Undirected graphical model. Edge colors denote maxi-
mal cliques: blue ¥123(X1, X2, X3), red 134(X3, X4), and green

a5 (X4, Xs5).

Fig. 4: Transformed undlrected graphical model. New variables
X = Xo, Xo = 7X3 + X4, X3 = Xs. New cliques: blue
1/112(X17 Xz) green 1/)2 3(X2,X3)

The problem of focused measurement selection consists of
choosing the best subset of the full measurement set z to
optimally localize the focused variables.

Problem 1. Focused Measurement Selection: Select the
subset of measurements 2% = {8 .- 2B} C z such
that some information metric f(-) over the focused hidden
variables X is maximized, subject to some cost function g(-)
constraint on the measurement set:

max f(X;zF)
zRCz (1)
st gz <e

Commonly used information metrics include entropy, mu-
tual information, and KLD, and a common cost function is the
cardinality of the set g(zf*) = K.

Graphical models, such as the Markov random field (MRF)
in Fig. [3] are a compact way of representing dependencies
between variables[2]. For a MRF, the joint posterior can be
expressed as a product of clique potentials, 1. ({4} ):

p(al2) oc [ tel@(ey) )
ceC
where C is the set of all cliques, x(} are the variables in clique
c. Because each clique potential 1).(x () is strictly positive,
p(X = z|2%) can be written equivalently in logistic form:

R) 58 exp{z (bc(x{c})} 3
ceC
where (bc(x{c}) = log wc(x{c})

The reduction from the full set of variables to the focused
variables is achieved by mapping the posterior through the
prioritization function w(-) to produce a new posterior over
the focused variables:

p(z]2%) exp{z o (:E{C})} )
ceC
where C is the new (smaller) set of cliques over X and (56 are
the resulting clique potentials.
If we define the function f(-) in (I) to be the Shannon
entropy of the conditional distribution:

H(X|:") =

p(z|z

Eg.r[—logp(Z[z")] (5)



where E is the expectation operator, then we obtain the
resulting equation for the entropy of the focused variables,
X conditional on the subset of measurements z* as:

F(X;21) = =) be(F )] +C (6

. ceC
where C' is a constant.

It should be noted that computing the transformation from
¢ to ¢ may be hard in general. Furthermore, in general the
graph over X will be much denser than the graph of X, and
computing H (X |zf*) may be computationally expensive.

However, it will be shown that H (X |z%) can be computed
in closed form given two assumptions:

(X|Z ) X\z

Assumption 1. The clique potentials can be approximated as
Gaussian distributions.

Assumption 2. The prioritization function w(-) is an affine
transformation.

Assumption E] is, in fact, less limiting than the standard
additive Gaussian noise assumption in the SLAM literature,
since even in the case of robust cost functions we can always
approximate the posterior as a Gaussian distribution using
the Laplacian approximation [28]. Assumption [2] essentially
requires the focused variables to be linear combinations of
the original variables, which is still more general than other
variable selection methods [17, [18] which restrict the set of
focused variables to be a strict subset of the original set.

B. Gaussian Approximation of Clique Potentials

We begin by applying the standard method [29] of approx-
imating a posterior over the unfocused variables (3) using a
second-order Taylor series expansion of the potential functions
¢ at some initial guess x*, and denote the approximated
potential as (bc I

pla|2™) ~ pla] ) o exp{D de(aiey)}
ceC
=exp{Y_ ¢o(z]y) + (- 2" Z 522 (cp) )
ceC ceC
1
+5@—a" (Za 59e(20) ) (@ =27}
ceC

We note that the exponential component in is quadratic in
z, therefore the approximation is a Gaussian distribution with
information matrix, A,r given by the Hessian:

R _ o .
Plalz) = NTHCAR) A =Y —52%@g), ®
ceC
which can be further decomposed in the case of single and
pairwise cliques as:

1
An =3 >

i,j=1..N
where A; ; # 0 only if ¢ = j or X; and X; are connected
in the graph. We write A,z with subscript 2 to explicitly
represent that the information is dependent on the choice of

i A jaj, 9)

2The " notation is used throughout to refer to the Gaussian approximation.

selected measurements which will impact the structure of the
graph and the resulting cliques.

