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Abstract

Andrew W. Palmer Doctor of Philosophy
The University of Sydney July 2015

Belief Space Scheduling

This thesis develops the belief space scheduling framework for scheduling under un-
certainty in Stochastic Collection and Replenishment (SCAR) scenarios. A SCAR
scenario is a generic resource transportation scheduling scenario consisting of mul-
tiple agents operating in the field and either using a resource such as fuel, battery
charge, water, or collecting a resource such as data or physical samples. To enable
these user agents to operate persistently, one or more replenishment agents travel
from a centralised replenishment point to the user agents and replenish or collect
their supply of the resource. Key characteristics of this scenario are that the agents
operate persistently, the fleets of user and replenishment agents are heterogeneous,
and that the agents have uncertainty associated with their current and future states.

These characteristics have not been considered collectively in the literature.

Belief space scheduling is proposed as a framework for scheduling the actions of the
replenishment agents in SCAR scenarios. Belief space scheduling performs optimisa-
tion on probability distributions over all possible states of the system rather than on
individual states. It consists of three major components—estimation of the current
system state given uncertain sensor readings, prediction of the future state given a
schedule of tasks, and optimisation of the assignment or schedule of the replenishment

agents to maximise the performance of the system.



Abstract il

The state estimation problem is complicated by a number of constraints that act
on the state. For example, the capacity of each agent acts as a hard constraint
on the state. The knowledge provided by these constraints is used to improve the
state estimate through a constrained Kalman Filter (KF) approach using Probability
Density Function (PDF) truncation. A novel extension of the truncation method is
then developed for soft constraints that have uncertainty described by a Gaussian
distribution. Soft constraints can arise from discrete sensors, such as float switches
and proximity sensors, that are used in real-world SCAR scenarios. While existing
truncation methods for soft constraints use numerical integration to constrain the
state estimate, the developed method uses an analytical solution for the integration.
This is shown to outperform existing methods, striking a balance between the high
uncertainty of a KF that ignores the constraints and the overconfidence of a KF that

ignores the uncertainty of the constraints.

To predict the future state of the system, a novel analytical, continuous-time frame-
work is proposed. This framework uses multiple Gaussian approximations to prop-
agate the probability distributions describing the system state into the future. It is
compared with a Monte Carlo (MC) framework and is shown to provide similar dis-

crimination performance while computing, in most cases, orders of magnitude faster.

Finally, several branch and bound tree search methods are proposed for the optimi-
sation problem. These methods focus optimisation efforts on earlier tasks within a
Model Predictive Control (MPC)-like framework. They are shown to outperform ex-
isting heuristic and meta-heuristic approaches. Using the proposed prediction frame-
work is also shown to significantly improve the performance in situations where the
replenishment agents are close to being fully-utilised. In multi-replenishment agent
scenarios, a branch and bound approach which avoids sending replenishment agents
to the same task at similar times is shown to produce excellent performance while
avoiding a significant proportion of the computational burden associated with these

scenarios.



Acknowledgements

I would like to start by thanking my supervisors, Andrew Hill and Steve Scheding,
for their support and guidance over the past three and a half years. Our weekly
discussions were crucial for keeping me on track. I would also like to thank Tom
Allen for initially taking me on as a student, and Ben Upcroft for encouraging me
to move to Sydney to do my PhD with the Australian Centre for Field Robotics
(ACFR). My thanks go to the Rio Tinto Centre for Mine Automation, ACFR, and
the University of Sydney for providing me with the opportunity to do this PhD.

To all of my friends at ACFR, thank you for creating such a welcoming and enjoyable
atmosphere. To Zac, Rishi, Victor, Lloyd, and Alex, thank you for the enlightening
lunchtime discussions. Thanks to Jen Jen, Nick, Chris, and Adrian for the many
games and puzzles we completed and competed in. I would like to thank Dan for
introducing me to the world of rock climbing, and Bryan for turning everything into
an adventure. To Suchet, Dushyant, Lachlan, Dan, Kaushi, Joe, Tim, Will, and
everyone else, thank you for the fun times and great memories. To my friends back
home, thank you for your support and visits.

Finally, I would like to express my sincere gratitude to my family for their invaluable
advice and encouragement. To my sister, thanks for the adventures. To my parents,
thank you for believing in me and helping me through this journey.



Contents

Declaration
Abstract
Acknowledgements
Contents

List of Figures
List of Tables

List of Algorithms
Nomenclature

1 Introduction
1.1 Motivation . . . . . . . . . e,
1.2 Thesis Contributions . . . . . . . . . . . . ..

1.3 Document Structure . . . . . . . . . ..

2 Literature Review
2.1 Collection and Replenishment Scenarios . . . . . . . ... ... ...
2.1.1 Refuelling and Recharging . . . . . . ... ... ... .....
2.1.2  Data Collection from Wireless Sensor Networks . . . . . . ..

2.1.3 Haul Truck Dispatching . . . ... ... ... .. ... ....

ii

iv

ix

xii

xiv

XV

S ot NN -

Qo



Contents vi
2.1.4 Uncertainty . . . . . . . ... L 17

2.2 Belief Space Planning . . . . . . ... ... 0L 18
2.3 SUMMATY . . . . . e 23

3 Problem Definition of the SCAR Scenario 24
3.1 Parameters . . . . . . ... 27
3.2 Agent States, Constraints, and Behaviour . . . . . .. ... ... ... 29
3.3 Schedule Optimisation . . . . ... .. .. ... ... ... ...... 33
3.4 Summary ... 35

4 Estimation 36
4.1 Background . . . . ... 37
4.1.1 Kalman Filter . . . . . . . ... ... oL 38

4.1.2 Kalman Filter with Hard Constraints . . . . . . . . . ... .. 39

4.2 Kalman Filter with Soft Constraints . . . . . . . .. ... ... ... 46
4.2.1 Transforming Soft Constraints . . . . . . . .. ... ... ... 47

4.2.2  Applying a One-Sided Soft Constraint . . . . . ... ... .. 48

4.2.3 Applying an Interval Soft Constraint . . . . . . . . ... ... 52

4.3 Results . . . . . . 64
4.4 Summary ... ..o e 70

5 Prediction 71
5.1 Monte Carlo Method . . . . . . . .. ... ... .. ... ... .. 73
5.2 Single-Agent Analytical Method . . . . . . ... ... ... ... ... 76
5.2.1 Gaussian Approximations . . . . .. .. ... ... ... ... 79

5.3  Multi-Agent Analytical Methods . . . . . . ... ... ... ... ... 91
5.3.1 Calculating the Probability of an Arrival Order . . . . . . .. 91

5.3.2 Conditioning the Arrival Times . . . . . . ... .. ... ... 95

5.3.3 Proposed Algorithm . . . . ... ... ... ... ... 97

5.3.4 Conditioning the Previous Arrival Times . . . . . .. . .. .. 101



Contents

vii

5.3.5 Alternative Greedy Algorithm . . . . . . ... ... ... ...
54 Results . . . . . .
5.4.1 Scenarios . . . . . ...
5.4.2 Single-Agent Results . . . . . .. ... ... ... ... ...

5.4.3  Multi-

5.5 Summary .

6 Optimisation

Agent Results . . . . . ... ... ... .. ... ... .

6.1 Framework . . . . . . . . ..
6.2 Heuristics . . . . . . . .
6.2.1 Greedy Heuristic . . . . .. ... ... ... ...
6.2.2 Apparent Tardiness Cost Heuristic . . . . ... .. ... ...
6.2.3 Stochastic Apparent Tardiness Cost Heuristic . . . . . . . ..
6.3 Meta-Heuristic . . . . . . . ... o
6.4 Branch and Bound . . . . . . ... ... oo
6.4.1 Single-Agent Algorithm . . . . . . ... ... ... ... ...
6.4.2 Multi-Agent Algorithms . . . . .. . ... ... ... ... ..
6.5 Results. . . . . . .. .
6.5.1 Single-Agent Scenarios . . . . . . .. ... ...

6.5.2  Multi-

6.6 Summary .

7 Conclusion

7.1 Summary .

Agent Scenarios . . . . .. ...

7.2 Contributions . . . . . . . . .

7.3 Future Work

List of References

102
103
104
111
114
117

119
120
123
124
124
126
126
128
130
136
139
139
153
157

160
161
163
165

167



Contents viii
A Integrals 178
A.1 Calculation of the Area . . . . . . . . . . . ... 178
A.2 Calculation of the Mean . . . . . . . . . . . . . .. ... ... 179
A.3 Calculation of the Variance . . . . . . . . . . . . . ... ... ... 182
B Additional Kalman Filter Results 188



List of Figures

1.1
1.2

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Belief space scheduling overview . . . . . . .. ... ... ... ...

Example scenarios . . . . . ... ...
POMDP estimation and control architecture . . . . . . . . . .. ...

Belief space scheduling system components . . . . . . . .. ... ...
Overview of SCAR scenario . . . . . .. ... ... .. ... .....

Replenishment agent state machine . . . . . . ... .. .. ... ...

Belief space scheduling system components . . . . . . .. . ... ...
Truncated Gaussian distribution . . . . . . . . ... .. .. ... ...
Single constraint examples . . . . . .. ..o
Error function terms for each constraint . . . . . . .. .. ... ...
Evaluating the approximation of the interval constraint . . . . . . . .
Evaluating the approximation of the interval constraint . . . . . . . .
KL divergence between the actual and approximate distributions . . .
Interval constraint examples . . . . . . .. .. ... L.

Calculating p and ¢ when the assumptions are not valid . . . . . ..

4.10 Calculating g and o when the assumptions are not valid . . . . . ..

4.11 Calculating p and o when the assumptions are not valid . . . . . ..

4.12 Soft-constrained Kalman filter example . . . . . . . . ... .. .. ..

4.13 Constrained Kalman filter results . . . . . . . . . . . . . . ... ...

4.14 Kalman filter example 1 . . . . . . . . ... ...



List of Figures X
4.15 Kalman filter example 2 . . . . . . . .. ... ... L. 69
5.1 Belief space scheduling system components . . . . . . . . .. ... .. 72
5.2 Inverse Gaussian approximation . . . . . . . . .. ... .. ... .. 81
5.3 Inverse Gaussian approximation KL divergence . . . . .. .. .. .. 82
5.4 Rectifying the resource level . . . . . . . ... ... 0. 86
5.5 Adjusting against a distribution . . . . . ... .00 90
5.6 Comparing estimated probability with actual probability . . . . . .. 94
5.7 Scenario S1 layout . . . . . . .. ... .. 104
5.8 Scenario S2 layout . . . . ... ... 107
5.9 Scenario M2 layout . . . . . . .. ... Lo 110
5.10 Error versus number of samples for Scenario S1 . . . . . . .. .. .. 112
5.11 Error versus number of samples for Scenario M2 . . . . . . . . .. .. 116
6.1 Belief space scheduling system components . . . . . .. .. ... ... 121
6.2 Branch and bound exploration approaches . . . . . .. .. ... ... 129
6.3 Branch and bound exploration approaches . . . . . .. .. ... ... 131
6.4 Branch and bound optimisation depth . . . . .. ... .. ... ... 133
6.5 Scenario S1 ATC kvalues . . . . . ... ... .. ... ... ..... 141
6.6 Results for Scenario S1 with 4 user agents . . . . ... .. ... ... 143
6.7 Resource levels showing oscillations between short tasks . . . . . . .. 144
6.8 Results for Scenario S1 with 5 user agents . . . . . .. ... .. ... 145
6.9 Resource level uncertainty . . . . . .. .. ..o 146
6.10 Results for Scenario S1 with 6 user agents . . . . . .. .. ... ... 147
6.11 Percentage of schedules with no downtime versus schedule length . . . 149
6.12 Results for Scenario S2 with large replenishment agent . . . . . . .. 150
6.13 Results for Scenario S2 with medium replenishment agent . . . . . . . 151
6.14 Percentage downtime for Scenario S2 . . . . . . ... ... ... ... 152
6.15 Results for Scenario M1 . . . . . . . ... ... ... 155
6.16 Results for Scenario M2 . . . . .. .. ... ... 157



List of Figures xi

B.1
B.2
B.3
B.4

Kalman filter comparison Robot A . . . . . . ... ... ... .... 191
Kalman filter comparison Robot B . . . . . . ... ... ... .... 192
Kalman filter comparison Robot B example . . . . . ... ... ... 193

Kalman filter comparison with feedback . . . . . . .. ... ... ... 195



List of Tables

4.1

5.1
5.2
5.3
5.4
9.9
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2

6.3
6.4

RMSE (L) for each Kalman filter method . . . . . . . .. ... .. .. 65
User agent parameters for Scenario S1 . . . . . .. .. .. ... ... 105
Replenishment agent parameters for Scenario S1 . . . . . . .. . ... 105
Replenishment point parameters for Scenario S1 . . . . . . .. . . .. 105
Replenishment agent parameters for Scenario S2 . . . . . . ... ... 107
Replenishment point parameters for Scenario S2 . . . . . . . . . . .. 108
User agent parameters for Scenario S2 . . . . . .. .. .. ... ... 108
User agent types for Scenario S2 . . . . . .. . ... ... ... ... 108
User agent parameters for Scenario M1 . . . . . . ... .. ... ... 109
Replenishment agent parameters for Scenario M1 . . . . . . . . . .. 109
Replenishment point parameters for Scenario M1 . . . . . . . . . .. 109
User agent parameters for Scenario M2 . . . . . .. .. .. ... ... 110
Replenishment agent parameters for Scenario M2 . . . . . . . . . .. 110
Replenishment point parameters for Scenario M2 . . . . . . . . . .. 111
Proposed cost method minus Monte Carlo cost method . . . . . . .. 113
Proposed cost method minus Monte Carlo cost method . . . . . . .. 115
Example maximum task times in seconds . . . . . . .. .. ... ... 135

Dynamic programming example showing the next tasks and total time
(in parentheses) for the tasks . . . . .. ... ... 000 136

Calculation times in seconds for Scenario S1 . . . . . . . . . . .. .. 147

Calculation times in seconds for Scenario S2 . . . . . . . . . . . ... 152



List of Tables xiii
6.5 Calculation times in seconds for Scenario M1 . . . . . . . . .. .. .. 154
6.6 Calculation times in seconds for Scenario M2 . . . . . . . . . . .. .. 157



List of Algorithms

5.1
5.2
5.3
0.4
2.5
2.6
2.7
5.8

6.1
6.2
6.3
6.4

Monte Carlo method . . . . . . . . .. ... oo 74
Analytical method . . . . . . . . ..o 7
Calculate probability of arrival order . . . . . . . .. ... .. ... .. 93
Estimate probability of arrival order . . . . . . .. ... ... .. 95
Multi-agent cost calculation . . . . . . . .. ... ..o 98
Duplicate and update the state . . . . . .. ... ... ... ... ... 100
Reduce . . . . . . 100
Multi-agent cost calculation with greedily chosen order . . . . . . . .. 103
Optimisation framework . . . . . . . . .. ... 0oL 123
Simulated annealing . . . . .. ... .. Lo oL 127
Single-replenishment agent branch and bound . . . . . . . .. ... .. 132
Multi-replenishment agent branch and bound . . . . . . ... ... .. 137



Nomenclature

List of Acronyms

ATC
AUV
CDF
DBB
EKF

G

GPS
KF

KL
LQR
MC
MDP
Meta-RaP$S
MILP
MINLP
MPC
MS

NC
PDF
PF
POMDP
PRM
QEKF
RFID
RMSE
RRT
SA
SATC
SBB
SCAR
TiMDP

Apparent Tardiness Cost

Autonomous Underwater Vehicle
Cumulative Distribution Function
Deterministic Branch and Bound
Extended Kalman Filter

Greedy heuristic

Global Positioning System

Kalman Filter

Kullback-Leibler

Linear-Quadratic Regulator

Monte Carlo

Markov Decision Process

Meta-heuristic for Randomised Priority Search
Mixed-Integer Linear Programming
Mixed-Integer Non-Linear Programming
Model Predictive Control

Minimum Slack first

No Combinations

Probability Density Function

Particle Filter

Partially Observable Markov Decision Process
Probabilistic RoadMap

Quantised Extended Kalman Filter
Radio Frequency IDentification

Root Mean Squared Error
Rapidly-exploring Random Tree
Simulated Annealing

Stochastic Apparent Tardiness Cost
Stochastic Branch and Bound

Stochastic Collection and Replenishment
Time-dependent Markov Decision Process



Nomenclature xVvi

TSP Travelling Salesman Problem

TSPN Travelling Salesman Problem with Neighbourhoods
UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

UKF Unscented Kalman Filter

WSPT Weighted Shortest Processing Time first



Chapter 1

Introduction

The aim of this thesis is to develop a framework for scheduling under uncertainty
in scenarios that involve moving a resource from one location to another. In such
scenarios, one or more replenishment agents either transfer a resource such as fuel,
battery charge, or water, from a centralised point to user agents that use this resource
while operating out in the field, or transport the data or physical samples collected
by the user agents out in the field back to the centralised point. The objective of the
scheduling problem considered in this thesis is to minimise the downtime of the user

agents resulting from them exhausting their supply or capacity of the resource.

The problem of scheduling under uncertainty is formulated in this thesis as belief
space scheduling, where optimisation is performed on probability distributions de-
scribing the belief of the system state rather than on the individual system states
themselves. Figure 1.1 shows the proposed framework of belief space scheduling,
the three major aspects of which are estimation, prediction, and optimisation. The
estimation component is concerned with producing a probabilistic estimate of the
current state of the system using uncertain observations of the system state and the
history of tasks that have been performed. This probabilistic estimate is known as a
belief state, which is a probability distribution over all possible states of the system.
The optimisation component uses this belief state to determine a task or schedule of

tasks for each of the replenishment agents that will minimise an objective function.
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The prediction component is used within the optimisation to evaluate each task or
schedule of tasks that is considered. It predicts the future belief state of the system
using the current belief state and the task or schedule currently under consideration.

This thesis proposes and evaluates novel methods for these components.

Optimisation

Belief State
= Estimation Prediction

- System itttk
Observations

Figure 1.1 — Components of belief space scheduling problems

1.1 Motivation

Scheduling problems involving the transport of resources to agents in the field are
found in many domains including robotics, defence, agriculture, and mining. Exam-
ples in the literature include recharging of robots [53], data collection from wireless
sensor networks [116], aerial refuelling [54], satellite refuelling [89], autonomous har-
vesting [48, 110], and haul truck operations [14]. Many of these real-world scheduling
problems have elements of uncertainty that have typically been ignored when opti-

mising the schedule.

This thesis formulates these problems as a new, generic scheduling scenario called

Stochastic Collection and Replenishment (SCAR). In a SCAR scenario, one or more
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Figure 1.2 — Example scenarios. (a) and (b) are replenishment scenarios involving the
transport of fuel to agents operating in the field. In (c) and (d), fruit picking ma-
chines and crop harvesters are used to collect food in the field. Photos reproduced
from: (a) Geo Drill Global Services [38] (b) Rozen [86] (c) University of Florida
[107] (d) Cheng [25]
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replenishment agents transport a resource (e.g. fuel) from a central replenishment
point (e.g. a petrol station) to user agents operating in the field. The aim of the
SCAR scenario is to facilitate the persistent operation of the user agents without
requiring them to leave the field and visit the replenishment point. SCAR scenarios
have a number of important characteristics. Firstly, the replenishment agents are
facilitating the persistent operation of the user agents over an infinite time-horizon.
This means that the replenishment agents will visit the user agents more than once,
the deadline for replenishing a user agent will depend on the history of when it was
previously replenished, and the replenishment agents cannot be assumed to have
infinite or sufficient capacity to replenish all user agents. Secondly, the resource
level of the user agents varies over time as it is consumed—the later a user agent is

replenished, the longer it will take to be replenished.

The final and most important characteristic of SCAR scenarios is that it models
the uncertainty inherent in real-world scenarios. Parameters such as the speed and
resource usage rate of an agent will vary depending on the environmental conditions,
operator, and task, and therefore cannot be predicted with certainty. For the mining
and agricultural scenarios that motivate this thesis, there can also be very poor sensing
which contributes to the uncertainty of the scenario. For example, resource levels may
have uncertain measurements from discrete level sensors. These measurements may
also be affected by environmental conditions such as the slope of the ground that the
agent is on. The characteristics listed above have not been considered collectively in
the literature, with most existing work either ignoring some of these characteristics,

or dealing with them in a superficial way.

Uncertainty in motion planning problems has typically been dealt with using belief
space planning, where the state of an agent is described by a probability distribu-
tion [78]. However, the existing approaches either make restrictive assumptions that
render them unsuitable for scheduling in SCAR scenarios [81], or are computation-
ally intractable for realistic problem sizes [44]. This thesis takes inspiration from
belief space planning methods by scheduling in the belief space rather than the state

space. A heavy focus of this thesis is the use of analytical and approximation meth-
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ods to decrease the computational requirements of the various algorithms. These are
specifically developed for scenarios where the uncertain parameters are modelled by
Gaussian distributions. However, the general framework presented in this thesis is
not limited to Gaussian distributions, and any probability distribution can be used

provided suitable analytical and approximation methods are available.

1.2 Thesis Contributions

This thesis introduces the SCAR scenario and proposes solutions to the estimation,
prediction, and optimisation problems that comprise belief space scheduling for SCAR

scenarios. The principal contributions of this thesis are:

e A rigorous problem definition of the SCAR scenario.

e An analytical constrained Kalman Filter (KF) using the truncation method for
uncertain constraints that are described by a Gaussian distribution. This also
yields a Gaussian approximation of the conditional probability distribution of a
Gaussian distributed variable that is conditioned on other Gaussian distributed

variables.

e A continuous-time, analytical framework for predicting the future state of a
system given a schedule and uncertainty model. This is shown to provide com-
parable performance to a benchmark Monte Carlo (MC) approach, with the

advantage of computing orders of magnitude faster.

e Branch and bound optimisation methods for single- and multi-replenishment
agent scenarios. These are compared with existing heuristic and meta-heuristic
methods in a detailed computational study. The branch and bound methods
are shown to consistently result in the lowest downtime of the user agents,

particularly when using the analytical prediction framework.
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Other contributions of this thesis include:

e A Gaussian approximation of the Inverse Gaussian distribution.

e A Gaussian approximation of the generalised rectified Gaussian distribution.

1.3 Document Structure

The remainder of the thesis is organised as follows:

Chapter 2 reviews work related to the SCAR scenario and belief space scheduling
concepts. It first explores the literature on collection and replenishment scenarios, and
how they are commonly reformulated as classical manufacturing scheduling scenarios.
Haul truck scheduling in particular is a collection scenario that has received significant
attention in the literature. Despite being a simplified form of the SCAR scenario, this
literature provides useful commentary on the characteristics necessary of a practical
scheduling system. The treatment of uncertainty in collection and replenishment
scenarios is also examined. Finally, the area of belief space planning is explored.
Belief space planning methods are typically used in robotics for motion planning under
uncertainty. While these methods are not directly transferable to SCAR scheduling

problems,; they can provide valuable insights into dealing with uncertainty.

Chapter 3 introduces a problem definition of the SCAR scenario. It first outlines the
parameters of the various agents and the environment, then provides a mathematical
description of the behaviour of the agents, and, finally, defines the objectives of the

optimisation problem.

Chapter 4 develops methods for estimating the current state of the system in the
presence of uncertainty in the system model and observations. After first introducing
some background on constrained KF methods, a novel analytical constrained KF is
presented for uncertain constraints that are described by a Gaussian distribution.
The constrained KF method is tested on a single user agent where it is shown to

outperform the existing unconstrained and hard-constrained KF methods.
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Chapter 5 introduces methods for predicting the future state of the system given
uncertainty in the system model. A MC approach for predicting the future state of
the system is presented as a benchmark method. Novel analytical prediction meth-
ods which use Gaussian approximations are then developed. The Gaussian approxi-
mations used include approximations to the inverse Gaussian distribution, Gaussian
ratio distribution, Gaussian product distribution, and rectified Gaussian distribution.
Simulations of two single-replenishment agent scenarios and two multi-replenishment
agent scenarios are then used to validate the performance of the prediction methods.
The analytical prediction methods are shown to produce comparable results to the

benchmark MC method while computing orders of magnitude faster.

Chapter 6 presents methods of optimising the behaviour of the agents in a SCAR sce-
nario. The optimisation methods are used within a Model Predictive Control (MPC)-
like framework where a new task is planned at the completion of the previous task
so that unexpected changes to the state of the system can be readily incorporated.
Heuristic and meta-heuristic optimisation methods from the literature are first intro-
duced and modified for the SCAR scenario. Following this, a number of branch and
bound tree search methods are developed for both single- and multi-replenishment
agent SCAR scenarios. Using the same scenarios as in Chapter 5, the branch and
bound optimisation methods are shown to consistently result in the lowest downtime

results across all scenarios.

Chapter 7 concludes the thesis and discusses areas of future research.



Chapter 2

Literature Review

This chapter presents a review of the literature on collection and replenishment sce-
narios, scheduling and dispatching, and belief space planning. Section 2.1 examines
the literature on collection and replenishment scenarios, their relation to classical
manufacturing scheduling, and how uncertainty is generally handled in these sce-
narios. Section 2.2 then looks at how uncertainty is typically dealt with in robotic
planning problems and how that can be applied to the scenarios under consideration

in this thesis.

2.1 Collection and Replenishment Scenarios

Collection and replenishment scenarios have received limited study in the literature—
replenishment scenarios have primarily focussed on aerial refuelling of aircraft, in-
orbit refuelling of satellites, and recharging of Unmanned Aerial Vehicles (UAVs) and
Unmanned Ground Vehicles (UGVs), while the main collection scenarios found in the
literature were data collection from wireless sensor networks and haul truck dispatch-
ing. Of these scenarios, haul truck dispatching has received the most attention. This
section reviews the literature on these collection and replenishment scenarios, and
provides commentary on how uncertainty has typically been incorporated in schedul-

ing problems.
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2.1.1 Refuelling and Recharging

The aerial refuelling problem is the most studied of the problems in the replenishment
literature. In general, it has been framed as an NP-hard combinatorial optimisation
problem that resembles classical problems such as the restricted Travelling Salesman
Problem (TSP) with time windows [31], or the parallel machine manufacturing job

shop problem [54].

Jin et al. [46, 47] examined the problem of refuelling UAVs that are in formation be-
hind a single tanker aircraft. They aimed to minimise a combination of two costs—the
priority weighted time of refuelling of each UAV, and a similarity metric comparing the
current schedule to the previous schedule. The purpose of the similarity metric was
to minimise reshuffling costs that were incurred when the schedule was recalculated in
response to UAVs joining or leaving the refuelling queue. They developed a backwards
recursive dynamic programming algorithm to calculate the optimal schedule. This al-
gorithm cannot be applied to most Stochastic Collection and Replenishment (SCAR)
scenarios as the backwards recursive nature means that it cannot handle deadlines

that are dependent on the time at which the user agents were previously replenished.

Kaplan and Rabadi [54, 55] considered a more complex aerial refuelling scenario
consisting of multiple tanker aircraft and groups of aircraft to be refuelled. They
modelled the problem as an identical parallel machine scheduling problem where the
tanker aircraft are the machines and the aircraft to be refuelled are the jobs. The
aircraft to be refuelled have ready times, a set refuelling time, and a pair of deadlines
which correspond to their fuel level and mission. Their objective function was to
minimise the total weighted tardiness of the jobs, and they noted that this problem
formulation is NP-hard. A task is tardy if it is completed after its deadline, with the
tardiness increasing the later the task is completed. In [54] they introduced a Mixed-
Integer Linear Programming (MILP) model of the problem which can be used with
commercial solvers to find the optimal solution to the problem. For large problems,
however, this method is too computationally expensive to be practical—it took up to
10 minutes to calculate the schedule for a scenario with just 12 jobs. They introduced

the Apparent Tardiness Cost (ATC) dispatching heuristic and the Simulated Anneal-
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ing (SA) meta-heuristic as alternative solution methods. SA explores neighbouring
schedules by swapping tasks, and avoids getting trapped in local minima by accept-
ing worse schedules with a certain probability. They found that SA produced better
results than ATC for small problem sizes, but was outperformed by ATC in larger
problems while also taking 100 times longer than ATC to compute. In [55] they used
the ATC heuristic to generate an initial schedule for the SA algorithm to improve
the speed and performance of SA. This was compared with another meta-heuristic,
Meta-heuristic for Randomised Priority Search (Meta-RaPS), with each method per-
forming best in different circumstances. They did not compare the combined SA and
ATC method with the ATC heuristic to quantify the improvement from combining
the two methods.

The work of Jin et al. [46, 47] and Kaplan and Rabadi [54, 55] has several limitations.
First, these formulations either ignored the time taken for the aircraft to travel to the
tanker aircraft (by assuming that they are already in formation behind the tanker),
or treated it as fixed regardless of which tanker aircraft it goes to. Second, the time
taken to refuel the aircraft was treated as constant, regardless of when it was actually
refuelled. Third, the tanker aircraft were assumed to have sufficient capacity to fully
refuel all aircraft. Finally, Kaplan and Rabadi [54, 55| assumed that the tanker

aircraft were identical. For many SCAR scenarios, these assumptions are not valid.

Wiley [115] and Barnes et al. [12] presented solutions to the inter-theatre aerial re-
fuelling problem which addresses all of the issues above. The approach, originally
developed by Wiley [115] and extended by Barnes et al. [12], used a group theo-
retic tabu search meta-heuristic which modelled the flight time of the tanker aircraft
between planes as sequence-dependent setup times. Their formulation incorporated
a heterogeneous fleet of tanker aircraft and allowed for the limited capacity of the
tanker aircraft, as well as the variations in refuelling times and quantities based on
when the aircraft were actually refuelled. They minimised a hierarchical objective
function consisting of 12 criteria ranging from mission objectives, to number of air-
craft and amount of fuel used. Their solution was tailored to the inter-theatre aerial

refuelling problem and outperformed the existing methods in terms of solution quality
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and computation time.

A similar scenario to the inter-theatre aerial refuelling problem is the in-orbit refu-
elling of a constellation of satellites. Shen and Tsiotras [89], Shen [88], and Tsiotras
and De Nailly [106] studied this problem and noted that the additional constraints
of the scenario render known TSP solutions ineffective. They solved the optimisation
problem using a heuristic based on the total sweep angle of a servicing sequence. This
heuristic is specific to satellites in a circular orbit and cannot be applied to the more

general SCAR scenario.

A very similar scenario to the SCAR scenario was presented by Babic [10] where the
problem of scheduling refuelling trucks at an airport was examined. They used branch
and bound to find the optimal schedule for the refuelling trucks. SCAR scenarios are
designed to facilitate the persistent operation of the agents using the resource. Thus,
it is important to consider replenishing user agents multiple times in the optimisation
horizon, particularly when there are large differences in the capacities and usage rates
of the user agents. All of the work above, bar that of Barnes et al. [12] and Wiley [115],
only considered visiting each agent once. These approaches would likely be sufficient
for scenarios where the replenishment agents are heavily under-utilised. However, in
scenarios where the replenishment agents are operating continuously, visiting each
agent more than once is an important consideration as it results in deadlines that

depend on when the agent was last visited.

Zebrowski and Vaughan [119] examined a deterministic form of the SCAR scenario
where a tanker robot travels to worker robots and recharges or refuels them, with the
added difficulty that the tanker robot does not initially know where the robots are
and has to first search for them. The order in which the robots were recharged was
selected using either a last-in, first-out strategy, or a first-in, last-out strategy, based
on the order in which the robots were discovered. More sophisticated optimisation
methods were not investigated. Litus et al. [64] considered a similar scenario where
the robot locations are known. They used brute force to determine the optimal
recharging order, and focused on developing methods for determining rendezvous

locations that minimised the total travel cost of the tanker robot given a recharging
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order. They showed that the problem of finding the optimal recharging order can be
reduced to a TSP. In [65], they then developed a distributed heuristic for determining
the rendezvous locations. In both [64] and [65], the capacity of the tanker robot was

not considered.

In the work of Mathew et al. [69, 70], UGVs were used to rendezvous with and
recharge UAVs performing a persistent surveillance task. They discretised the paths
of the UAVs during their charging windows and planned paths for the UGVs to
minimise their total travel cost. In [69] they developed an MILP to calculate an
exact solution for recharging each UAV once, and showed that the single-charging
agent case could be transformed into an asymmetrical TSP. In [70] they extended
this to recharge the UAVs periodically, and used a receding horizon approach to
minimise the computational requirement of the planner. A critical assumption of
both of these papers was that the UGVs had sufficient capacity to recharge the UAVs.
Using this assumption in scenarios where the UGVs do not have sufficient capacity
to recharge all of the UAVs could result in one or more of the UAVs running out of

charge mid-flight.

Modelling Replenishment Scenarios as Classical Scheduling Problems

In the work of Kaplan and Rabadi [54, 55], the aerial refuelling problem was modelled
as a classical manufacturing scheduling problem. Many of the characteristics of SCAR
scenarios can be found in the manufacturing literature—the travel time between user
agents can be treated as a sequence-dependent setup time [63], replenishment times
that depend on when the user agent was last replenished can be modelled as learning
or deteriorating job effects [43], and the limited capacity of a replenishment agent can
be modelled as periodic maintenance on the machines [57]. Sequence-dependent setup
times have received extensive study [5], as have learning and deteriorating job effects
[26]. The work of Toksar1 and Giiner [105] was the only literature found which com-
bined both sequence-dependent setup times and learning effects. However, they made
assumptions which are not compatible with the SCAR scenario, such as a common

due-date for all tasks. No literature was found which combined sequence-dependent
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setup times, learning effects, and machine maintenance. Other characteristics of the
SCAR scenario such as sequence-dependent deadlines were also not found in the lit-

erature.

2.1.2 Data Collection from Wireless Sensor Networks

One of the main collection scenarios found in the literature was data collection from
wireless sensor networks using a data mule. This strategy can be particularly useful
for underwater wireless sensor networks where wireless communications over long
distances is difficult, which was motivated by long-term monitoring of coral reefs. Such
a scenario was presented by Vasilescu et al. [111], where an Autonomous Underwater
Vehicle (AUV) was used to travel to each sensor node and retrieve the collected data.

Similar data collection scenarios were presented in [19, 32, 66, 101, 102, 104, 116, 118].

Tirta et al. [104] compared three strategies for selecting the order to visit the sensor
nodes—round robin, where each sensor node was visited once per cycle, rate-based,
where each sensor node was visited in proportion to the rate that it collected data,
and min movement, which combined the rate-based strategy with a cost based on the
distance travelled by the collecting agent. In two very simple examples consisting of
only three sensor nodes, the min movement approach was consistently outperformed
by the round robin strategy. However, neither the round robin or rate-based strategies

were able to consistently outperform the other.

Dunbabin et al. [32] selected the next sensor node to visit based on distance—the
closest unvisited node was chosen. As AUVs are subject to significant uncertainty
when travelling underwater, this strategy aimed to minimise the positioning error
accumulated by the robot, and thus maximise the probability that the target sensor

node was found at the expense of total travel distance.

Yuan et al. [118] treated the problem as a Travelling Salesman Problem with Neigh-
bourhoods (TSPN). Here, neighbourhood refers to the distance around the sensor in
which the data mule can wirelessly communicate with the sensor. They presented an

approximate algorithm which generated a tour from the starting location, through all
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of the nodes, and back to the starting location. This approach is unlikely to produce
good results in scenarios where the rate of data collection varies between sensors as
the algorithm implicitly assumes that the data collection rates are identical. Tekdas
and Isler [101] and Ma et al. [66] used a similar strategy, calculating a TSP tour
over the nodes which was repeated periodically. Bhadauria et al. [19] included the
time taken to communicate the data from the sensor node to the data mule in their
formulation of the problem and solved it using a modified TSPN algorithm. In [102],
they extended this to use a two-ring communication model for the data transfer rate

between the data mule and sensor nodes and again solved using a TSPN formulation.

Yan and Mostofi [116] used a clustering strategy to reduce the computational require-
ment of the scheduling algorithm. Their algorithm calculated points within clusters
of nodes to visit, and then used a TSP solver to find the path which minimised
the total energy requirement of the system, incorporating both travel cost and data

transmission cost.

With the exception of the work of Tirta et al. [104], the sensor nodes were treated
as identical. This means that the applicability of these TSP algorithms is limited to
SCAR scenarios where the user agents are identical. The capacity of the data mule
was also ignored. For these applications, it is unlikely that the storage capacity of
the data mule will be exceeded, but by solving the problem as a TSP or TSPN they

are unable to account for this case.

2.1.3 Haul Truck Dispatching

Surface mines have numerous scenarios that revolve around the transportation of a
resource—haul trucks transport ore and waste from excavators to crushers and stock-
piles, fuel trucks carry fuel to the excavators and drills, and water trucks transport
water to the drills. Of these scenarios, only haul truck dispatching has received atten-
tion in the literature due to the large cost associated with haulage, which can account

for more than half of the operating costs of open-pit mines [4, 73].

As noted by Alarie and Gamache [4], the haul truck dispatching problem is a simpli-
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fication of scheduling problems found in other industries, such as SCAR scenarios, as
the trucks pick up only one item. This eliminates the routing problem as the truck
is always filled to capacity. Despite this, the literature on haul truck dispatching can
provide a good indication of the requirements of a dispatching algorithm for real world
systems. Surveys of haul truck dispatching algorithms are presented by Munirathi-
nam and Yingling [73] and Alarie and Gamache [4]. Alarie and Gamache [4] identified
two main approaches to the haul truck dispatching problem—single stage algorithms
and multi-stage algorithms. Single stage algorithms typically use a heuristic based on
one or more criteria to determine which shovel the truck requiring dispatching should
be assigned to. Multi-stage algorithms, on the other hand, divide the dispatching
problem into a number of sub-problems. Usually these consist of a high-level stage
which determines the production targets for each shovel, and a low-level stage which

dispatches the trucks such that the production targets are met.

The dispatching approaches were further divided by Alarie and Gamache [4] into
three strategy types—1 truck to n shovels, m trucks to 1 shovel, and m trucks to n
shovels. The 1 truck to n shovels strategy is generally used in single stage algorithms.
In this strategy, heuristic methods are used to minimise a criteria such as the idle
time of the shovels and the waiting time of the trucks. A summary of heuristics was
presented by Munirathinam and Yingling [73]. Each individual heuristic generally
works best in certain types of scenarios, and producing good performance across
all scenarios requires a composite dispatching rule, essentially a weighted sum of
individual heuristics. The difficulty with composite dispatching rules is calculating
appropriate weightings—the weightings can be fixed or variable, and generally require

extensive simulation to determine appropriate values [80].