One point of note is that A= is inherently dependent on the
linearization point chosen z*. For computational efficiency, we
pick =* at the beginning and fix it for rest of the measurement
selection procedure.

C. Affine Prioritization Function

In Sec. we defined the prioritization function w(-),
which is a task-specific and predefined function that maps the
set of all variables onto the set of focused variables. In this
section we impose the restriction that this function is affine in
order to provide a closed-form means of getting from (3) to

4):

X =w(X)=WX, (10)

where W € RV*N _ For example, in Fig. 4] we have:
X4

X 01 0 0 07] X2
X | =100 1/3 2/3 0| Xs an
X 00 0 0 1]]| X4

Xs
w

This restriction on the prioritization to be affine guarantees that
the posterior over the focused variables will still be Gaussian:
p(|21) = N7Y((,A,r) . Furthermore, we can easily write
an expression for the information matrix:

A —1p7Ty—1

Ron = (WAZIWT) (12)
as a result the approximate entropy of the focused variables
given the selected measurements can be written in closed form:

IY(X\zR)——f log ’A R

+C=< 10g|WA W0 (13)

We finish by restating Problem [I] based on the Gaussian
approximation and restriction to affine prioritization functions:

Problem 2. Approximate Focused Measurement Selection
Select the subset of measurements 2% = {z{*,--- 2R} C z,
such that approximate entropic information over the focused
hidden variables X is maximized, subject to the same con-
straint as (I):

max — log [WA_zW7|
zBCz z
s.t. g(zR) <c

D. Efficiently Solving Problem

Each new measurement z7* added to the set will introduce a
new clique potential, (bk(:c’f k}), into the joint posterior, where
the set of variables Xy, are the ones affected by measurement
z,fx We denote the intermediate set of k& < K* measurements
that have already been selected as zft = {2F ... »F1

The approximate entropy reduction (or information gain)
over the focused variables brought about by adding a new
measurement z,f is:

AH(X|2f) = H(X|™) - H(X|™),  (14)
is the value that we want to maximize. In the following theo-
rem we show that this quantity can be efficiently computed:



Theorem 1. The approximate reduction in entropy over the
focused variables brought about by introducing the new mea-
surement 25 will be:

"~ 1 _ — e
AH(R|2) = = log |1 = (I + JE A, i) 1L£A2R,€,1Lk(

(15)
where Ly £ WAZ_}%]H Ik, Jy is the measurement covariance
weighted stacked Jacobian [8|], and W is the affine prioriti-
zation function.

Proof: We proceed similarly to [3]], but with the added
complication that there is a transformation from the unfocused
to the focused variables (X = W X) required to evaluate (14).

From (BI), the information matrix after the introduction of
z,f will be:
82¢k (x?k})
Oz

where J;, € RN*2t0], with |2(;,| the number of variables
in clique k and only blocks corresponding to the variables in
the clique xyy being non-zero. The new entropy after adding

measurement z/¢ can be evaluated as

Ary, = A, — =N, + T JE (16)

H(X|2) = %bg W (Am) " W (17)
Then the reduction in entropy, AH (X |zfj), is
— %log |WA;R1k WT‘ + %log ‘I/V/\Z_lef1 WT‘
_ llog (W (A _ry s + T i)W (18)
2 (v

By applying the matrix inversion lemma:
(A+ BBT)y 1 =A=' - A 'BI+BTA'B)"'BTA™!,

, (I8 can

and the determinant property |/ + AB| = |I + BA
be reduced to:

1
—§1og I—(I+JfA

Jk)_ngAsz—l Ly, )