The m trucks to 1 shovel strategy considers the next m trucks requiring assignment,
and each shovel individually. This approach is used in the DISPATCH haul truck
optimisation software produced by Modular Mining Systems [113, 114]. DISPATCH
uses a multi-stage approach—the high-level stage uses linear programming to calcu-
late the optimal flow rates of the material, and the low-level stage considers each

shovel individually, selecting the truck which minimises the idle time of the shovel.
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The m trucks to n shovels strategy is a combinatorial optimisation problem that re-
sembles the replenishment and collection problems presented above. These problems
are generally formed as an assignment problem or transportation problem. The com-
binatorial nature of these approaches means that they can be intractable when the

values of m and n are too large [4].

More recent haul truck dispatching literature has taken advantage of increases in
computation power to implement more advanced algorithms. SmartMine, a commer-
cial dispatching package, performs an exhaustive search over all possible allocation
combinations of the next n dispatching requests [98]. By considering future dispatch
requests, the package aims to reduce myopic decision making. Each combination of
allocations is simulated and then evaluated using a combination of objectives—queue
time at the shovels, idle times of the shovels, and productivity of the truck fleet. While
it produced good results in simulation, the authors did not provide information on
the value of n used and the computation time of the algorithm. Given its brute-force

nature, it is unlikely to scale well to large values of n and large truck fleets.

Other recent literature has focussed on incorporating uncertainty into the optimisa-
tion. Ta et al. [99] used a chance-constrained problem formulation to incorporate
uncertainty in the truck cycle time and truckload, Bastos [15] and Bastos et al. [14]
modelled uncertainty in the route taken by drivers and travel time using a single-
dependent agent Time-dependent Markov Decision Process (TiMDP), and Arelovich
et al. [7] produced turn by turn instructions for the truck drivers and incorporated a

probability that the drivers would not follow the instructions.

The work of Bastos [15], Bastos et al. [14], and Arelovich et al. 7] raises an important
human factors issue—human operators can be unreliable when following directions,
and inconsistent in their performance of a task over time. Autonomous haul trucks
have recently been introduced to several mine sites. These trucks move material in a
more predictable and consistent manner than human operated haul trucks [17], and

remove the need for the dispatching algorithms to consider these human factors.



2.1 Collection and Replenishment Scenarios 17

2.1.4 Uncertainty

A crucial aspect of the SCAR scenario that has been ignored by most of the above
literature is uncertainty, particularly uncertainty in the time taken to travel to the
agents or sensors, and uncertainty in the amount of the resource the agents have
remaining. For refuelling and recharging problems involving aircraft, ignoring uncer-
tainty can potentially lead to the loss of aircraft. Mathew et al. [70] attempted to
account for these uncertainties by introducing an arbitrary safety margin into their
models for the estimation of the battery life and estimation of the time taken to dock
and recharge. While this approach reduced plan failures, it sacrificed system perfor-
mance without quantifying the risk associated with each task. In situations where
the deadlines are tight, using a large safety margin may make it impossible to find a

schedule which satisfies the constraints of the problem.

Even in the manufacturing literature, stochastic problems have received limited study
due to their difficulty in comparison to deterministic problems [5]. Arnaout et al. [8]
and Reddy and Narendran [84] considered manufacturing problems where the time
taken to complete a job was uncertain. However, in both cases they simply evaluated
deterministic heuristics using the mean values of the completion times and did not

incorporate any information about the uncertainty in the heuristics.

A simple method to account for uncertainty is to generate a new plan when the state
of the system changes unexpectedly [36]. However, this is a reactive method which
does not take into account the risk associated with choosing one task over another.
Pinedo [80] noted that the more uncertainty there is in a scenario, the simpler the
scheduling rules should be. The reasoning behind this is that when a random event
occurs it will necessitate the recalculation of the schedule, and it is desirable to have
a scheduling algorithm that can react quickly to the unexpected change. Again, this
does not take into account any risk and could potentially be sacrificing robustness for

reactivity.

Some proactive methods which attempt to minimise risk include conservative esti-

mates of the uncertain parameters [18, 70|, estimation of an expected cost through
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Monte Carlo (MC) simulation [13, 83], and chance constraints [34, 75]. Conservative
estimates of the uncertain parameters can significantly overestimate the risk, and MC
simulation is computationally expensive. Chance constraints provide a principled way
of minimising an objective function while satisfying constraints with a given proba-
bility, but it requires calculation of certain probability distributions to determine the
probability of success. For some problems, the only way to calculate these probability
distributions may be through MC analysis, meaning it can inherit the computational

issues of MC.

Hiatt et al. [42] took a different approach—they started by generating a schedule using
a deterministic planner and then applied uncertainty analysis to make the schedule
more robust. In the uncertainty analysis they used the expected reward as the cost
of the schedule, where the expected reward is the reward weighted by its probability.
However, this approach adds significant computation time on top of the time required

to generate the initial schedule.

2.2 Belief Space Planning

Unlike scheduling under uncertainty, motion planning under uncertainty has received
significant attention, particularly within the robotics community. While some plan-
ners quantify risk based on a probabilistic cost map [74], the majority of algorithms
for planning under uncertainty deal with uncertainty arising from noisy sensors and
stochastic dynamics. In such scenarios, the true state of the robot is not directly
observable and must be inferred from the noisy observations. This leads to a proba-
bility distribution over the possible states of the robot, known as a belief state [24].
The general formulation of the belief space planning problem is known as a Partially

Observable Markov Decision Process (POMDP).

A solution to a POMDP has two general components, shown in Figure 2.1—a state
estimator, and a controller. The state estimator maintains a distribution over the

possible states of the robot using the history of actions and observations of the robot.
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The controller uses the state estimate and some form of policy or search method to

determine what action the robot should take next.

Belief State Action
State Estimator Controller

Environment
Observation

Figure 2.1 - POMDP estimation and control architecture

Early work on POMDPs considered only discrete states and actions. In these cases,
the state estimator simply used Bayes’ rule to propagate the effects of observations
and actions on the state estimate. The controller typically used an optimal control

policy generated through dynamic programming [24].

More recent work has considered continuous state, action, and observation spaces.
State estimators used in these scenarios range from analytical methods such as the
Kalman Filter (KF), through to MC methods such as the Particle Filter (PF). A
KF is an optimal estimator for linear, time-invariant systems with Gaussian noise [6],
whereas PFs are heavily used in non-linear high-dimensional systems [103]. Exten-
sions to the KF include the Extended Kalman Filter (EKF) which linearises around
the current state estimate to enable the standard KF to be used on non-linear sys-
tems [6, 50], and the Unscented Kalman Filter (UKF) which uses deterministically
sampled points to represent the state [49].

To generate the controller, most methods reformulate the POMDP as a fully observ-
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able Markov Decision Process (MDP) over belief space, resulting in a fully observable
probabilistic control problem. However, computation of the optimal cost function
and policy is a difficult problem as the belief space is infinite and continuous [21],
and POMDPs have been shown to be PSPACE-complete [76]. Papadimitriou and
Tsitsiklis [76] showed that an efficient online implementation of an MDP solver is
likely to be impossible to create, even if an arbitrary amount of precomputation is

allowed.

Patil et al. [79] identified six broad approaches to belief space planning:

Simulation-based approaches simulate the belief state of the robot for a number
of potential plans. The best plan is then chosen according to a metric such as

information gain [96, 108].

Regression-based planning algorithms use logical representations to discretise the

belief state in order to quickly compute a policy [51].

Policy search methods optimise the parameters of a control policy using approxi-

mate inference [27, 29].

Point-based value iteration methods sample the belief space to build up a rep-
resentative sample of belief points. These sampled beliefs are represented as
a belief tree, where each node represents a belief and each edge represents an
action-observation pair [56]. The state estimator is used to determine the evolu-
tion of the belief along the edges, and value updates are then iteratively applied
to compute an optimal control policy. The main difference between the various
point-based methods is how points are sampled from the belief space—uniform
sampling is generally insufficient to accurately represent the belief state. Kurni-
awati et al. [59] used reachability analysis to guide the sampling process towards
more useful points. They then introduced the Guided Cluster Sampling algo-
rithm which used heuristics to reduce the size of the belief space to be sampled
[60]. Bai et al. [11] computed an upper and lower bound on the belief and used

heuristics to select observations which minimised the gap between the upper
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and lower bounds, biasing the sampling towards regions which were likely to

lead to improvement in the policy.

Sampling-based approaches use probabilistic motion planning methods, such as the
Rapidly-exploring Random Tree (RRT) and Probabilistic RoadMap (PRM), to
explore the belief space and find an optimal plan. Prentice and Roy [82] modified
the PRM into the belief roadmap which computes the reachable belief space,
allowing minimum expected cost paths to be found quickly. Agha-mohammadi
et al. [3] created a PRM in belief space and used a Linear-Quadratic Regulator
(LQR) controller to generate the optimal policy over the roadmap. Hauser [40]
generated a belief-space search tree by randomly sampling open-loop controls.
They also used MC simulation to estimate the likelihood of success of the policy.
Bry and Roy [22] used an RRT in conjunction with a chance constraint on the
probability of collision—paths that would collide with a probability above the

chance-constraint were pruned from the search tree.

Trajectory optimisation methods calculate a locally optimal trajectory or policy,
sacrificing global optimality for computational speed. Examples of these meth-
ods are presented in [33, 44, 45, 79, 81, 109]. These methods generally use
an LQR to compute the locally optimal control policy, and require the control

inputs to be continuous.

Most of the papers dealing with continuous state spaces make the assumption that
the future observations that will be acquired by the robot are the most likely ones
given the simulated belief of the robot state. This is known as maximum likelihood
observations, and it significantly reduces the size of the belief tree as only one obser-
vation is simulated for each action. While using this assumption gives good results
[81], significant improvements can be achieved by relaxing the assumption [109]. How-
ever, this comes at the expense of computational speed, with short planning horizons

required to achieve acceptable planning times [44, 45].

A number of these approaches have used a MPC scheme where the robot planned an

optimal sequence of controls for a number of look-ahead time steps, performed the
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first action in the sequence, and then replanned the sequence of controls [44, 45, 78].
This approach reduced the need for the model to fully represent the problem, as

unexpected observations were incorporated when the controller replanned [81].

There are two key differences between the SCAR scheduling problems considered in
this thesis and the belief space planning problems in the above literature. Firstly,
while the state and observation spaces are both continuous, the action space in a
SCAR scenario is discrete. This means that the fast trajectory optimisation methods
presented cannot be used. The scenario considered by Bai et al. [11] is a similar
problem with discrete actions and continuous state and observations. However, their
method requires significant offline computation. The configurations of the SCAR sce-
narios under consideration are likely to change regularly, meaning that the scheduler
must be able to react quickly to these changes. This offline computation would be re-
quired each time the scenario configuration changes, making this approach infeasible
for most practical systems. For scenarios where the environment and fleet of agents
are fixed (for example, automated warehouses), these methods may be applicable.
However, the level of uncertainty in such scenarios is generally quite low, reducing

the need for schedulers that plan in belief space.

Secondly, in the above literature the robot performs an action and makes an obser-
vation at each time step, allowing the controller to decide to take actions which can
reduce uncertainty in the state estimation. However, actions or tasks in scheduling
scenarios generally take many time steps to complete, meaning that this feedback
control cannot be achieved without frequently switching between tasks. This is un-
desirable (and potentially impossible) behaviour, particularly in manned scenarios.
Another consequence of the longer time scale of the tasks is that the maximum like-
lihood observations assumption cannot be used to reduce the size of the belief tree.
Since observations are made at each time step, simulating the maximum likelihood
observation at every time step will lead to an unrepresentative estimate of the future

state of the system by the time a task has been completed.
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2.3 Summary

This chapter presented a review of the literature on collection and replenishment
scenarios, and methods for dealing with uncertainty in planning and scheduling prob-
lems. Collection and replenishment scenarios have thus far received limited study,
and none of the examined literature fully represented the SCAR scenario. Much of
the literature on refuelling and recharging scenarios made restrictive assumptions,
and the solutions for data collection from wireless sensor networks were typically
based on variants of the TSP. The other collection scenario examined, haul truck
dispatching, is a simplified form of the SCAR scenario as there is no routing prob-
lem. While not directly applicable to SCAR scenarios, the literature on haul truck
dispatching provided valuable insight into the necessary characteristics of practical
scheduling systems. The main deficiency of the examined collection and replenish-
ment literature was that they ignored the uncertainty inherent to these scenarios.
Finally, belief space planning was introduced as an example of how uncertainty is
incorporated in other planning domains. Existing belief space planning methods are
generally computationally very expensive, and most methods are simply incompati-
ble with the discrete-action, continuous-state space that is characteristic of scheduling
scenarios. Some of the strategies used, such as MPC, will be adapted in this thesis
for use in SCAR scenarios. Next, Chapter 3 formally defines the SCAR scenario and

introduces the optimisation objectives.



Chapter 3

Problem Definition of the SCAR

Scenario

This chapter presents a detailed problem definition of the Stochastic Collection and
Replenishment (SCAR) scenario. The problem definition outlines the behaviour of
the system element highlighted in Figure 3.1 in response to tasks that are generated
by the optimisation component. The structure of the SCAR scenario is motivated
by autonomous mining and agricultural scenarios where the persistent operation of
a fleet of user agents using a resource is facilitated by one or more replenishment
agents which transport the resource from a replenishment point to the user agents.
These scenarios typically have a large, heterogeneous fleet of user agents, a small,
heterogeneous fleet of replenishment agents, and a central replenishment point. An
example multi-replenishment agent SCAR scenario is shown in Figure 3.2. A key
characteristic of SCAR scenarios is that the parameters of the agents are uncertain.
The rest of this chapter is structured as follows: Section 3.1 outlines the parameters
of the agents and environment, Section 3.2 provides a mathematical description of
the behaviour of the system, and Section 3.3 outlines the definition of a schedule and

the objectives of the SCAR scenario.
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Figure 3.1 — The components of belief space scheduling. This chapter outlines the
behaviour of the system (highlighted) and the desired outcomes of the belief space
scheduling framework.
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Figure 3.2 — An example SCAR scenario. Replenishment agents (dark grey) travel to,
and replenish, the user agents (light grey) operating in the field. The replenishment
agents can replenish their supply of the resource at the replenishment point (bottom
left), which has infinite supply of the resource. In this example, the travel of the
replenishment agents is restricted by roads between the operational areas of the
user agents. Note also that each operational area may contain multiple user agents.
Inset: The replenishment agent transfers the resource to the user agent, diminishing
its supply of the resource and increasing the resource reserves of the user agent.
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3.1 Parameters

This section outlines the parameters of the agents and environment in a multi-
replenishment agent SCAR scenario. Note that the collection scenario can be mod-
elled as a replenishment scenario if the resource under consideration is storage space.
Uncertain parameters are denoted by an upper case letter and are assumed in this
thesis to be modelled by a Gaussian probability distribution, while parameters which
do not have uncertainty are denoted by a lower case letter. Note that Gaussian proba-
bility distributions have been used for convenience and other probability distributions
may be used provided suitable arithmetic methods are available. Vectors are denoted
by a bold lower case letter, and matrices by a bold upper case letter. All vectors and
matrices do not have uncertainty associated with their elements. Units do not matter

as long as they are consistent.

In an n-user agent, m-replenishment agent system, each user agent, 7, has the follow-

ing parameters:

® ¢, ; is the capacity of the resource
e [,; is the current resource level, where [, ; € [0, ¢, ]

o Ry;is the resource usage rate

Each replenishment agent, j, has the following parameters:

Cq,; 1s the capacity of the resource

e [, ; is the current resource level, where [, ; € [0, ¢, ;]

R, ; is the resource replenishment rate to the user agent

T, ; and T}, ; are the setup and packup times that are incurred before and after

the replenishment agent replenishes a user agent

Va,j is the speed when travelling between tasks

The replenishment agents are assumed to have a separate supply of fuel or battery
charge which is sufficient for their operations and is replenished when it visits the

replenishment point.
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The replenishment point has the following parameters:

e R, is the resource replenishment rate into the replenishment agent

o T, and T}, are the setup and packup times that are incurred before and after

a replenishment agent is replenished

The user agents operate in areas that remain relatively fixed. For example, au-
tonomous drills and excavators operate on a specific bench on a mine site, and au-
tonomous tractors and harvesters operate within a specific field on a farm. The user
agents are not required to remain in these fixed areas indefinitely—agents moving to
new benches or fields within the scope of the schedule can be incorporated by treating
the time that they arrive at their new location as the ready time of the agent. The
distances between the operational areas of the user agents are generally larger than
any distances that the user agents travel within their operational areas, and any vari-
ations in the travel times of the replenishment agents due to the movements of the
user agents are assumed to be incorporated in the uncertain travel, setup, and packup
times of the replenishment agents. Scenarios where the user agents do not operate
in relatively fixed areas (for example, the inter-theatre aerial refuelling problem) are

outside of the scope of this thesis.

The distances between and positions of the various agents are given by:

® Suu ;i is the distance between replenishment agent j and user agent 4
® 5. is the distance between replenishment agent j and the replenishment point
e 2, is the position of user agent ¢
e 1, ; is the position of replenishment agent j
e 1, is the position of the replenishment point
Real-world SCAR scenarios may use a number of different sensor types for measuring
the resource level of the agents. Of particular interest in this thesis are discrete

sensors—discrete sensors can only tell whether the resource level is above or below

the set-point of the sensor, an example of this is a float switch. In practice, these
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sensors may have some form of uncertainty or noise in the measurements that are
returned. For example, a discrete sensor may not be positioned exactly at the set-
point specified, and the resource level may appear higher or lower if the agent is
positioned on sloped ground. For all agents, it is assumed that the resource level is
perfectly known when it is at 0% or 100%—these are reasonable assumptions as the
agent ceases operating when it is at 0%, and further replenishment is impossible when

it is at 100%.

For many of the real-world scenarios motivating this thesis, the positions of the re-
plenishment agents are generally known to a high degree of accuracy through GPS
or similar technology. This thesis therefore assumes perfect measurement of the po-
sition of the replenishment agents. The methods developed in this thesis can be used
with uncertain position estimates by using a probability distribution describing the

distance, S, instead of a scalar value, s.

The uncertain parameters in a SCAR scenario are treated differently to those in a
standard Markov Decision Process (MDP). In a standard MDP, uncertain parameters
are sampled at each time step. In a SCAR scenario, the uncertain parameters are
instead sampled infrequently to simulate real-world behaviour. As an example, the
water usage rate of a drill on a mine site will change based on the type of ground
that it is drilling in—as it moves from hole to hole, the average water usage rate
varies. This is the behaviour that is simulated by sampling the uncertain parameters

infrequently.

3.2 Agent States, Constraints, and Behaviour

This section describes the behaviour of the agents in a SCAR scenario. A vector, b,
with elements b; € {0,...,n},Vj € {1,...,m}, stores which task each replenishment
agent is currently allocated to. If 1 < b; < n, then the task for replenishment agent
J is to replenish user agent b;. If b; = 0, the task for replenishment agent j is to be
replenished by the replenishment point. An m by n+ 1 matrix of binary variables, F,

captures which task each replenishment agent is currently performing. Note that this
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only captures whether the replenishment agent is at the user agent or replenishment
point and is currently setting up, replenishing, or packing up. If the replenishment
agent is travelling or idling, it is not treated as currently performing the task. If the
variable E; is 1, then replenishment agent j is setting up, being replenished by, or is
packing up at the replenishment point. Similarly, if the variables E;,,..., E,, are 1,
then replenishment agent j is setting up, replenishing, or is packing up at user agents

1 to n respectively.

1 if replenishment agent j is setting up, replenishing, or packing
E;; = up at task ¢ (3.1)

0 otherwise

The matrix E is subject to the following constraints:

=0
ZEj,i <1, WVie {1, ,TL} (33)
j=1

Equation 3.2 limits each replenishment agent to performing only one task at a time,
while Equation 3.3 limits the number of replenishment agents servicing each user
agent to one. For this thesis it is assumed that the replenishment point can service

multiple replenishment agents at a time, so this is not limited in Equation 3.3.

The current action of replenishment agent j is described by a state machine with
8 states, ¢; € {1,...,8},Vj € {1,...,m}. The state transition diagram is shown in
Figure 3.3, and the actions in each state are outlined below:

e ¢; = 1: Travelling to the next task

e ¢; = 2: Idling at the user agent
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e ¢; = 3: Setting up at the user agent

e ¢; = 4: Replenishing the user agent

e ¢; = 5: Packing up at the user agent

e ¢; = 6: Setting up at the replenishment point

e ¢; = 7: Being replenished at the replenishment point

e ¢; = 8: Packing up at the replenishment point

Figure 3.3 — State and transition conditions for replenishment agent j. Only the
transition conditions to move to a different state are shown. Transition conditions
required to stay in the same state are the complement of the conditions shown.

The state transition conditions, g1, ..., g19, are given below.

® g

Gl

Taj = Tup,) N (kﬂz# Epy, # o) A (b; #0)
ZL’aJ

® (o = J7u,bj) N <k:Z Ek,bj = O) A (bj 7 0)

Lk#]

-
-
® g3 ( 5 Eyp, =0

k=1,k+#j
e g, Setup is complete
® Js: (lu,bj = Cu,bj> Vv (la,j = 0)

e gs: Packup is complete

® (7. (xa,j = Z’T) VAN (b] = O)
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e gs: Setup is complete

® gg: (la,j = Ca,j)

e g0: Packup is complete

Conditions g; and g» check that the replenishment agent is at the same position as the
user agent. In addition, g; is satisfied when there is already another replenishment
agent replenishing the user agent, while gy is satisfied when that user agent is not
currently being replenished by a replenishment agent. Condition g3 simply allows the
replenishment agent to transfer out of the idle state when the previous replenishment
agent has finished replenishing the user agent. Condition g5 is triggered when either
the user agent has been replenished to capacity, or the replenishment agent has ex-
hausted its supply of the resource. Condition g; occurs when the replenishment agent
is at the replenishment point, and condition gg is triggered when the replenishment

agent has been replenished to capacity.

The rate of change of the resource supply of user agent i is given by:

R,;—R,; ifgi=4and0<l,; <c,; andl,; # 0 and

1= bj, VJ S {]_, ,m}

dl., R, ; it g =4and l,; =0and [,; # 0 and

o i=b;, Vje{l,..m} (34)
—Ruﬁ' if lu,i >0andi7ébj, VJ € {1,,77?,}
0 otherwise

The first and second cases occur when a replenishment agent is replenishing the user
agent, while the third and fourth cases are the regular operation of the user agent when
it has resources remaining and no resources remaining respectively. The user agents
are assumed to be able to recover without consequence from exhausting their supply
of the resource once they are replenished. This means that when they exhaust the
resource they enter a safe zero-resource state, for example, a ground vehicle stopping

by the side of the road.
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The rate of change of the resource supply of replenishment agent j is given by:

_Ra,j if g =4 and lu7bj # Cu,b, and la,j #0
dlaj

T L it ¢j =7 and l,; # ca; (3.5)

0 otherwise

The first condition corresponds to the replenishment agent replenishing a user agent
while the second condition is when it is being replenished at the replenishment point.
Outside of these conditions the replenishment agents do not consume the resource.

Finally, the velocity of replenishment agent 7 is given by:

ds. V,,; ifg =1
g (3.6)
0 otherwise

3.3 Schedule Optimisation

This section introduces the objective of the SCAR scenario and describes the structure
of a schedule. A schedule is a list of tasks in the order in which they are to be executed.
In a multi-replenishment agent scenario, the schedule will consist of a list of tasks for
each replenishment agent. The two types of tasks available to a replenishment agent
are replenishing a user agent, and being replenished itself by the replenishment point.
The task of replenishing a user agent is denoted by the index of the user agent, while
the task of being replenished by the replenishment point is denoted by 0. An example

schedule, 0, of a 6-user agent, 2-replenishment agent SCAR scenario is:

[1,4,3,6,4,1]
[0,2,6,5,3]

9 = (3.7)
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It is assumed in this thesis that the replenishment agents take the shortest route
between any two tasks. The routing problem could be included by treating each dif-
ferent route to a user agent as a separate task. This could potentially have an impact

in situations where one route is shorter but has higher uncertainty than another.

Tasks may appear multiple times, or not at all, in a schedule, and one replenishment
agent may have more tasks than the others. A particular task in the schedule is
referenced by 8, where j is the index of the replenishment agent, and k is the task
number. For example, 8 3 would refer to the 3rd task of replenishment agent 2, which

is to perform the task of replenishing user agent 6 in the above schedule.

The objective of the SCAR scenario considered in this thesis is to minimise the

weighted downtime of the user agents, A:

n

argmin A = Z Witempty.i (3.8)
i=1
where the downtime of user agent 4, fepmpiy i, is the total time that the resource supply

of user agent ¢ is empty, and w; is the priority weighting of user agent 1.

Many other objective functions could be used in a SCAR scenario, and the objective
function in Equation 3.8 is merely used to illustrate the utility of the methods devel-
oped in this thesis. Other objective functions that could be used include minimising
the number of user agents that have downtime, and hierarchical objective functions
that minimise first the total downtime of the user agents and then other objectives

such as the total distance travelled by the replenishment agent.
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3.4 Summary

This chapter presented a detailed problem definition of the SCAR scenario. The
parameters of the various agents and environment were first defined. Following this,
a mathematical description of the behaviour of the agents was outlined. A definition of
the schedule of the replenishment agents was then presented, along with the objective
of the optimisation problem. The next chapter introduces the estimation problem and
develops methods for incorporating uncertain constraints on the system into the state

estimate.



Chapter 4

Estimation

This chapter introduces methods for estimating the current state of the system in
scheduling problems. Existing research on scheduling under uncertainty has typi-
cally neglected uncertainty in the current state of the system, with most approaches
generally assuming perfect knowledge of the system state at the time of scheduling.
The estimation component of belief space scheduling, highlighted in Figure 4.1, uses
uncertain observations of the current system state in conjunction with the history of
tasks that have been performed to produce a belief of the current state of the system.
The belief state produced by the estimation component is a probability distribution
over all possible states of the system. A commonly used method of estimation in be-
lief space planning methods is the Kalman Filter (KF) [79, 109] which is an optimal

estimator for linear dynamic systems with white process and measurement noise [94].

SCAR scenarios can have a number of different constraints acting on the system. The
physical limits on the capacity of an agent act as hard constraints when estimating
the resource level. Similarly, discrete sensors that have no uncertainty can be treated
as hard constraints—at the moment the sensor changes reading, the state of the sys-
tem is know to satisfy an equality with the set-point of the sensor, and while the
sensor gives one reading the state is known to satisfy an inequality with the set-point.
Here, the absence of a sensor reading is used to improve the state estimate. Incorpo-

rating hard constraints into the KF is a well studied area [39, 91, 93, 94]. However,
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soft constraints, such as discrete sensors that have uncertainty, have typically been
dealt with using numerical methods [20, 87]. The aim of this chapter is to develop
novel analytical methods of incorporating soft constraints into the KF that avoid the

computational burden of numerical methods.

Section 4.1 first presents background on the KF including the general KF equations
and a truncation method for dealing with hard constraints. In Section 4.2, the trun-
cation method is extended to soft constraints that have uncertainty described by
Gaussian distributions. Finally, Section 4.3 presents results validating the perfor-

mance of the developed truncation method for soft constraints.

Optimisation

Belief State
= > Estimation Prediction

- System ittt
Observations

Figure 4.1 — The components of belief space scheduling. This chapter outlines methods
for estimating the current state of the system.

4.1 Background

This section presents existing methods for state estimation. Section 4.1.1 provides a

concise overview of the discrete KF. Section 4.1.2 then reviews the existing methods
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for incorporating constraints on the state of the system and introduces the truncation

method for dealing with hard constraints.

4.1.1 Kalman Filter

The KF was first derived by Kalman [52]. This section covers the basics of the discrete

KF as presented in [6]. Consider a linear system given by:

Ty = Ftwt_l + Btut —+ Wy (41)

where x; is the state vector at time ¢, u; is the vector of control inputs, F'; is the
state transition matrix which applies the effect of each state parameter at time t — 1
on the system at time t, B; is the control input matrix which applies the effect of
each control input parameter, and w; is a vector containing the noise terms for the
elements in the state vector. The noise is assumed to be drawn from a multivariate

normal distribution with zero mean and a covariance matrix given by Q,.

Measurements are given by:

Zy = Htwt + vy (42)

where z; is the measurement vector, H, is the transformation matrix that maps the
state vector parameters into the measurement domain, and v; is the measurement
noise vector. The measurement noise is assumed to be drawn from a multivariate

normal distribution with zero mean and a covariance matrix given by R;.

The discrete KF consists of two stages—the prediction step and the measurement
update. Performing these steps results in a state estimate, &;, and associated variance,

P;. The equations for the prediction stage of the KF are:

Ty = Fy2y -1 + By (4.3)
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Py, =F.P,_,, . F] +Q, (4.4)

The measurement update equations are:

Ty = 2y + K, (Zt — Htﬁgtl\tfl) (4.5)
Py=Py— KiH Py (4.6)
where
-1
K, =Py H| (H,Py_H! +R,) (4.7)

4.1.2 Kalman Filter with Hard Constraints

Constraints arise in many state estimation problems including machine health moni-
toring [91], vision systems [90], robotics [20], discrete sensor networks [67], and object
tracking [85]. A common example of hard constraints in the literature is obstacles
in motion planning problems, which are treated as hard inequality constraints. Hard
inequality constraints are well studied [91], where the main approaches are estimate
projection [93], gain projection [39], and Probability Density Function (PDF) trun-
cation [94]. Estimate and gain projection approaches incorporate the constraints into
the derivation of the KF, resulting in a constrained optimisation problem that can be
solved using quadratic programming, least squares approaches, and others [91, 92].
Truncation methods, on the other hand, are applied directly to the PDF resulting
from a KF. They truncate the PDF at the constraints and calculate the mean and
covariance of the truncated PDF, which then become the constrained state estimate
and its covariance. The PDF truncation approach was shown by Simon and Simon

[94] to, in general, outperform the estimate projection method. The truncation ap-
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proach has been applied to probabilistic collision checking for robots [77], and has

been extended to non-linear systems [97, 100].

Discrete sensors that have uncertainty on their set-point can be modelled as a soft
constraint. When the sensor changes reading, the soft equality constraint can be
incorporated as a noisy measurement [41, 91]. Soft inequality constraints are signifi-
cantly more difficult to deal with, and numerical filters such as a Particle Filter (PF)
have typically been used for these problems [87]. Several numerical methods have
been examined for incorporating soft constraints into the KF. A numerical PDF
truncation method was used by Boccadoro et al. [20] for robot localisation using
Radio Frequency IDentification (RFID) tags, where the noise on the inequality con-
straints was highly non-Gaussian. Compared with a PF approach, the numerical PDF
truncation method was 2 to 3 orders of magnitude faster while, in general, providing
similar results. A similar RFID problem was examined by Manes and Martinelli [67],
where they combined aspects of the Unscented Kalman Filter (UKF) and PF—the
prediction step used the standard UKF step, while the correction step was modified
to weight the sigma-points of the UKF in a similar manner to the weighting process
in a PF. It was shown to outperform a PF as well as the Quantised Extended Kalman
Filter (QEKF) presented by DiGiampaolo and Martinelli [30]. All of the literature ex-
amined focused on constraints with non-Gaussian distributions where the constrained
state estimates are, by necessity, calculated using numerical methods. When consid-
ering soft constraints with uncertainty that is described by a Gaussian distribution,
it is possible to derive analytical methods to perform the truncation to increase the

speed of the algorithm. These analytical methods are developed in Section 4.2.

The remainder of this section presents the truncation method developed by Simon
[91], Simon and Simon [94]. Consider the following s linearly independent constrains

on the linear system defined in Equation 4.1:

am(k) < @1 (K (k) < bn(k) m=1,..s (4.8)

m

A one sided constraint can be represented by setting a,, = —oo, or b,, = co.



4.1 Background 41

Given an estimate &(k) with covariance P(k) at time k, the problem is to truncate the
Gaussian PDF N (&(k), P(k)) using the s constraints described above, and then find
the mean &(k) and covariance P(k) of the Gaussian distribution that approximates
the truncated PDF. The calculated mean and covariance represent the constrained

estimate of the state.

To apply the constraints via the truncation method, the state vector is first trans-
formed so that the constraints are decoupled. This results in s transformed constraints
that each involve only one transformed state, allowing the constraints to be enforced
individually on each transformed state. It should be noted that the order in which
constraints are applied can change the final state estimate. However, if the initial
constraints are decoupled, the order of constraint application does not change the

result [94].

Let the vector &;(k) be the truncated state estimate, and the matrix P;(k) be the
covariance of &;(k), after the first ¢ — 1 constraints have been enforced. To initialise

the process:

1=1
&;(k) = &(k)
P;(k) = P(k) (4.9)

The transformed state vector is given by:

zi(k) = p;W; PTT (w(k) — &(k)) (4.10)

where the matrices T'; and W; are derived from the Jordan canonical decomposition

of P;(k):

T W, TT = P;(k) (4.11)
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T; is an orthogonal matrix, and W is a diagonal matrix. The matrix p, is derived by

the Gram-Schmidt orthogonalisation [72] which finds the orthogonal p, that satisfies:

pWIPTT (k) = (87 (W) PR (k) 0 o 0] (4.12)

The Gram-Schmidt orthogonalisation method is as follows:

p is an n X n matrix with rows p;,Vj € (1,...,n), where n is the length of &;(k):

P1
p=|: (4.13)

Pn

The first row of p is given by:

= ]T( )TW1/2 4.14
Pj = ~ 1/2 (4.14)
(] (k) P;(k) b, (k)
Then, for a = 2,...,n do the following:
1. The ath row of p is calculated by:
a—1
_ Z (eg . Pj) P, (4.15)
j=1
where e, is an n-element unit vector where the ath element is 1:
0
0
e, = |1| < ath element (4.16)
0
0
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2. If p, is zero, replace it with:

a—1
Po =€l — (elT : Pj) P; (4.17)
j=1
3. Normalise p,:
Pa
Po = (4.18)
||pa||2

After performing the above transformation, only one element of z;(k) is constrained,
and the states in the transformed state vector z;(k) are independent standard normal

distributions. The transformed states are given by:

ci(k) < el zi(k) < di(k) (4.19)
where
VoL (k)P (k) (k)
and
di = <k> ¢T<k>5: (k) o)

Truncating the ¢-th element of the transformed state estimate results in a distribution
which is the original PDF between the constraints, and 0 outside of them. An example

is shown in Figure 4.2. The area of the remaining distribution is calculated as:

d; (k)

[l s to(4) )]

Ci(k:)

5

where erf(.) is the error function, defined as:
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erf(t) = \/2_ /eXp (—72> dr (4.23)

™

The truncated PDF is then given by:

aexp (=%) ¢ € le(k), di(k)]

0 otherwise

PDF (¢) = (4.24)

where

a= V2 (4.25)

di (k) ci(k)
v lerf (5) - ert (53)
The mean and variance of the Gaussian distribution that approximates the truncated

PDF is given by:

(4.26)

. [exp (‘C? (k)) (calk) — 20) — exp (‘di(k)> (di(k) — 2@] T
(4.27)

An example of the Gaussian approximation of the truncated PDF is shown in Fig-
ure 4.2b. The transformed state estimate, after the 7th constraint has been applied,

has the following mean and covariance:
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Truncated probability density function
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Figure 4.2 — (a) Gaussian distribution that is truncated at = —2 and = = 1.

(b) Gaussian approximation of the truncated Gaussian distribution. The truncated
Gaussian distribution has been normalised in this figure so that it has an area of
1.
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Ziv1(k) = pie;
Gina(k) =1, + (07 = 1) ese] (4.28)
where I, is an n x n identity matrix. Taking the inverse of the transformation in

Equation 4.10 gives the mean and variance of the state estimate after the truncating

with the ith constraint:

i1 (k) = TiW,?pl 21 (k) + (k)
P (k) =T;W”p! Giy1 (k) p,W T (4.29)

This process (from Equation 4.10 to Equation 4.29) is repeated for the s constraints,
incrementing ¢ each time and using the constrained state estimate after constraint ¢
has been applied as the input state estimate for constraint i+1. After the s constraints

have been applied, the constrained state estimate is:

j(k) j’s—i—l(kj)
P(k) = P (k) (4.30)

4.2 Kalman Filter with Soft Constraints

This section presents a novel extension of the truncation method introduced in Sec-
tion 4.1.2 to soft constraints that have uncertainty described by Gaussian distribu-
tions. Existing truncation methods for soft constraints have used numerical integra-
tion [20, 67]. Unlike these existing methods, the method developed in this section

presents an analytical solution for the integration. In Section 4.2.1, the Gaussian
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distributed constraints are transformed so that they are applied to a standard normal
distribution. Section 4.2.2 presents an analytical method of truncating a standard
normal distribution when there is one constraint, and Section 4.2.3 extends this to

an interval constraint.

4.2.1 Transforming Soft Constraints

Consider the following s linearly independent constrains on the state of a system:

Ap(k) < @l (k)x(k) < Bn(k)  m=1,...,s (4.31)

where the constraints are described by a Gaussian distribution:

A (k) ~ N(Ma,ma Ug,m)
By (k) ~ N (bs,m, 03 1) (4.32)

Equation 4.31 describes a two-sided constraint on the linear function of the state
described by ¢! (k)x(k). One sided constraints can be represented by setting fiq,, =
—00, OI [, = 00, and hard constraints can be implemented by setting the standard

deviation of the constraint o,,, ~ 0 or o3, ~ 0 as required.