2lk—1

which is the required result. [ |

1) Computational Complexity of (13): Similar to [5], we
have avoided the need to compute the entropy over the entire
variable set. However, unlike in [3]] where the calculation of
information gain scales only with the size of the measure-
ments, we have a slightly more complicated scenario because
of the prioritization transformation W. Upon further inspec-
tion of (T3), calculating J A;}%k_le has a computational
complexity of O(|z;|*) (similar to [3]). In addition, note
that calculating the ¢th element of Lj (which is computed as
Li = I/ViAZ_lef1 Ji, where W is ith row of W) requires us
to check the submatrix of Az_le7 , that corresponds to the non-
zero elements of W and Jy. Therefore, the overall complexity
of computing Ly, is O(||W||o|z k| + [zgxy|*), where |[W]]o
is the number of non-zero elements in the prioritization
transformation. Typically the clique size, |z(;;| < N, and
since N < N we should expect that ||W||o < N, therefore
the overall complexity of computing L, is much less than the
problem size N. Algorithm [l summarizes the measurement
selection approach.

Algorithm 1 Measurement Selection for Prioritized Landmarks

Input: Initial information matrix A, r,, focused variables X s
all measurements z, budget c
Qutput: easurements 2R
1: k0, 280«
2: while g(2) < ¢ do
3: k+—k+1

4: 2= argmax AH(X|zF)
zfjéz\sz*1

5: 2t = 2Re-1y {2}}

6: AZR,c = AZR,C,I + kag

7: Asz = (WAz_le wh—1

8: end while

IV. FOCUSED MAPPING FOR NAVIGATION

In this section, we return to the question of how to select the
focused variables that are an input to the measurement selec-
tion scheme described in the previous section. The selection
of focused variables mainly depends on the robot’s tasks and
goals. Here we specifically consider the case of collision-free
autonomous nhavigation.

The robot uses a map of landmarks to localize itself and nav-
igate through an environment. To build the initial map, assume
that a robot with image and depth/laser sensors (referred to as
the data gathering (DG) robot) has been manually operated
in the environment once to gather the initial dataset The DG-
robot’s trajectory can be represented as a sequence of random
variables X = {Xy,---, Xp}. In GPS-denied environments
X is not directly observable. However, the robot can always
measure the incremental change between two sequential poses
(odometry), for example from an IMU or wheel encoder.

There also exists a set of landmarks from which focused
landmarks can be selected. Denote the set of landmarks as
L={Ly,Ly,---Ln}.

A. Selection of Focused Landmarks

While it could be possible to have thousands of landmarks,
often a small, carefully chosen subset can lead to sufficiently
accurate navigation. In particular, for resource-constrained
systems, reducing the number of landmarks will significantly
reduce the computation required for data association, which
will in turn enable faster and more efficient on-line trajectory
planning and navigation.

Narrow passages are challenging for collision-free au-
tonomous robot motion planning. However, in the case of
high map and robot uncertainty, the “narrowness” should be
redefined. For example, a “geometrically” wide passage might
still be problematic for a robot that does not have access to
accurate landmark information and thus has poor localization
accuracy. We refer to this passage as being “geometrically
wide” but “probabilistically narrow” and we will formalize
these terms below.

The evaluation of probabilistic narrowness involves two key
components: 1) Calculating an estimate of the robot’s position
uncertainty and 2) Calculating the probability of collision
based on the robot’s uncertainty and the distance to obstacles
as determined by the DG-robot.



1) Robot position uncertainty: To generate a path-
independent estimate of the robot’s position uncertainty at
any given point x along the robot’s path, we use the concept
of belief stabilization introduced in [30]. Assume we have a
closed-loop controller that can stabilize the system to z in
which the landmarks viewable during stabilization are fixed
(this assumption can be relaxed, c.f. [31]). Such a controller is
typically comprised of an estimator and a separated controller.
The estimator generates an a posteriori distribution over all
robot poses based on the existing map of landmarks and
the local observation of landmarks. Given these estimates,
the separated controller will generate a control signal that
drives the robot toward z. To design an analytic measure of
narrowness we rely on a simple Linear Quadratic Gaussian
(LQG) controller which is comprised of a Kalman filter as
an estimator and a linear quadratic regulator as a separated
controller. It can be shown that starting from any X > X*(x),
estimation covariance decreases monotonically and approaches
the covariance >*(x), which is the fixed point of a Riccati
recursion at location x:

{(S*=Q+AX*—S*HT(HX*HT+R)"'HY*) AT}, (19)

The Jacobians, A and H are computed by linearizing the
measurement model at point x on the path, where () and R are
the process and measurement noise respectively. We associate
with each pose z a set of visible landmarks L(x). The value
of the steady-state covariance will be dependent on the set of
visible landmarks as expressed through the measurement noise
covariance 2. Note that Jacobian matrices and set of visible
landmarks would be different for different points on the path.
The main computational advantage in using this measure is
that ¥*(x) only depends on x not the path that leads to x.
2) Collision probability: Using N (xy,X*(x¢)) as a path-
independent measure of uncertainty for each point x; on the
path, the collision probability can be computed by a Monte
Carlo method: for each z; sample the normal distribution
and count the number of samples that fall into the obstacle
region. However, we propose an alternate method that utilizes
an approximate measure and is computationally cheaper. We
simply approximate the probability of collision, P,., as the Ma-
halanobis distance between x; and the closest obstacle point.
In other words, P, measures how many standard deviations
obstacles are away from the mean of the distribution over x;:

Po(xy) = (w — 2" (Z*(20)) " (2 — ™) (20)

where the relative vector z; — z¢**! is the smallest reading
received from the laser range finder in its local frame.

The landmark selection problem is framed as finding the
poses along the trajectory with the highest collision probability
then select landmarks that can reduce this pose’s uncertainty.

Problem 3. Minimum Collision Probability Landmark Selec-
tion: Select the o landmarks Ly C L, such that the maximum
probability of collision is minimized:
i P,
Join - max Pe(z,)

st |Ly| < a (21)

Algorithm 2 Minimum Collision Probability Landmark Selection

Input: Robot poses X, landmarks L, odometry noise @,
measurement noise R, budget «
Qutput: Selected landmarks L£
11 k0, Lf <0

2: Compute P,.(z;) for all z; € X by and
33 P()= max  P.(xy) foralll €L

¢ st LEL(xy)
: while £ < o do

4
5: k—k+1

6: I} < argmax P(l)

leL\L]

=t U
update P.(z;) for x; that can observe [

: update any P(l) that may have changed
0: end while

®

—_

The problem is solved by greedily selecting landmarks. At
each iteration, pick the landmark [* that is associated with
maximal P.(x;), then update P.(z;) for all the = that can
observe [*. The algorithm is summarized in Alg. 2} Since the
number of poses that can observe any individual landmark is
low, this greedy approximation can be computed efficiently.

B. Focused Measurement Selection for Navigation

Here we detail how to apply this landmark selection scheme
resulting from solving Problem [3|to the measurement selection
process described in Sec. Recall that the joint log proba-
bility of an MRF is proportional to the sum of its potentials
d(Xe, Lelo, 2):

p(X, L) ocexp(d_ pe(Xe, Lelo, 2)).-

An odometry measurement, Cae,cadds a potential between two
subsequent poses ¢¢(X;, X¢+1;0;) and a landmark measure-
ment, z, adds a potential between a pose and a landmark
(b%(XtvLi;Zz)' -

The focused variables are selected focused landmarks: X =
Ly C L. Denote the rest of unfocused landmarks and robot
poses as X = {L\ Ly, X}. then the affine prioritization
function represented by W is

- Ly
X:W{XJ } W=1[TIgx Oxun_pi |- (23

If we apply the standard assumption that the odometry and
landmark measurement are corrupted by additive Gaussian
noise [10]], then the potentials are:
Xo ~ N(po, o) Xep1 = f(Xp,00) +1 5~ N(0, Ry)

1 _

Ge(we, o) = 3 (ze41 — F(@e,00)" Ry (weg1 — fle,00))
2 =gz, i) + v, v~ N(0,Qu)

i Lo —1(i
by (e, 1;) = —5(2} - g(xtvli))TQt7i1(Zt —g(z4,1:))
Now the W matrix and the potentials can be used in Alg.
for the second stage: focused measurement selection.

(22)

V. NAVIGATION

The final step is to actually use the reduced map to navigate
with a resource constrained robot.