After transforming the state using the process described in Section 4.1.2, the trans-

formed constraints are given by:

Ci(k) < el zi(k) < Di(k) (4.33)

where
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Cz(k) ~ N(/lc,n O-g,i)
 pai(k) — &7 (B)&i(k)

NC,i<k) = T =
o2 () = 0ai(k) (4.34)
A TR B (k) i) |
and
Di(k) ~ N (pta;, o3;)
o ) = S0
etk
9 _ Ug,z’(k)
Ud,i(@ - ¢z“(]€)]51(k;)¢z(k?) 3

4.2.2 Applying a One-Sided Soft Constraint

First, consider the case where there is only one constraint on the transformed state:

Ci(k) < el zi(k) (4.36)

As each element of z;(k) is a standard normal distribution, the resultant truncated

function for the ith element of the constrained estimate, Z(el Z,,,(k)), is given by:

Z(el Z;11(k)) = PDF (el z;(k)) x CDF(C;(k))

~ o () [t (S22 (4.37)

where CDF is the Cumulative Distribution Function. This function, once normalised,

represents the conditional probability distribution of e z;(k) that satisfies C;(k) <

el'z;(k). To normalise the function in Equation 4.37 to a PDF, the area is calculated

as:
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JRACEONS
_ 7 L o (~¢2/2) [1 +erf (C = “)] d¢
Joavar 0eiv2 (4.38)
= 1 1 —erf He
2 2 (ag,i + 1)

The truncated PDF is then given by:

PDF(¢) = a;exp (—¢%/2) [1 +erf (i_%ﬂ (4.39)
where

1

V2o |1 —erf | et
[ (, /2(a§’i+1)>]

The mean and variance of the ith element of z;(k) after the truncation has been

(4.40)

performed are calculated as follows:

pi = %_Zo G exp (_C2/2) [1 + erf (i;jg)] d¢

20 o
= Lexp —/;7’ (4.41)
0'21' + 1 2(Jc,i + 1)
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o = / (¢ — mi)*exp (—¢*/2) [1 +f(<0_ %)] d¢

—00

2 —er ,uc,z'
Vr ((1 +4}) (1 f (2(031' - 1)))) (4.42)

2 ,U%Z He,i
. c _ , L}y
* o2 +1exp( 2(03,1"“1)) <‘72,z'+1 N)]

c,

The derivation of the above integrals are presented in Appendix A. Figure 4.3 shows
examples of a lower constraint being applied to a standard normal distribution. As can
be seen, the developed method is a good approximation of the truncated distribution

in these examples.

The equations for applying an upper constraint of the form:

el z;(k) < Di(k) (4.43)
are as follows:

o = 1 (4.44)

Vo |1+ erf | ——£di

2(02 +1)

20 sz‘ )

i = ————exXp | ———5——— 4.45
,/aﬁ’i—kl ( 2(U§,¢+1) ( )

(4.46)
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Figure 4.3 — A comparison of the actual truncated PDF and Gaussian approximation
of the truncated PDF for various lower constraints.
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4.2.3 Applying an Interval Soft Constraint

Now consider the case where there are two constraints. The two constraints acting

on the transformed state are:

Ci(k) < e zi(k) < Di(k) (4.47)

The resultant truncated function for the ith element of the constrained estimate,

Z(efz;,1(k)), is given by:

Z(e Zi (k)
= PDF (e’ z;(k)) x CDF(C;i(k)) x (1 — CDF(D;(k))) (4.48)

= gy (073) [t () e (L)

This function, once normalised, represents the conditional probability distribution of

el'z;(k) given C;(k) < el'z;(k) < D;(k).

The integrals required to calculate the area, mean, and variance of the above function

contain integrals of the form:

/ exp (—552) erf(az + b)erf(ax + B)dx (4.49)
which does not have an analytical solution. The following approximation is proposed

for the CDF(C;(k)) x (1 — CDF(D;(k))) term in Equation 4.48:

et () e (5]

- C—tei\ _ o€ = Hai
~ 2 lerf( Uc,i\/§ ) erf( Ud,i\/§ )] (4.50)

This yields an approximation of the truncated function given by Equation 4.48 of:
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L 2 C = Heyi ¢ — Hd,i
on exp (—C /2) [erf < o2 > —erf (Wﬂ (4.51)

This approximation relies on the condition that p.; < pq;, and the assumption that
the distributions of the constraints do not significantly overlap. If these are satisfied,
it is highly likely that one of the error function terms will be equal to 1 when the other
is at an intermediate value, giving a good approximation of the actual distribution,

as illustrated in Figure 4.4.

Error function terms for each constraint

Error function term

Lower constraint AN
-1 — — - Upper constraint —~ —

-5 -4 -3 -2 -1 0 1 2 3 4 5
X

Figure 4.4 — Error function terms for a lower constraint with p.; = —2 and o.; =1
and an upper constraint with pg; = 2 and o4; = 1. In this case, one of the error
function terms is always close to 1.

An overlap metric, 7, is defined as:

Mg — My
Odi+ Oci

(4.52)

and a shape metric, ¢, is defined as:
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5:

log (") | (4.53)
0d,i

v is a measure of how much the probability distributions of the two constraints over-
lap, and 9§ is a measure of how different the shapes of the probability distributions of
the constraints are. Figure 4.5 shows examples of this approximation applied to sev-
eral different cases of v and d. As can be seen, the approximation is an almost perfect
approximation in Figure 4.5a, with the approximation degrading as v decreases in
the other examples. In Figure 4.5d, the constraint distributions substantially over-
lap one another and the approximation suffers as a result. Figure 4.6 compares the
PDF generated using the approximation with the actual truncated PDF for the same
values of v and 9 as Figure 4.5. For the first two cases, the approximate PDF is an
almost perfect approximation of the actual PDF. In Figure 4.6¢, approximate PDF
is also quite close to the actual PDF, despite the difference in the approximations
shown in Figure 4.5c. Finally, in Figure 4.6d, there is a large deviation between the

approximate and actual PDFs.

Figure 4.7 shows the Kullback-Leibler (KL) divergence [58] between the actual and
approximate distributions for various ¢ and «. The KL divergence is a measure of the
difference between two distributions, and as it nears 0, the approximation approaches
the actual distribution. Increasing v and decreasing J improves the approximation.

For v > 3, the approximation very closely matches the actual distribution, regardless

of 4.
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Figure 4.5 — A comparison of the actual and approximate functions for the interval
constraint given in Equation 4.50 for various overlap metrics, v, and shape metrics,
. In (a), the approximate function is an almost perfect approximation of the actual
function. In (d), the constraint distributions overlap significantly.
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Figure 4.6 — A comparison of the actual and approximate truncated PDFs for the
interval constraint for the same overlap metrics, v, and shape metrics, § as Fig-
ure 4.5. In (a) and (b), the approximate PDF is an almost perfect approximation
of the actual PDF.
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KL divergence between approximate and actual distribution versus overlap metric,y
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Figure 4.7 — Comparison of the KL divergence between the actual and approximate
distributions as a function of the overlap metric, v, where the lines are of constant
shape metric, 6. For § > 3, the KL divergence is approximately the same as for
0 = 3. The unevenness of the lines is due to sampling noise.

To normalise the approximated function to a PDF, the area is given by:

/ Z(el Zi11(k))d¢
= i 1 C — Heji C — Hd;
__ZO Nor exp (—C2/2) [2 <erf (%/5) —erf <0dz\/§>>] d¢ (4.54)
= } erf o Hdi erf He,i
2

2 (aii + 1) 2 (ozﬂ- + 1)
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The mean of the PDF is then given by:

= o /Cexp (_<2/2) Kerf(ca %) erf(gad_i‘/‘%i))]dg
B 1 ch M?LZ
R e ) e e
where

_Mai | _Mei

var lerf ( 2(a§,i+1)) ert ( 2(a§7i+1))]
Finally, the variance is given by:

o’ = q; 7(C—ut)2exp (—C2/2) Kerf(g ’u“> —erf(c_ >>]d<
(2 Zioo 1 ,\/_ o \/_
[ ( 1—|—ul erf Hji ) —erf( Hei ))
2( O’dl a + 1
(4.57)

ch
/ CZ 20“4— a ;1
( :ud'L )( Hd,i 9
— /’Ll
\/O'dz—Fl Odz+1) dz+1

|
hes m)
)

The derivations of these integrals are not provided, but can be easily derived using
the solutions provided in Appendix A for the one-sided constraint. Example inter-
vals constraints applied to a standard normal distribution are shown in Figure 4.8.
In Figure 4.8c, the lower constraint is effectively a hard constraint, and the actual

truncated PDF is highly non-Gaussian in the left tail.
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Figure 4.8 — A comparison of the actual truncated PDF and Gaussian approximation
of the truncated PDF for various interval constraints.
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What to do when the interval approximation conditions are not satisfied

The approximation in Equation 4.51 is a good approximation when p.; < 4, and
the two constraint distribution do not significantly overlap. When these conditions
are not met, the approximation can be poor. In particular, when v < 0, the ap-
proximation is not valid. In such cases, a better approximation of the constrained
distribution can be achieved by applying the constraints individually as one-sided
constraints instead of an interval constraint. It was found that it is generally best to
apply the highest variance constraint first and the lowest variance constraint second
if 6 > 0.5. If 9 < 0.5, then applying the constraints from most extreme to least
extreme tends to produce the best results. The lower constraint is considered the
most extreme constraint if p.; > —pg;, otherwise the upper constraint is the most

extreme constraint.

Figure 4.9 shows the calculated mean and standard deviation when 6 = 0 using the
various methods and compared against a numerically calculated mean and standard
deviation. These clearly show the degradation in performance of the interval con-
straint approximation, particularly for v < 0. Of the two possible orders of applying
the constraints, applying the most extreme constraint first consistently yields the best
results. Figure 4.10 and Figure 4.11 compare the methods for § = 0.5. The interval
approximation very quickly diverges from the actual result when v < 1. For this case,
applying the highest variance constraint first produces results closest to the numerical

answer.
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Figure 4.9 — (a) A comparison of the resultant mean, p, when applying an interval
constraint for § = 0. Note that the result for applying the most extreme constraint

first is essentially the same as the numerical result.

(b) A comparison of the

resultant standard deviation, o, when applying an interval constraint for 6 = 0.
The methods tested were applying the constraints using the interval constraint
formulation, and as two one-sided constraints applying either the most extreme
Numerical results were obtained through MC

or least extreme constraint first.

analysis.
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Figure 4.10 — A comparison of the resultant mean, p, when applying an interval
constraint for § = 0.5. (b) is a zoomed in version of (a). The methods tested were
applying the constraints using the interval constraint formulation, and as two one-
sided constraints applying either the lowest variance or highest variance constraint
first. Numerical results were obtained through MC analysis. The result obtained
by applying the highest variance constraint first is mostly hidden by the numerical

result.
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Standard deviation versus overlap metric
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Figure 4.11 — A comparison of the resultant standard deviation, o, when applying an
interval constraint for § = 0.5. (b) is a zoomed in version of (a). The methods
tested were applying the constraints using the interval constraint formulation, and
as two one-sided constraints applying either the lowest variance or highest variance
constraint first. Numerical results were obtained through MC analysis. Applying
the highest variance constraint first yielded results closest to the numerical result.
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4.3 Results

The soft-constrained KF was compared against an unconstrained KF and a hard-
constrained KF that treats the soft constraints as hard constraints. The resource level
of a user agent with a capacity of 1000L was estimated using noisy discrete sensors
placed at every 10% of capacity from 10% to 90%. The methods were evaluated with
uncertainty on the set-point of the discrete sensors of 0%, 0.5%, 1%, 1.5%, 2%, and
2.5%. Perfect knowledge was assumed at levels of 0% and 100%. The user agent
used the resource at a mean rate of 0.5L/s with a standard deviation of 0.05L/s. The
operation of the user agent was simulated 1000 times for 30 minutes with the resource
level starting at 100% with no uncertainty. After approximately 27 minutes, the user
agent was replenished by a replenishment agent which has a mean replenishment rate
of 10L/s and a standard deviation of 0.5L/s. The estimate and uncertainty provided

by the soft constrained KF for one of the simulations is shown in Figure 4.12.

Each method was tested in 1000 simulations for each sensor uncertainty, and the
Root Mean Squared Error (RMSE) for each method was calculated. The RMSE
for each method is shown in Table 4.1. The RMSE and percentage improvement of
each method are graphed in Figure 4.13. When the sensors had no uncertainty, the
hard- and soft-constrained methods produced the exact same result, outperforming
the unconstrained KF resulting by 14.5%. The tracking performance of all methods
degraded as the uncertainty of the sensors was increased—the information provided
by the constraint is reduced as the uncertainty is increased. The behaviour of the
soft-constrained KF approaches that of the unconstrained KF when the sensors have
an uncertainty of 2.5%, while the hard-constrained KF is actually outperformed by
the unconstrained KF in this case by 7.4%. In this case, the soft-constrained KF
outperforms the unconstrained and hard-constrained KFs by 3.9% and 11.1% respec-
tively. In all cases, the soft-constrained KF performs as good as, or better than, the

other methods.

The main advantage of the soft-constrained KF is that it produces more confident

estimates than the unconstrained KF when the estimate is close to the constraints,
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Resource level versus time for soft constrained Kalman filter
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Figure 4.12 — Soft-constrained KF example with sensor uncertainty of 1% of maximum
capacity. The dashed line is the estimate of the resource level, and the grey shading
represents an uncertainty envelope around the estimate of two standard deviations
either side. The soft-constrained KF uses the positions and uncertainty of the
sensors to improve the estimate of the resource level as it approaches the sensors.

Table 4.1 - RMSE (L) for each Kalman filter method

Sensor uncertainty 0% 0.5% 1% 1.5% 2% 2.5%

Unconstrained 7.67 898 10.66 13.58 15.37 16.88
Hard-constrained 6.56 8.06 10.14 13.27 15.81 18.24
Soft-constrained  6.56 8.04 991 12.72 14.66 16.22

without producing overconfident estimates like the hard-constrained KF. This is
illustrated in the first example shown in Figure 4.14. When the estimate is far away
from the constraints, the soft-constrained KF produces almost exactly the same result
as the unconstrained KF. As the estimate approaches the constraint, the behaviour
of the methods diverge. The unconstrained KF does not use the information provided
by the constraint so the uncertainty of the estimate continues to grow, even though
most of the uncertainty lies beyond the constraint. The soft-constrained method on

the other hand, uses the knowledge of the constraint to produce an estimate that is
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closer to the actual value with higher confidence. The hard-constrained KF uses the
mean value of the constraint to try to improve the quality of the estimate. However,

it results in overconfident estimates which stray from the actual resource level.

In cases where the estimate of the unconstrained KF lies close to the actual value, the
constrained methods can produce worse results in terms of RMSE. The second ex-
ample shown in Figure 4.15 demonstrates this. In this example, the hard-constrained
KF again produces an overconfident estimate close to the constraint. While the soft-
constrained KF has a higher tracking error than the unconstrained KF close to the
constraint, it produces a more confident estimate while still containing the actual

value within a two-o confidence interval.

Additional results of the soft-constrained KF applied to other applications are pre-
sented in Appendix B.
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Figure 4.13 — Constrained KF results. (a) shows the RMSE of each method versus the
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(b) Percent difference

sensor uncertainty. The sensor uncertainty is a percentage of the total capacity of

the user agent. (b) shows the comparative percentage improvement of each method
versus the sensor uncertainty. Points positioned above 0 are an improvement over
the comparison method, while points positioned below 0 are a decrease in perfor-
mance compared to the comparison method. The soft-constrained KF performs as
good as, or better than, the unconstrained and hard-constrained methods, while
the hard-constrained KF is outperformed by the unconstrained KF when the sensor

uncertainty is high.
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Figure 4.14 — This example shows the behaviour of the various KF approaches as it
approaches an uncertain sensor at a resource level of 60% of maximum capacity
(600L), where the sensor has uncertainty of 1%. (a) shows the unconstrained KF.
In (b), the hard-constrained KF is overconfident, resulting in a two-o confidence
interval that does not include the actual resource level. Using the soft-constrained
KF in (c), the actual resource level stays within the uncertainty of the estimate.
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Figure 4.15 — This example shows the behaviour of the various KF approaches as it
approaches an uncertain sensor at a resource level of 50% of maximum capacity
(500L), where the sensor has uncertainty of 1%. In this example, the estimate
produced by the unconstrained KF in (a) lies very close to the actual value. In (b),
the hard-constrained KF is overconfident, resulting in a two-o confidence interval
that does not include the actual resource level. The actual resource level lies within
the two-o confidence interval produced by the soft-constrained KF in (c), despite
the estimate diverging from the actual resource level.
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4.4 Summary

This chapter introduced methods for estimating the current state of a system. Sec-
tion 4.1 presented the general formulation of the KF and an existing truncation
method for dealing with hard constraints on the state. Hard constraints are common
in SCAR scenarios as resource levels are subject to hard limits. Some sensors that
are used for measuring the resource level can be modelled as a soft constraint on the
system state. Section 4.2 extended the truncation method to soft constraints, de-
riving novel analytical methods for approximating the resultant truncated Gaussian

distribution.

The soft-constrained KF was shown in Section 4.3 to consistently outperform a regular
unconstrained KF and a KF that assumed hard constraints. It resulted in a lower
RMSE of up to 14.5% and 11.1% compared to the unconstrained and hard-constrained
KFs respectively. The soft constraints were used to reduce uncertainty in the state
estimate compared to the unconstrained KF without producing the overconfident

results of the hard-constrained KF'.

The truncation approach developed for constraining the state estimate is not exclusive
to KFs, and can be applied in any situation that deals with Gaussian distributions
that have constraints. In the most general sense, the truncation approach yields
a Gaussian approximation of the conditional probability distribution of a Gaussian
distributed variable that is conditioned on other Gaussian distributed variables. This
is used in Chapter 5 for conditioning the probability distributions of the arrival times

of replenishment agents at a user agent based on their order of arrival.

Chapter 5 next presents methods for predicting the future state of the system, taking
the estimated system state from the soft constrained KF method developed in this
chapter as an input. The prediction methods make use of Gaussian approximations

to quickly calculate the expected future state.
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Prediction

This chapter develops methods for predicting the future state of the system. As
shown in Figure 5.1, the prediction component of belief space scheduling sits within
the optimisation component, and is used by the optimisation methods to evaluate
the tasks and schedules under consideration. It does this by predicting a belief of
the future state of the system based on the belief of the current state, the task or

schedule of tasks, and a model of the system.

The majority of approaches to prediction within the scheduling literature either ignore
uncertainty [8], use Monte Carlo (MC) simulation [83], or get a worst-case estimate by
using conservative estimates of the uncertain parameters [70]. Belief space planning
approaches, on the other hand, typically use a Kalman Filter (KF) to both estimate
the current state of the agent and predict the future evolution of the agent given a
plan. They use a discrete-time approach, predicting the outcome of an action and
simulated observation at each time-step. Many of these approaches simulate multiple
observations at each time-step to build an accurate representation of the future belief
[11, 59]. These approaches require significant computation time and generally use very
short planning horizons [44, 45]. An assumption that is commonly used to reduce
the computational requirements of belief space planning methods is the maximum
likelihood observation assumption, where the simulated observation is the most likely

observation given the belief of the agent [81].
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Figure 5.1 — The components of belief space scheduling. This chapter outlines methods
for predicting the future state of the system.

Unlike belief space planning problems, where a different action is taken at each time-
step, the tasks in scheduling problems may take many time-steps to be completed.
This makes predicting the future state of the system using a discrete-time approach
problematic—in the time that one task is completed, many hundreds or thousands of
observations may have been received. Simulating multiple observations to accurately
represent the future belief is simply infeasible—predicting 100 steps into the future
with only 10 sampled observations per time-step would lead to a belief tree with
10'% nodes. Using maximum likelihood observations is also not appropriate as it can
lead to unrepresentative simulated beliefs. Consider an extreme example where the
system has perfect sensing—using the maximum likelihood observation assumption
leads to a simulated belief that has no uncertainty, thus ignoring the uncertainty in

the system parameters.

Given the issues with simulating observations discussed above, the methods developed
in this chapter assume that no future observations are made. This enables the use

of continuous-time methods which calculate probability distributions for the times at
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which events occur. Two types of methods are explored—a MC approach and an ana-
lytical approach. The MC approach uses multiple samples of the parameter and belief
distributions to construct a belief of the future state. The analytical method, instead
of sampling the distributions, uses approximations to enable the entire probability

distributions to be propagated into the future.

Section 5.1 first formulates the MC prediction method for SCAR scenarios. Sec-
tion 5.2 then presents the analytical method for single-replenishment agent SCAR
scenarios, including the approximations required to use parameters and beliefs that
have uncertainty described by Gaussian distributions. Section 5.3 then extends the
analytical method to multi-replenishment agent SCAR scenarios. Finally, Section 5.4
introduces several scenarios and evaluates the analytical methods against the MC

approach.

5.1 Monte Carlo Method

This section outlines the MC approach for predicting the future state in a SCAR
scenario given a schedule. The basic idea behind MC simulation is to simulate the
evolution of the system many times using a deterministic model with parameter values
sampled from the probability distributions for each parameter. By using enough
samples, eventually an accurate distribution of the future state will be obtained. MC
approaches have been widely used for the estimation problem [9, 103], and the error of
the solutions produced by these results is known to decrease as a function of the square
root of the number of samples [28]. Consequently, achieving accurate results in high
dimensional problems can be computationally very expensive. It is introduced in this
thesis primarily as a benchmark for the analytical methods developed in Section 5.2

and Section 5.3.

The algorithm for the MC method is outlined in Algorithm 5.1. It begins by sampling
a state from the initial state on line 3. It then considers the tasks in the schedule in

the order that the replenishment agents arrive.
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Algorithm 5.1: Monte Carlo method
MonteCarlo (V;,isia1> @, Msamples)
input : Current system state, 1,,,,,4;; sSchedule, 8; number of samples, 1gqmples
output: Weighted downtime, \; state, ¥
1 A<0
2 for n € {1, ..., nsampies } dO
3 sample [, ; and [, ; from ;0 Vi, ]
4 while there are tasks remaining in the schedule, @ do
s
5 toj < tij +—Vj // calculate arrival time
a,j
6 J < index of replenishment agent that will arrive at its next task first
7 if the task is to by replenished by the replenishment point then
co— 1 .
8 Lyj < taj+tg + S Lpr // replenishment finish time
r"'
9 lfl,j < Cq 5
10 else
11 i < index of user agent that replenishment agent j is replenishing
12 if there are already replenishment agents replenishing or waiting to
replenish user agent i when replenishment agent j arrives then
13 K < set of replenishment agents at user agent ¢
14 to; < max (t,,,t,x Vk € K) // wait for other agents
15 tpji < taj +tsa; // time after setup
16 tai < tyi+ wt // deadline
U,
17 teji < max (0, t;; —tq;) // downtime of user agent
18 A A+wit.;; // weighted downtime
19 lui < max (0, l,; —ts;7y;) // level before replenishment
lai Cui— lus
20 trji < Min (w’ M) // replenishment time
Taj Taj = Tui
21 lui < min (cy s, lui +trji (ra; —Tui)) // user agent level
22 lo; < max (0, lo; —t,;i7a;) // replenishment agent level
23 tri < tpji + 1t // update last replenishment time
24 tij < tyi +tpa; // time after packup
25 remove the task 6, from the schedule,
26 t =min (¢,; Vj) // schedule end time
forall the user agents, © do
27 ta;  tgi+ — // deadline
Tuyi
28 tei < max (0, t —tq;) // downtime
29 A A+ wit.; // weighted downtime
30 A <~ —— // average downtime
Nsamples
31 1 < average of the predicted state of the system
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The time that a replenishment agent arrives at its next task, ¢, ;, is given on line 5.
Here, s = s, ; if the task is to be replenished by the replenishment point, and
5 = Squ,j, if the task is to replenish a user agent. t; ; is the time that the replenishment

agent left its last task, and v, ; is sampled from the probability distribution for V, ;.

If the task of the replenishment agent is to be replenished by the replenishment point
(line 7), then the time that the task is completed at, ¢y ;, is given on line 8 where t,,,
rr, and t,, are sampled from their respective distributions. Note that, if this is the
first task in the schedule for replenishment agent j, [, ; is sampled from the belief of
the current resource level, L, ;, generated using the estimation methods in Chapter 4.

The resource level of the replenishment agent after this task is simply ¢, ; (line 9).

If the replenishment agent arrives at the user agent while one or more replenishment
agents are replenishing or waiting to replenish the user agent, then the replenishment
agent must wait until these agents have finished replenishing the user agent before
commencing setting up (line 14). The time at which the replenishment agent begins
replenishing the user agent is given on line 15, where ¢, ; is sampled from the pa-
rameter distribution. The time at which the user agent exhausts its supply of the
resource is given on line 16, where the resource level, [, ;, is sampled from the belief
of the current resource level, and the resource usage rate, r,;, is sampled from the
parameter distribution. ¢7; is the time at which the last replenishment of user agent
1 finished. If the user agent has not been visited by a replenishment agent yet in the

schedule, then ¢;; = 0.

If the user agent exhausts its supply of the resource before the replenishment agent
begins to replenish it, the user agent will cease operation and will incur downtime
(line 17). The resource level of the user agent before the replenishment begins is
calculated on line 19. The time taken to replenish the user agent, ¢, ;;, is then given
on line 20, where r, ; is sampled from the parameter distribution. Note that the time
taken to replenish the user agent depends on whether the replenishment agent has a
sufficient supply of the resource to fully replenish the user agent. In addition, the user
agent is assumed to continue using the resource while being replenished. The new

levels of the user agent and replenishment agent after the replenishment are presented
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on line 21 and line 22 respectively.

The time that the user agent was last replenished is then updated on line 23, and
the time that the replenishment agent finishes packing up is calculated on line 24.
Finally, any downtime incurred to the end of the schedule is calculated on line 29 by

using the completion time of the replenishment agent that finishes its schedule first.

5.2 Single-Agent Analytical Method

This section presents a novel analytical method for calculating the future state of
single-replenishment agent SCAR scenarios. This prediction method is outlined in
Algorithm 5.2. The major difference between this approach and the MC approach
detailed in Algorithm 5.1 is that, instead of sampling the initial belief and parameter
values, this method uses the entire probability distribution for the initial belief and for
each parameter. Note that the presented method does not assume a specific type of
probability distribution, and any distribution can be used provided methods exist for
performing the necessary operations. Section 5.2.1 introduces approximations that

enable Gaussian distributions to be used to represent the beliefs and parameters.

The distribution for the time that a replenishment agent arrives at its next task, 7T, ;,
is given on line 3. If the task of the replenishment agent is to by replenished by
the replenishment point, then s = s, ;, otherwise s = s, ;. The distance to the
replenishment point, s, ;, and the distance to the operational area of the user agent,
Saqu,ji, are scalar values here as the replenishment agent is leaving its previous task
and the distances between these points are assumed to be known to a high degree
of certainty. If the replenishment agent was partway along a road and had poor
sensing such that its position was not known to a high degree of certainty, probability

distributions of S, ; and Sy, ;; respectively would be used for these distance values.

If the task of the replenishment agent is to be replenished by the replenishment point
(line 4), then the distribution for the time that that task is completed at, T}, is

given on line 5, where L, ; is the belief of the resource level. The resource level of the
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Algorithm 5.2: Analytical method
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Analytical (¥;,ii01 05 samples)

input : Current system state, ¥,,,;,.4;; schedule, 8
output: Weighted downtime, \; state, ¥
A0,5+1

while there are tasks remaining in the schedule, @ do

S
T,; < 1;; +——// calculate arrival time

V..

a?]

if the task is to by replenished by the replenishment point then

Ty, < To;+ Ts + % + T, // replenishment finish time
T

La,j < cCa,;

Ise

1 < index of user agent that replenishment agent j is replenishing
Ty i< Toj+Ts,; // time after setup

Tai < Tri+ Dt
7 ’ Ru,i

T.;i < Tpji —Tq; // downtime distribution

// deadline

E(downtime) < /tTc,j,i dt // expected downtime
0

A < A+ w; E(downtime) // weighted downtime
Ly < (Ly; — (Ty ;5 — Tfs) Ru,i)# // level before replenishment

Qu,i,j < (Cu,i - Lu,i) ﬁ // replenishment quantity
a,) U,

e (Qu,i,j)*SL“‘j // adjusted quantity
*

u7z7‘7

Tyji ubd gy replenishment time

a,j
Ly < (Lui — (Thz — T¥,) Ru,i)# // user agent level
Laj + (Laj — Qu,z’,j)# // replenishment agent level
Ty, < Ty ;i+1vji // update last replenishment time
Tj < Tfi+ Tpa; // time after packup

remove the task 6;; from the schedule, 6
forall the user agents, ¢+ do

Lu %
Ty, < Ty + R— // deadline

u,l

T.i < T, ; —Ty; // downtime distribution
oo

E(downtime) < /tchi dt // expected downtime
0

A < A+ w;E(downtime) // weighted downtime
Y < (Lqj, Ly; Vi) // predicted final belief state
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replenishment agent after this task is then given by ¢, ; (line 6).

If the task is instead to travel to and replenish a user agent, the distribution for the
time at which the replenishment agent begins replenishing the user agent is shown on
line 9. The deadline for the user agent is given on line 10. If it has not been visited yet
by a replenishment agent, then 7; = 0. The distribution for the downtime incurred

by the user agent, T, ;;, is presented on line 11. Only values in the positive domain

Vi)
contribute to the downtime, and values below zero should be ignored. This distribu-
tion can be used in a chance-constrained formulation by calculating the probability

that downtime will be incurred as:

P(downtime) = /Tcmdt (5.1)
0

This thesis uses the expected downtime so that the total expected downtime of the
system can be minimised, where the expected downtime is calculated using the inte-

gral on line 12 and E is the expectation operator.

The level of user agent ¢ at time 75, ;; is given on line 14, where the # operator denotes
that the distribution has been adjusted to account for hard constraints on the state
of the system. Note that this adjustment is only required when using distributions
that do not already fit within the hard constraints. A method for adjusting Gaussian
distributions against hard constraints is discussed in Section 5.2.1. The quantity of
the resource required to fully replenish the user agent, @), ;, is given on lines 15 and
16. Here, * < L, ; means that (), ; ; is adjusted so that it does not exceed the resource
level of the replenishment agent, L, ;, as the replenishment agent may have insufficient
supply of the resource to fully replenish the user agent. A method for performing this

soft adjustment for Gaussian distributions is outlined in Section 5.2.1.

The time taken to replenish the user agent is then given on line 17. The new levels of
the user agent and replenishment agent after the replenishment are given by line 18
and line 19 respectively. Note that the unadjusted @), ;; is used on line 19 as using

(;.;; can underestimate the amount of the resource transferred by the replenishment
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agent. The # adjustment ensures that L, ; remains primarily in the positive domain.
The time that the user agent was last replenished is updated on line 20, and the
time that the replenishment agent finishes packing up is given on line 21. Finally,
any additional expected downtime at the end of a schedule is calculated for each user

agent on line 26.

5.2.1 Gaussian Approximations

From this point forward, this thesis assumes that the stochastic parameters can be
described by independent Gaussian distributions. Gaussian distributions were chosen
as the addition and subtraction of Gaussian distributed variables results in a Gaussian
distributed variable. Other operations such as division, multiplication, and inversion,
however, result in non-Gaussian distributions. To facilitate the propagation of the
distributions in the analytical prediction method, it is convenient to approximate
the resulting non-Gaussian distributions as Gaussian distributions. The following

subsections discuss these approximation methods.

It should be noted that the probability distributions for quantities such as the time
when the user agent was last replenished and the time taken to replenish the user
agent are not independent and will have some level of covariance. In this thesis the
covariance between all calculated distributions has been assumed to be zero. The
quality of the results presented later in Section 5.4 demonstrate that these approxi-

mations and assumptions are acceptable.

Inverse Gaussian Distribution

A Gaussian approximation of the probability distribution resulting from the inverse
of a Gaussian distributed variable was not found in the examined literature, so the

following approximation was formulated. Consider:

C
j
G
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where [ is an inverse Gaussian distributed variable, G is a Gaussian distributed
variable described by mean, g, and standard deviation, og, and c is a constant. If
the resultant inverse Gaussian distribution is assumed to be a Gaussian distribution,
the points on [ for ug — og and ug + o¢ will be positioned at points pu; + o; and
pur — oy respectively. Using this assumption yields the following approximations for

the mean and standard deviation:

1
pr=g ((ur +o1) + (pr — o1))
1( c c )
== +
2 \pug —og  pa+og
Chac
_ e (5.3)
e = 0G
1
0125((,“1““71)_(#1_01))
i)
2 \pug —oag pa+og
Coq
_ 6 (5.4)
rekcre

Figure 5.2 shows the inverse Gaussian distribution, the resultant approximation and
the residual error between the two distributions for two g /o ratios. In Figure 5.2a,
the approximation is very good, matching the shape of the inverse Gaussian distri-
bution closely. Using a smaller ug/og ratio in Figure 5.2b, the resultant inverse
Gaussian distribution is skewed to the right. The approximation cannot account for

the skewness and suffers as a result.

The KL divergence as a function of the ug/o¢ ratio is shown in Figure 5.3. As can
be seen, the approximation improves as the ug/og ratio increases. As ug/og — 0,
large portions of the distribution of G are in the negative domain. However, when

G represents a physical quantity such as velocity, it does not make sense for this
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Figure 5.2 — The approximation for the inverse Gaussian distribution. (a) shows an
example of the approximation for pg/og = 20, and (b) shows an example of the
approximation for pg/og = 5.
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KL Divergence for Inverse Gaussian Approximation
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Figure 5.3 — KL divergence for the inverse Gaussian approximation

quantity to be negative as, in the case of velocity, it implies that the agent would be
travelling away from its destination. Thus, the usefulness of this approximation is
limited to situations where the majority of GG is in the positive domain. This is likely
to be the case for most practical scenarios. For scenarios where this is not the case,
a Gaussian distribution may not be the best representation of the physical quantity

under consideration.

Gaussian Ratio Distribution
A method for approximating a ratio of Gaussian distributed variables is given in [68].
A ratio distribution, R:

FE
R=7F

(5.5)

with distributions E ~ N (ug,o0r) and F ~ N (up,or), and correlation between E

and F' of p =0, can be approximated with a Gaussian distribution where:
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r=— (5.6)
OFE
_ HE
a= - (5.7)
p="FE (5.8)
OoF

_ 5.9
HR = (1,010 — 0.2713) (5.9)
1 a?+1 -
1 _ 1
R r\/62 10108 —3.795 @ HER (5.10)

This approximation is only valid for a < 2.5, b > 4 [68]. As a — oo, the ratio
distribution approaches the inverse Gaussian distribution and can be approximated
using the inverse Gaussian approximation presented above. For situations where
a > 2.5, this thesis uses the inverse Gaussian approximation method with E treated

as a scalar, e = up.

Gaussian Product Distribution

An approximation to the product of two Gaussian distributed variables is presented

in [112]. For a Gaussian product distribution, M:

M = EF (5.11)

Then:

fiar = [LEpE (5.12)
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03, = 0por(1+ 6% + 6%) (5.13)
where
5, = 1= (5.14)
Oy

Ware and Lad [112] note that the approximation improves as dg and dp become large.

Expected Value

The expected downtime for a user agent is calculated using the integral on line 12 of
Algorithm 5.2. If the distribution for the downtime is a Gaussian distribution with

and o, this becomes:

E(G) = 07 " exp (‘” — ”)2> da (5.15)

Solving the definite integral gives:

E(G) = gu + erf(alf/ﬁ)) + \/27 exp <—2‘j:2> (5.16)

Adjusting the Distribution against Hard Constraints

Several distributions in the analytical framework presented in this section were re-
quired to be adjusted to take into account hard limitations on the state. Line 14 in
Algorithm 5.2, for example, specifies the resource level of the user agent before it is
replenished. The minimum value that this resource level can take is 0, and the maxi-
mum value is ¢, ;. However, when using Gaussian distributions, which have a domain
of (—o0, 00), to represent these distributions, some of the probability distribution lies

outside of the physical limits of system. Where distributions have been adjusted to
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account for hard limits, denoted by a #, a similar approach to the truncation method
for the KF presented in Section 4.1.2 has been used. Unlike in the truncation method
for the constrained KF, the parts of the probability distribution that lie outside of
the physical limits of the system are not discarded, and are instead grouped together
as a discrete probability that the system is at the physical limit. This is similar to the
rectified Gaussian distribution introduced by Socci et al. [95] and used by Meng et al.
[71]. A rectified Gaussian distribution restricts the domain to be non-negative, group-
ing any probability in the negative domain at 0. The generalised rectified Gaussian
distribution is introduced here, where the domain is restricted to be between two ar-
bitrary points, with the probability outside of those points grouped at the respective

point.

Figure 5.4 illustrates the rectification concept. In this example, the probability distri-
bution describing the predicted future resource level extends into the negative domain.
It is appropriate to group the probability in the negative domain at zero as it rep-
resents the probability that the agent has used up its supply of the resource. If the
truncation approach were used instead, the resultant probability distribution would
overestimate the resource level as it ignores the probability that the resource supply
has been exhausted. In Figure 5.4a, the jump in the CDF of the rectified distribution
at x = 0 represents the discrete probability that the resource supply is empty. In
Figure 5.4b, this discrete probability is represented by a Dirac delta function.