The built map is represented by a set of stochastic landmarks
L ~ N(L,RF). Denote the desired trajectory to T steps
as (x$)I_,. Assume the robot starts at z; ~ N(Zo, o).
Represent the C(%ntrol problem as:

> (e — 2 Walzy — af) + uf W,
t=0

Ter1 = f(@g,ue) +wy,
Zt = h(xt, L) —|— (%7 Ve ~ N(O, Rt),

min J =E
ut(+)

wy ~ N(0,Q:) (24)
L ~N(L,R")

where W, and W, represent the cost for robot states and
control inputs. (J; and R; represent process and measurement
noise respectively. The system is first linearized at the nominal

trajectory (xd)I_:

Ti41 = l’g+1 =+ At(l’t — I‘Z) =+ Btut + Wt

2 =h(zd, L) + Hy(z, — 28 + MFR(L — L) + v,
where Ay, B;, Hy and M} represent the Jacobian of f()
and g() at the linearization point. The optimization of the
linearized system can be obtained by a Kalman filter and a

LQR controller. The equivalent measurement noise covariance
For the Kalman filter is:

Ry = (M{)TR*M/} + R,

which incorporates both the landmark uncertainty as
(ME)TREME and measurement noise R;. The LQR con-
troller will have the following form:

ug = —(B]'SBy + W) ' B Sp1 A(@ — )

(25)

(26)

27)

where ZT the estimated mean at the ¢-th time step and S; is
obtained by solving a discrete algebraic Riccati equation.

A more general and detailed description of navigation is
presented in the supplemental material.

VI. EXPERIMENTS

Both simulation and real world experiments were done to
test the proposed algorithms.

A. Simulation

Fig. [5] shows the simulation environment. We performed re-
peated trials in the simulation environment to test the ability of
our proposed scheme to be able to navigate from a start point
without collision. In total there are 74 landmarks (black stars),
which the robot can observe with a range/bearing measurement
if landmark is in the robot’s field of view. We assume that our
resource constrained robot has a budget of o = 30 landmarks
(Alg. 2) and K = 90 measurements (Alg. . We compare
six cases: (1) optimal: all landmarks and all measurements; (2)
focus, all: focused landmarks and all measurements; (3) focus,
info: focused landmarks and measurements selected based
on information gain (our proposed method); (4) focus, DS:
focused landmarks and uniform downsampling of measure-
ments; (5) full, info: all landmarks and measurements selected
based on information gain; (6) full, DS: all landmarks with
uniform downsampling of measurements. Case (1) violates
both stated budgets and should be seen as a lower bound on
possible performance. Case (2) violates the K budget but
gives a lower bound on the attainable localization accuracy

(b) Focused, downS
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Fig. 5: Navigation with focused landmark selection and map
building. Green circles represent selected landmarks with their size
representing uncertainty. Blue lines are the nominal trajectories each
robot wants to follow with red circles representing pose uncertainty.
The focused approach has much less uncertainty in narrow passages,
thus lower collision probability compared to the unfocused case

of the focused set. Cases (5) and (6) violates the o budget
but, as we show, actually results in much poorer overall
performance since the measurement budget is still respected
and consequently all landmarks are localized indiscriminately
resulting in unnecessary landmark estimate precision in wide
corridors where it is not needed.

Fig. |§| (a), (b), and (c) shows three sample trials for case (3),
(4) and (5) respectively and (d) shows the overall probabilities
of collision obtained from all trials. The trials are stopped
whenever there is an actual collision with an obstacle. The
unfocused landmarks are distinguished by small black boxes
around them. The 3o-ellipses corresponding to landmark un-
certainty are shown in green. The blue line represents the
nominal trajectory that the robot is trying to follow. The
red ellipses represent the uncertainties of the robot along the
nominal trajectory. In the focused landmark selection cases,
the proposed procedure picks the landmarks that contribute
more in reducing robot’s uncertainty in desired regions (narrow
passages) and spend the computational budget to reduce the
uncertainty of these focused landmarks. In the full,info case,
the measurements are spread across landmarks. As a result,
each landmark gets very little resource thus the method failed
to recover a meaningful map for navigation, thus showing that,
in this case, measurement selection alone would not produce
an acceptable result. In the focus, downS case, more resources
are spent on focused landmarks, thus the map is more accurate
than full, info, but measurement selection is not based on
how much they contribute to uncertainty reduction, thus the
landmark positions are much less accurate than focused, info.
The key point to note about the proposed approach Fig. 5}