If the original CDF is F(z), the problem is to calculate a new Gaussian PDF,
N (g, 0%), that approximates the PDF of the generalised rectified Gaussian dis-
tribution that satisfies the following CDF, Fg(x):

0 ifx<a
Fr(z) = F(z) ifa<az<b (5.17)
1 ifz>b

where a and b are the limits on the state. Following the transformation process

from Section 4.1.2 for a one-dimensional Gaussian distribution, the distribution being
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Figure 5.4 — Rectifying the resource level at x+ = 0. The CDF and PDF of the
rectified Gaussian distribution are shown in (a) and (b) respectively. The jump in
the rectified CDF in (a) when x = 0 corresponds to the probability that x = 0. The
spike in the rectified PDF in (b) at = 0 is a Dirac delta function and corresponds
to the probability of < 0 in the original distribution.
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adjusted is transformed to a standard normal distribution, and the constraints are

transformed to ¢ and d respectively:

c=2"H4 (5.18)
0A

gt Ha (5.19)
0A

where 4 and o, are the mean and standard deviation of the distribution being
adjusted. The mean and variance of the Gaussian approximation of the rectified

Gaussian distribution are then given by:

I U R )
() (o () () o) 42

0 = /d (¢ —n) exp (—f) ac+ ;M)Q (1 + erf (é))
I _2’“‘)2 (1 —rf (&%))
2 ofg) ()
- (exp (—C;) (d— 20) — exp (—2) (- 2u)>

G —2u)2 (1 +erf (\%)) + (d;M)Q (1 ot (\%))

Taking the inverse of the transformation gives:

MR = [z04 + A (5.22)

op =005 (5.23)
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Adjusting the Distribution against Soft Constraints

The other type of adjustment used adjusts one distribution so that it either does not
exceed, or is not exceed by, another distribution. This soft adjustment is denoted by
a * followed by the distribution that it is adjusted against. This is used on line 16
of Algorithm 5.2 to ensure that the quantity of the resource used to replenish a user
agent does not exceed the current capacity of the replenishment agent. Consider a
distribution, A, that is adjusted so that it does not exceed the distribution B. The

proposed method is as follows:

A if ua — 304 < pup —30p and pa+ 304 < pp+ 30p
< 1B if ua —304 > pup —30p and pa + 304 > pp + 30p
re T up=30ptuation if i, — 304 > pup — 30p and pa + 304 < pip + 30p
HAZSOAYUBEIOB if 1y — 304 < pup — 30p and pa + 304 > pip + 30p

(5.24)
oA if ua — 304 < pup —30p and s+ 304 < up + 30
O’ZSB: 0B if pua — 304 > pup —30p and s+ 304 > up + 30

uA+3UA_6(#B_3UB) iqu—3UA > up —3op and pa + 304 < up + 30

if uga — 304 < pup —30p and pus+ 304 > up + 30p
(5.25)

pB+30p—(pa—304)
6

This method ensures that P(A < z) < P(B < z) for « within 3 standard deviations
of the mean of both A and B. Examples of the four cases are given in Figure 5.5.
In Figure 5.5a, the tails of the upper constraint (where the tails are defined as p +
30) are both higher than those of the original distribution, resulting in an adjusted
distribution that is the same as the original distribution. In Figure 5.5b, the tails of
the upper constraint are consistently below those of the original distribution. The

adjusted distribution in this case is therefore given by the distribution of the upper
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constraint. In Figure 5.5¢, the original distribution is above the upper constraint in
the left tail and below the upper constraint in the right tail. In this case the adjusted
distribution is calculated by using the left tail of the constraint distribution and the
right tail of the original distribution. Finally, in Figure 5.5d, the original distribution
is below the upper constraint in the left tail, but above the upper constraint in the
right tail. The adjusted distribution is calculated using the left tail of the original

distribution and the right tail of the constraint distribution.

For adjusting distribution A such that it is not lower than distribution B, the mean

and standard deviation are calculated as follows:

A if ua — 304 > pup —30p and pa + 304 > up + 30p
>p | HB if ua — 304 < up —30p and pa + 304 < g+ 30p
e “B’?"’BJQF“*“*?"’A if ug — 304 < up —30p and pa + 304 > pp + 30p
“A_3”A;“B+3”B if ug — 304 > up — 30 and pa + 304 < pp + 30p

(5.26)
oA if uga — 304> pup —30p and pus+ 304 > up + 30
JZZB: on if uga —304 < up—3op and pus+ 304 < g+ 30p

“A+3GA_6(“B_3“B) if pg — 304 < up —30p and s+ 304 > up + 30

“B+3UB_6(“A_3‘TA) if po —304 > pup—30p and pus + 304 < up + 3o

(5.27)
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Figure 5.5 — Adjusting the resource level using an upper constraint distribution. In
(a), the original distribution is fully below the constraint in the range pa £+ 304, so
the adjusted distribution is equal to the original distribution. In (b), the adjusted
distribution is equal to the upper constraint as the original distribution is fully
above the constraint. In (c), the left tail of the constraint distribution and the
right tail of the original distribution are used to calculate the adjusted distribution.
In (d), the left tail of the original distribution and the right tail of the constraint
distribution are used to calculate the adjusted distribution.
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5.3 Multi-Agent Analytical Methods

Extending the single-replenishment agent framework presented in Section 5.2 to multi-
replenishment agent scenarios requires consideration of the order in which each user
agent is visited by the replenishment agents. For any given schedule, there may be
multiple possible orders in which the replenishment agents can arrive at each user
agent, which each have different probabilities of occurring and different expected
costs. The proposed method calculates the expected cost of a schedule by summing
the expected cost of each order of arrival multiplied by the probability of that order

occurring.

5.3.1 Calculating the Probability of an Arrival Order

The probability of a given order of arrival can be calculated by examining the proba-
bility distributions for the arrival times of the replenishment agents at each user agent.
Consider probability distributions for the arrival times of two replenishment agents,
J and k, at a particular user agent of T}, ; and T, j, respectively. The probability that

replenishment agent j arrives before replenishment agent k is given by:

0
P(To; < Tag) = / p(Toy — Top) dt (5.28)
where ¢ is time. Extending this to three replenishment agents with arrival time
probabilities of Tj, ;, T, and Ty, the probability that j arrives before k, and k

arrives before [, is given by:

P(TQJ < ka N Ta,k < Ta,l) = P(Ta’j < Ta,k) X P(ka < Ta,l|Ta,j < Ta,k) (529)

This is equivalent to finding the CDF of the multivariate Gaussian distribution of

To; — Tor and T, — T, The mean and covariance matrices of the resultant multi-
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variate Gaussian distribution, pp and Xp, are calculated through an affine transfor-

mation as follows.

Let Dy =1T,; — T, and Dy = T, — T, ;, where T, ;, T, and T;; have means and

standard deviations of fi,;, fla ks a1, a0 04 j, Ok, 0q, Tespectively:

Tu;
Dy 1 -1 0
D= = ST = T,k (5.30)
D, 0 1 -1 ’
Ta,l
with
Ha,j or;, 0 0
Ba = |k Ya=10 027,@ 0 (5.31)
Ha,l 0 0 U(il

The matrices after the affine transformation has been applied are:

wp = Spa (5.32)

and

Yy =8%,8" (5.33)

The probability can then be calculated by evaluating the CDF of the multi-variate
Gaussian distribution with gp and ¥p for D; < 0 and Dy < 0. No analytical so-
lution exists for the CDF of a multi-variate Gaussian distribution [37]. However,
approximate methods are readily available in Matlab and Python. Using this frame-
work, the cost calculation method can be extended to many replenishment agents.
The multi-variate CDF function, MVNCDF, is computationally expensive, especially
for high-dimensional multi-variate distributions. Algorithm 5.3 reduces the computa-

tional requirement by calculating the probability for the order of arrival at each user
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Algorithm 5.3: Calculate probability of arrival order
CalcProb(T, n)
input : List of lists of arrival times ordered by user agent, T'; number of user
agents, n
output: Probability, P
1 P+1
2 forie {1,...,n} do
3 w, 3 < affine transformation of T;
4 P < PXxMVNCDF (p,3) // multi-variate CDF for the arrival times
at user agent 1

agent independently. However, this process can still be quite slow, taking several mil-
liseconds to compute in some scenarios. Other methods to reduce the dimensionality,
such as discarding arrival times which are isolated, may produce further increases in

speed.

It is also convenient to be able to estimate what the probability of an order of arrival
is without using the full multi-variate CDF. Algorithm 5.4 outlines a method of esti-
mating the probability using adjacent pairs of arrival times and Equation 5.28. This
method is guaranteed not to underestimate the probability of an order of arrival as it
ignores any conditional probabilities. While the results are not accurate compared to
the probability calculated from Algorithm 5.3, it is significantly faster and is useful
for identifying low probability orders of arrival. Figure 5.6 shows the quality of the
estimates for two groups of arrival times. In Figure 5.6a, the estimated probability is
an almost perfect approximation of the actual probability as any arrival times that
are close to each other only occur in pairs. This indicates that for scenarios with only
2 replenishment agents, EstimateProb is a very good approximation of the actual
probability. In Figure 5.6b, the distribution for each arrival time overlaps with multi-
ple other arrival times. While the estimated probability is significantly overestimated

in most cases, low probability combinations are still easily identified.
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Figure 5.6 — Comparing the estimated probability of a particular order of arrival
with the actual probability. This is performed for all possible orders of arrival
using arrival times of [(50,10), (60,10),(100,10),(105,10),(130,10)] in (a) and
[(80,10), (90, 20), (100, 10), (110, 20), (120,10)] in (b), where the first number of
each pair is the mean of the arrival time distribution and the second number is
the standard deviation. In (a) the arrival times are spread out, resulting in few
likely arrival orders. The arrival time distributions are much closer to one another
in (b). The dotted line has a slope of 1:1.
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Algorithm 5.4: Estimate probability of arrival order
EstimateProb (T, n)
input : List of lists of arrival times ordered by user agent, T'; number of user
agents, n
output: Probability, P
1 P+1
2 forie {1,...,n} do
for k € {2,....Length(T,) } do
o BTy 1 — KT g
02 — O-%i,k—l + U%i,k
P < PXCDF(u,0?) // CDF for the pair of arrival times

(=] (S N

5.3.2 Conditioning the Arrival Times

The probability distributions for the arrival times that have been used above are the
average arrival time distributions for all possible orders of arrival. The arrival time
distributions for a particular order of arrival are conditioned on that order of arrival.
Consider two replenishment agents j and k with arrival time distributions 7, ; and
T, x, respectively. The conditional probability distribution for the arrival time of agent

7 given that it arrives before agent k is:

p(TaJ‘) X P(ta,j < Ta,k:)

p ta,' Ta,' < Ta, - 5.34
( J| J k) P(Tad < Ta7k) ( )
where
Plta; < Tus) = / p(Tug)dt = 1= CDFz, , (ta;) (5.35)
tayj
P(Ta; < Tas) = P(Tap=Toj > 0) = [ p(Tup~Toj)dt = 1~CDFr, , 1., (0) (5.36)
0

Terms of the form CDF, (y) are the CDF of x evaluated at y. If T,; and T,
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have mean and standard deviations of y;, o; and g, oy respectively, the conditional

probability distribution is given by:

p(ta,j|Ta,j < Ta,k) =

9 1 —erf (ta’j — Mk)
(taj — 1y) ) oxV2 (5.37)

1
exp | —
o\ 2T P < 207

1erf| M Hi

\/2 (UJZ + O']%)

Approximating this probability distribution as a Gaussian distribution is equivalent
to applying a one-sided soft constraint in Section 4.2.2, where the arrival time distri-
bution for k is treated as an upper constraint on the arrival time distribution for j.
Note that both distributions should be constrained—71, ; should be constrained using
TG as the upper constraint, and 7T should be constrained using 7, ; as the lower

constraint.

For three or more replenishment agents, the arrival time distributions are conditioned
on multiple distributions. For example, if j arrives before k£ and k arrives before [,
then the arrival time distribution for j is conditioned on the arrival time distributions
for both k& and [. For k, the interval constraint method from Section 4.2.3 can be
applied using T, ; as the lower constraint and 7} ; as the upper constraint. For j and
[, the constraints applied are Tj, |1, x < T,,; and T, 4|1, > T, ; respectively, where
Tok|Tor < Tuy is simply T, with the upper constraint of 7,; applied to it, and
Top|Tor > T, is Toy with the lower constraint of T, ; applied to it. Consecutively
applying the constraints in this way enables the arrival times for any number of

replenishment agents to be constrained.

Once the arrival times of the agents have been conditioned on the order of arrival, the
future state of the system can be predicted. For cases where multiple replenishment
agents arrive at the same task at similar times to one another, the time when each
replenishment agent actually begins setting up at the task, 7 ;, depends on when the

previous replenishment agent finished packing up at that task, 7% ;. The conditioned
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arrival time of the later replenishment agent, T, ;, should be adjusted against the

*2Tfk

finish time of the earlier replenishment agent: T;; =T,

5.3.3 Proposed Algorithm

An easy implementation of calculating the expected cost of a schedule is to generate
every possible order of arrival and then calculate the cost and probability of each
order, conditioning the arrival times as necessary. This may be sufficient for schedules
where there are very few possible orders of arrival, but can take too long to compute
for schedules with many possible orders. In such cases, there are generally many orders
that are highly unlikely to occur. The proposed method, presented in Algorithm 5.5,
speeds up the process by generating the orders as the cost is being calculated and

discarding unlikely orders based on the computed arrival times.

Algorithm 5.5 first starts by updating the predicted state with any tasks that are
currently being performed, excluding those where the replenishment agent is still
travelling to the task (line 6). Following this, it predicts the effects of the remaining
tasks in the schedule. On line 11, tasks which are not performed by other replenish-
ment agents, tasks where the replenishment agent arrives far enough in advance of
any other replenishment agents such that it can be assumed to always arrive first, or

the task of being replenished at the replenishment point, are performed.

If no task was performed, then line 15 gets the index of the replenishment agent that
is expected to arrive at its next task first. Using the next task for this replenishment
agent, line 16 checks whether the other replenishment agents which also have this
task in their schedule will arrive at that task at a similar time, and whether it is the
first task in their schedule. If these conditions are satisfied, the state is copied and

updated for every possible order of arrival in DuplicateAndUpdateState on line 18.

If the conditions on line 16 are not satisfied, the algorithm again copies and updates
the state for every possible order of arrival on line 21, ignoring replenishment agents
where the task under consideration is not the first task in their schedule. This is an

approximation that is necessary to avoid the algorithm reaching a deadlock state. The
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Algorithm 5.5: Multi-agent cost calculation

MultiCostCalc(%;,i1ins @)

input : Current system state, ¥,,,;,.4;; schedule, 0

output: Weighted downtime, \; state, ¥

all] < ¥, B[] < 0 // array of states and array of schedules

d+1 // length of arrays

// update initial state with tasks in progress

for j € {1,...,m} do
if replenishment agent j is currently setting up, replenishing a user agent,
or packing up then

6 | update a[1] with task B[1];, remove task B[1];; from

7 // generate possible orders, predict their future states

8 while there are tasks remaining in 8 do

R W N =

9 for i € {1,...,d} where the number of tasks in [B[i] is larger than the
minimum number of tasks in B[j],Vj € 1,....,d do

10 for j €{1,...,m} do

11 if task Bli];1 does not exist in BilVk € {1,...,m},k # j or the
agent will arrive before any other instances of the task or B[il;1 =0
then

12 update a[i] with task B[i]; 1, remove task 8[i];; from g

13 break

14 if the state was not updated with a task then

15 j < index of first replenishment agent to arrive at its next task

16 if Bli];1 ewxists in Bli|y, Vk € {1,...,m}, k # j and j will arrive at a
similar time to k and Bli]y1 = B[i];1 then

17 for all possible arrival orders, 8, of task B[i];1 do

18 ‘ a, B,d + DuplicateAndUpdateState(«, 3,d,,9d)

19 else

20 for all possible arrival orders, 8, of task B[il;1, ignoring agents

where the task is not the first in their schedule do

21 ‘ a, B,d <+ DuplicateAndUpdateState(«, 3,d,,9d)

22 remove state afi] and schedule B[i], d < d — 1

23 (e, B,d) < Reduce(a, 8,d)

24 // calculate average cost and state

25 A <0

26 for i € {1,...,d} do

27 t < GetMinTime («x[i])

28 update ai] to time ¢

29 A <— A + GetDowntime (a[i]) x CalcProb(ali],n)
30 1) < probability weighted average of o
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original state and schedule which is copied in the DuplicateAndUpdateState function
is removed on line 22. The Reduce function on line 23 removes any duplicate orders,

as well as low probability orders.

Once there are no more tasks remaining in the schedules, the minimum time taken by
a replenishment agent to execute the schedule is returned by GetMinTime on line 27
and used on line 28 to update the expected system state to the completion time
of the schedule. The GetDowntime and CalcProb functions on line 29 return the
downtime and probability of each expected state based on the order that the tasks
were performed in, and contribute to the probability weighted expected downtime, .

Finally, the average future state is calculated on line 30.

The check for whether the replenishment agents will arrive at similar times or not
(line 11 and line 16) is performed using Equation 5.28. If the probability is greater
than some threshold (99.9% is used in this thesis), then it can be assumed that the
first replenishment agent will arrive far enough in advance of the second one such

that the reverse order can be ignored.

The DuplicateAndUpdateState function is outlined in Algorithm 5.6. The original
state is copied on line 3, and the original schedule is copied on line 4. Then line 5 to
line 7 updates the copy of the state with the first task of the replenishment agents
in order of their arrival, specified by 8, and removes that task from the copy of the
schedule. Note that the first task for each of the replenishment agents listed in
should be identical.

A Reduce function is outlined in Algorithm 5.7. Duplicate orders are first removed
on lines 4 to 9. It then eliminates low probability orders on lines 11 to 15 based on
the threshold multiplier, 4. The actual threshold used to determine whether an order
is removed is calculated by multiplying the probability of the most likely order by the
threshold multiplier (line 12). A nominal value of v = 0.01 has been specified in the
algorithm. The probability of each arrival order is estimated using the EstimateProb
algorithm outlined in Algorithm 5.4 instead of using CalcProb to calculate the actual
probability in order to reduce computation time. Provided ~ is small enough, using

the estimated probability is unlikely to result in arrival orders that actually have a
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Algorithm 5.6: Duplicate and update the state
DuplicateAndUpdateState(«, 3,d,,d)
input : Array of states, a; array of schedules, 8; length of array, d; state to
duplicate, 7; list of replenishment agents in order of arrival, §

output: Array of states, a; array of schedules, 8; length of array, d
calculate the conditioned arrival times
d<—d+1
copy state afi] and store in ad]
copy schedule B[i] and store in B]d]
for j € 6 do

update state a[d] with the task B[d];;

remove task B[d];; from B[d]

N 0 0 kA W

Algorithm 5.7: Reduce
Reduce(a, B, d)
input : Array of states, a; array of schedules, B; length of arrays, d
output: Array of states, a; array of schedules, 8; length of arrays, d
1 74 0.01 // threshold multiplier
2 p < GetMaxProbability ()
3 // remove duplicate orders
4 forie{1,..,d} do
for je {i+1,...,d} do
if afil == a[j] then
remove state afi| from a
remove schedule B[i] from 8
d<d—1
10 // remove low probability orders

© 00 N o W

11 forie{1,..,d} do

12 if EstimateProb(afi]) <~ x p then
13 remove state ai] from o

14 remove schedule B[i| from 8

15 d+—d—-1
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high probability of occurring being removed. Other possible Reduce functions could
restrict the number of orders to the n most likely, discard the cumulative 7% least
likely, or a combination of the above. The advantage of the approach detailed in
Algorithm 5.7 over these other possible Reduce functions is that it retains all orders
that have a probability close to the highest probability order. Retaining only the
n most likely orders can result in relatively high probability orders being discarded,
and discarding the 7% least likely may retain many low probability orders in the case

where one order is significantly more likely than the others.