TABLE I: Comparison of simulated mapping results

No. observed Ims | No. focused Ims | Entropy on focused Ims | Error on all observed Ims | Error on focused Ims
optimal 74 30 -61.3362 0.0204 0.0206
focus, all 30 30 -54.7506 0.0303 0.0303
focus, info 30 30 7.9911 0.3872 0.3872
focus, downS 30 26 66.6130 2.8026 2.8026
full, info 74 30 39.9598 22.3963 25.5736
full, downS 44 19 100.9545 2.0227 2.0456

(a) is that the robot uncertainty is preferentially reduced in
the areas of the environment where the corridors are tight and
there is a higher chance of collision.

We further compare all six cases from a mapping perspec-
tive in Table [] based on three metrics: the entropy of the
focused landmarks, the error of all of the observed landmarks,
and the error of the focused landmarks (which will be the same
as the previous in all cases where only focused landmarks
are being estimate). From the proposed focused two-step
landmark and measurement selection approach achieves the
best performance.

B. Hardware experiment

In the real-world experiment, we ran a Pioneer robot in a
cluttered office space. The robot is equipped with an RGB
camera and a 270 degree field of view laser range finder.
Figure [6] shows the floor plan of the environment. AprilTags
[32] were put up to create an initial pool of landmarks. The
odometry measurements are obtained by matching consecutive
laser scans using the open source canonical scan matcher
[33]. The landmark measurements are obtained by running
the AprilTag detector with the RGB images, which gives
the relative orientation and range of the tags in the robot’s
frame[32]. A summary of the dataset is in Table |m The
selected measurements and odometry information are then fed
into a standard SLAM solver g2o [34] to optimize the graph.
It is important to note that we did not use the laser for the
full SLAM solution, only for generating reliable odometry
measurements.

TABLE II: Office Dataset

length 8min
# odometry measurements | 1547
# landmark measurements | 1039
# landmarks 76

30 landmarks were selected as focused based on the col-
lision probability and 90 measurements are selected to opti-
mize the graph. Fig. [/| compares the entropy on the 6 cases
mentioned in simulation. The proposed focused mapping has
significant lower uncertainties and is closest to bounds given
by case (1) and (2).

Fig. [8] compares mapping results of case (1) (optimal),
case (3) (focus, info), case (5) (full, info) and case (6) (full,
downs). The rebuilt robot trajectory is shown with a color map,
where the red color on the trajectory indicates the risky (close
to obstacles) regions and blue indicates the safer regions.
Magenta circles represent landmarks with the size representing
its uncertainty. The focused approach (Fig. [8b) can concentrate
the measurements on the narrow passage and door way,
resulting in less uncertainty there. The other approaches scatter
the measurements across different landmarks, and thus have
much higher landmark uncertainty in narrow passages.

(b) Focused, Info

g

f LA

(c) Full, Info

(d) Focus, DownS

Fig. 8: Mapping results. Color line represent robot’s risk of collision.
Magenta circles represent landmarks with the size representing its un-
certainty. The proposed two-stage approach (Focus,Info) outperforms
either measurement reduction (Full, Info) or landmark reduction
(Focus, DownS) isolated

VII. CONCLUSION

This paper presented a two-stage landmark and measure-
ment selection procedure for resource-constrained robots op-
erating in unknown or uncertain environments. In the first
stage, a set of focused variables is selected that are most
important for accomplishing a specific task. The second stage,
measurements are selected to maximize the information gain
on these focused variables. The two-stage procedure is then
applied to the task of collision-free robot navigation in an
obstacle-laden environment. Simulation and hardware results
demonstrated that the approach can identify a relevant subset
of landmarks and accurately localize them to reduce the
probability of colliding with obstacles as compared with only
landmark selection or measurement selection in isolation.
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