5.3.4 Conditioning the Previous Arrival Times

Algorithm 5.5 assumes that the arrival time distributions for all of the tasks of a
single replenishment agent are independent. In practice, this assumption is not valid.
Let T ;1 be the arrival time distribution for replenishment agent j at task 1, 75 ;2 be
the arrival time distribution for j at task 2, and 7} j o be the arrival time distribution
for replenishment agent k£ at task 2. If j arrives before k at task 2, then the arrival
time distributions for 5 and k at task 2 can be adjusted using Equation 5.34. The
arrival time distribution 7, ;; can be adjusted using a similar process. Let T}, ;o1 be
the time between the arrival at task 1 to the arrival at task 2 for replenishment agent

J: Ta,j,2—1 = Ta,j,2 — Ta,j,l- Then:

P(taji)P(taji+Tujo1 < Tuk2)

toi1lTnio <T, = 5.38
Pltasn|Tais 2) P(To 2 < Toks) (5:38)
where
P(toji+Tojo-1 <Tugo) = Pltej1 < Toko—Tujo-1)
= / P(Takz — Tajo1)dt (5.39)

ta,j,1

=1-CDFr,,,- 7,5 (faj1)
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P(T, ;0 <Thpo) =PTap2—Tuj2>0)
:/pgﬂg—ﬂmﬁﬁ (5.40)
0

—1— CDFy, 0)

k2= Ta,j2 (

This process can be applied for an arbitrary number of arrival times. The problem
with this process is that it is a chicken-and-egg problem—calculating the arrival
times of the earlier tasks requires the arrival times of the later tasks to already
be calculated. However, the later arrival times depend on the arrival times of the
earlier tasks. Some form of iterative method would be required for the arrival time
distributions to converge to the actual distributions, resulting in a significant increase

in the computation time of the algorithm compared to Algorithm 5.5.

5.3.5 Alternative Greedy Algorithm

A downside of Algorithm 5.5 is that it will potentially be computationally very expen-
sive in cases where there are many possible orders of arrival. Algorithm 5.8 outlines
an alternative method which greedily selects the order of tasks based on the arrival
times. Regardless of the difference in arrival times between two agents, the one which
is more likely to arrive first is selected. In the case that two agents have the exact
same mean arrival time, the one with the lowest index is chosen. This method ignores
all of the other possible orders, and does not necessarily end up with the most prob-
able order. However, if the schedule can be chosen such that replenishment agents
do not arrive at similar times, this approach will give accurate results. The advan-
tage of this method is the reduced computation time. An optimisation method which
avoids replenishment agents arriving at similar times and uses MultiCostCalcGreedy

is introduced in Chapter 6.
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Algorithm 5.8: Multi-agent cost calculation with greedily chosen order

MultiCostCalcGreedy (v, a1, )
input : Current system state, ¥,,,;,.4;; schedule, 8
output: Weighted downtime, \; state, @
1 Y < Sinitial // state
2 B+ 6 // schedule
3 // update initial state with tasks in progress
4 for je{l,...,m} do
5 if replenishment agent j is currently setting up, replenishing a user agent,

or packing up then

6 update 1 with task 3,

7 remove task 8, from 3

8 // get the earliest task and predict the future state

9 while there are tasks remaining in 8 do

10 J + index of replenishment agent that will arrive at its next task first
11 update ¥ with task 3,

12 remove task 8, from 3

13 // calculate final cost and state
14 t < GetMinTime ()

15 update ¥ to time ¢

16 A < GetDowntime («x[i])

5.4 Results

This section evaluates the performance of the prediction algorithms developed in
this chapter. Section 5.4.1 first introduces a number of scenarios that will be used to
evaluate the algorithms. Section 5.4.2 then compares the analytical prediction method
with the MC approach in single-replenishment agent scenarios. Finally, Section 5.4.3
evaluates the analytical methods in multi-replenishment agent scenarios. All methods
were implemented in Python and calculation times were calculated on a 2.8GHz Intel

i7-640M.
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5.4.1 Scenarios

Four scenarios were used to evaluate the performance of the prediction methods de-
veloped in this chapter. These scenarios are also used to evaluate the optimisation
methods presented in Chapter 6. Of the four scenarios, Scenarios S1 and S2 are single-
replenishment agent scenarios, and Scenarios M1 and M2 are multi-replenishment
agent scenarios. The replenishment agents are assumed to initially be positioned at
the replenishment point. For the purpose of testing the prediction methods, the initial
resource levels of all agents were initialised to a random value between 0% and 100%
of the agent capacity. The rest of this section outlines the parameters and layout of

the user agents, replenishment agents, and the replenishment point for each scenario.

Scenario S1

The first scenario consists of multiple agents performing a persistent collection task,
with the resource under consideration being storage capacity. Each agent operates in
their own small area where the items being collected are concentrated, so they are
relatively fixed in space compared to the whole system. The replenishment agent must
travel along roads to each user agent—the map of the roads is shown in Figure 5.7.
The set of user agents is heterogeneous and their parameters are shown in Table 5.1.
The replenishment agent parameters are shown in Table 5.2, and the parameters of

the replenishment point are shown in Table 5.3.

RP 2s00m O
[

Figure 5.7 — Layout showing the location of the Replenishment Point (RP) and user
agents for Scenario S1. The numbered nodes designate the operational areas of the
user agents.
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Table 5.1 — User agent parameters for Scenario S1

User agent, ¢ 1 2 3 4 ) 6
¢y (L) 1000 1200 700 1200 1000 800
R, ; mean (L/s) 05 05 03 05 04 04

R, ; standard deviation (L/s) 0.05 0.05 0.05 0.02 0.08 0.04

Table 5.2 — Replenishment agent parameters for Scenario S1

Parameter Mean Standard Deviation

co (L) 5000 -
R, (L/s) 10 0.5
Tyo (3) 60 20
Tpo (s) 20 5
V, (m/s) 15 0.5

Table 5.3 — Replenishment point parameters for Scenario S1

Parameter Mean Standard Deviation
Tor (5) 30 10
Tpr () 10 1

R, (L/s) 20 1
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The scenario was run using the first 4, 5, and 6 user agents to represent under-utilised,
fully-utilised, and over-utilised scenarios respectively. In the under-utilised scenario
the replenishment agent should be able to prevent all of the user agents from exhaust-
ing their supply of the resource, while in the over-utilised scenario the replenishment
agent will not be able to prevent the user agents from incurring downtime. The

fully-utilised case sits between the other two.

Scenario S2

The second single-replenishment agent scenario involves the delivery of generator fuel
to 20 remote villages by truck. The quality of roads between villages is highly variable
which results in travel speeds that are very uncertain, while the villages use the fuel
at a relatively predictable rate. Figure 5.8 shows the network of roads connecting the

villages.

Three different size trucks were considered with parameters shown in Table 5.4. The
different truck sizes vary only in their capacity—the resource usage rates, setup and
packup times, and velocity, are the same for all truck sizes. The large, medium,
and small truck sizes roughly correspond to under-, fully-, and over-utilised scenarios
respectively. The parameters of the replenishment point are shown in Table 5.5.
There are four different sizes of villages, each with approximately 80 days supply of
fuel. The parameters of each size of village are shown in Table 5.6, and the size of
each village is outlined in Table 5.7. The truck is assumed to operate for 12 hours

each day.

Scenario M1

This scenario is designed to be more representative of a mining scenario, with multiple
fuel trucks refuelling various pieces of equipment throughout a mine. The road layout
for this scenario is the same as for Scenario S1, shown in Figure 5.7. The user agent,
replenishment agent, and replenishment point parameters are shown in Table 5.8,

Table 5.9, and Table 5.10 respectively. Note that, in this scenario, there are multiple



5.4 Results 107

Figure 5.8 — Layout showing the location of the Replenishment Point (RP) and villages
for Scenario S2.

Table 5.4 — Replenishment agent parameters for Scenario S2

Parameter Mean Standard Deviation
¢, Large (L) 23000 -

¢ Medium (L) 15000 -
¢, Small (L) 10000 -

R, (L/hr) 600 60
Tso (min) 120 10
Ty (min) 40 3

Vo (km/hr) 16 4
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Table 5.5 — Replenishment point parameters for Scenario S2

Parameter Mean Standard Deviation

Ts (min) 120 20
T, (min) 60 10
R, (L/hr) 10000 1000

Table 5.6 — User agent parameters for Scenario S2

Parameter Mean Standard Deviation
Small Village (S)
cui (L) 4000 -
R, (L/day) 50 2.5
Medium Village (M)
cui (L) 5000 -
R,; (L/day) 62.5 2.5
Large Village (L)
Cui (L) 6000 -
R, (L/day) 75 2.5
Extra Large Village (XL)
cui (L) 8000 -
R,; (L/day) 100 2.5

Table 5.7 — User agent types for Scenario S2

Village 1 2 3 4 5 6 7 8 9 10
Size. S L S M M S M L XL L

Village 11 12 13 14 15 16 17 18 19 20
Size€e L XL M L M S L M L M
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user agents at some nodes to reflect multiple drills or excavators operating on the

same bench in a mine.

Table 5.8 — User agent parameters for Scenario M1

User agent, ¢ 1 2 3 4
Position 1 1 2 2

cui (L) 1000 1000 1200 1000

R, ; mean (L/s) 0.5 05 05 05

R, ; standard deviation (L/s) 0.05 0.05 0.05 0.05
User agent, ¢ ) 6 7 8
Position 3 4 5 6

cui (L) 1000 800 700 1200

R, ; mean (L/s) 04 04 03 05

R, ; standard deviation (L/s) 0.08 0.04 0.05 0.02

Table 5.9 — Replenishment agent parameters for Scenario M1

Replenishment agent, j 1 2
Ca,j (L) 5000 2500
R, ; mean (L/s) 10 10
R, ; standard deviation (L/s) 0.5 0.5
Tsqj mean (s) 60 60
Tsq; standard deviation (s) 20 20
Tpa,j mean (s) 20 20
T j standard deviation (s) 5 5
V,,; mean (m/s) 15 7

V,,; standard deviation (m/s) 0.5 0.5

Table 5.10 — Replenishment point parameters for Scenario M1

T, mean (s) 30

T, standard deviation (s) 10
T, mean (s) 30

T, standard deviation (s) 10
R, mean (L/s) 20

R, standard deviation (L/s) 1




5.4 Results 110

Scenario M2

The second multi-replenishment agent scenario has a homogeneous fleet of 5 replen-
ishment agents and a heterogeneous set of 3 user agents. It is designed to highlight
potential issues with the developed algorithms and is not representative of real-world
scenarios. The layout of the scenario is shown in Figure 5.9. The parameters of the

agents and replenishment point are shown in Table 5.11, Table 5.12, and Table 5.13.

Figure 5.9 — Layout showing the location of the Replenishment Point (RP) and user
agents for Scenario M2. A user agent is positioned at each node.

Table 5.11 — User agent parameters for Scenario M2

User agent, 1 1 2 3
cui (L) 100 125 150
R, ; mean (L/s) 06 1 1.2

R, ; standard deviation (L/s) 0.1 0.1 0.1

Table 5.12 — Replenishment agent parameters for Scenario M2

cay (L) 200

R, ; mean (L/s) 5

R, ; standard deviation (L/s) 1
Tsqj mean (s) 10

Tsa; standard deviation (s) 2
Tpa,j mean (s) 10

Tpaj standard deviation (s) 2
V,; mean (m/s) 10

V,,; standard deviation (m/s) 2
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Table 5.13 — Replenishment point parameters for Scenario M2

T, mean (s) 10
T, standard deviation (s) 2
T, mean (s) 10
T, standard deviation (s) 2
R, mean (L/s) 10

R, standard deviation (L/s) 1

5.4.2 Single-Agent Results

The methods were tested by using random schedules of a fixed number of tasks.
To allow comparison of the costs generated by these schedules, the following ratio

objective function is defined:

n

. ; witempty,i A
argmin ¢ = = (5.41)

nttoml nttotal

where w; is the weighting applied to user agent ¢, teppry,i is the downtime of user agent
1, tiotar 1S the total time taken to execute the schedule, and n is the number of user
agents. Provided the weights sum to n, then the objective function is bound between

0 and 1:

if Zwi:nthenogqﬁg 1 (5.42)

i=1
If w; = wy = ... = w,, the ratio cost is equivalent to the proportion of time during
the schedule that the user agents are expected to be non-operational. In all of the

scenarios examined, each user agent had a weighting of 1.

The MC method uses multiple samples to calculate the expected cost of a sched-
ule, with the accuracy of the expected cost improving as the number of samples is
increased. Figure 5.10 shows the absolute error of a cost calculation using the MC
method as a function of the number of samples used. The computational complexity

of the MC method is O((a + n)b) where a is the number of tasks in the schedule, n
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Figure 5.10 — Absolute error versus number of samples for the Monte Carlo method in
Scenario S1. The calculation time line shown is indicative of the trend in calculation
time rather than the actual calculation time.

is the number of user agents, and b is the number of samples used. 1000 samples was
chosen as it offers a good trade-off between absolute error and calculation time, with

an absolute error of approximately 1.5 x 10~ and a calculation time of 1.5s.

For evaluating the prediction methods, Scenario S1 was used with 6 user agents, and
Scenario S2 was used with the large truck. For each scenario, the cost of 10,000 ran-
domly generated schedules was calculated using both the MC and analytical frame-
works. Schedules consisted of 8 tasks in Scenario S1, and 20 tasks in Scenario S2.
The difference between the analytical and MC methods was then calculated for each
schedule. The distribution of differences is approximately normally distributed with

means and standard deviations shown in Table 5.14.

As can be seen in Table 5.14, the analytical framework produced costs which were
very close to the MC method in Scenario S1. Based on the distribution of differences,
over 99.8% of costs calculated by the analytical method were within 0.005 of the MC
method. In Scenario S2, the analytical method had a larger deviation from the MC
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Table 5.14 — Proposed cost method minus Monte Carlo cost method

Scenario Method Mean Standard Comparison Computation
(x1073) Deviation (x107%)  Accuracy Time (s)
S1 Analytical ~ 0.08 1.52 99.6% 0.007
S1 MC - - - 0.678
S2 Analytical ~ -1.96 1.92 99.4% 0.009
S2 (mod) Analytical  0.71 0.72 99.8% 0.009
S2 MC - - - 1.506

method. This was a result of the Gaussian approximations starting to break down.
The standard deviation of the velocity of the replenishment agent in this scenario
was very high, resulting in inverse Gaussian distributions that are heavily skewed to
one side. The Gaussian approximation of the inverse Gaussian distribution loses a
lot of the skewed tail, resulting in this difference (see Figure 5.2b). The degradation
resulting from the approximation was shown by the improved results in the modified
Scenario S2 in Table 5.14 where the standard deviation of the velocity was reduced
from 4km/hr to 2km/hr. With the reduction in standard deviation, the difference

between the two methods was significantly reduced.

The most important aspect of the cost calculation framework is its ability to accu-
rately discriminate between two schedules as it will be used later within optimisation
methods to select the lowest cost schedule. The comparison accuracy of the analytical
framework was tested by comparing the costs calculated for each schedule with the
cost of every other schedule. A correct result was recorded if both the MC and ana-
lytical methods agreed on which schedule produced the lowest cost. With the 10,000
schedules, almost 50,000,000 comparison were made. Correct comparison results were
recorded in 99.6% of cases for Scenario S1 and 99.8% of cases for the modified Sce-
nario S2. In the cases where the analytical method did not produce the same result as
the MC method, the average difference in the proportion of downtime was 1.7 x 1073
for Scenario S1 and Scenario S2, and 6.3 x 10~* for the modified Scenario S2, for
both methods. These results show that the analytical method is highly accurate with
respect to the MC method. In the cases where it produced the wrong comparison

result, the differences in the costs are small enough to be considered negligible.
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The main advantage of the analytical framework over the MC approach is the com-
putation time. The analytical method was almost 100 times faster than the MC
method in Scenario S1, and over 150 times faster in Scenario S2. The computational
complexity of the analytical framework in the single-replenishment agent scenarios is
O(a+ n) where a is the number of tasks in the schedule and n is the number of user

agents.

5.4.3 Multi-Agent Results

The analytical framework was tested in Scenarios M1 and M2 using threshold multi-
pliers of 7 € {0.01,0.1, 1}, and using the framework with greedily chosen order so that
there are no arrival order combinations to be considered (denoted by NC). 10,000 ran-
dom schedules consisting of 10 tasks per replenishment agent for Scenario M1, and 5
tasks per replenishment agent for Scenario M2, were generated for each scenario, with
the MC method again tested using 1,000 samples. The mean and standard deviation
of the difference between the analytical and MC methods, the comparison accuracy,
and the computation time for each method are shown in Table 5.15. Like Scenario S2,
the velocity of the replenishment agents in Scenario M2 has a high standard deviation
which degrades the performance of the inverse Gaussian approximation. A version of
Scenario M2 with a lower velocity standard deviation of 0.5m/s for the replenishment
agents was also tested (see M2 (mod) results) to show the accuracy of the prediction

methods when the inverse Gaussian approximation produces better results.

The effect of the threshold multiplier, v, is clear in the results. When v = 1, the
analytical method only considered the most likely arrival order and ignored any others.
Replenishment agents in Scenario M2 were highly likely to arrive at similar times to
one another, so using a v of 1 had clear detrimental effects in this case. As v was
reduced and more arrival orders were considered in parallel, the difference between the
MC and analytical methods decreased and the comparison accuracy increased. The
trade-off was that the computation time increased. In Scenario M2, the increase in

computation time was significant, with it actually taking longer than the MC method
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when v = 0.1 and v = 0.01.

The cost calculation method using the greedily chosen order (NC) generally resulted
in costs that were higher than those generated by the full cost calculation. In many
cases, the NC method and v = 1 case calculated the cost using the same order
of arrival. The difference between these methods was a result of the NC method
not conditioning the arrival times as per Section 5.3.2. For schedules where the
replenishment agents do not arrive at similar times, these two methods give similar

results.

The comparison accuracy in Scenario M1 was similar to the single-replenishment agent
scenarios, while the best comparison accuracy dropped to 98.0% in Scenario M2 and
98.8% in Scenario M2 (mod). The average difference in cost between schedules for
incorrect comparisons was 7.5 x 1072 for Scenario M2 and 3.7 x 1073 for Scenario M2
(mod). Figure 5.11 shows the accuracy of the MC method as a function of the number

of samples for Scenario M2. The average error at 1,000 samples was approximately

Table 5.15 — Proposed cost method minus Monte Carlo cost method

Scenario v Mean Standard Comparison Computation
(x1073) Deviation (x1073)  Accuracy Time (s)
M1 1 -0.74 5.00 99.2% 0.020
M1 0.1 -0.71 2.12 99.6% 0.026
M1 0.01  -0.69 2.07 99.6% 0.036
M1 NC -0.05 4.86 99.2% 0.014
M1 MC - - - 1.995
M2 1 -9.43 28.5 92.4% 0.193
M2 0.1 -5.91 10.9 97.7% 2.210
M2 0.01  -3.73 10.0 98.0% 5.813
M2 NC 10.5 29.8 92.3% 0.010
M2 MC - - - 1.540
M2 (mod 1 -4.81 26.8 93.0% 0.063
M2 (mo 0.1 -3.13 4.57 98.7% 0.579
M2 (mo 0.01 -2.50 4.12 98.8% 0.878
M2 (mo NC 1.08 274 92.8% 0.010
M2 (mo MC - - - 1.714
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Figure 5.11 — Absolute error versus number of samples for the Monte Carlo method
in Scenario M2. The calculation time line shown is indicative of the trend in
calculation time rather than the actual calculation time.

2.5 x 1073, with similar results for Scenario M2 (mod). A significant portion of the
incorrect comparisons, particularly in Scenario M2 (mod), were within the noise of
the MC method where it is impossible to differentiate between them using the MC
method with 1,000 samples with any confidence. To get the accuracy of the MC to a

similar level as in Scenario S1 would require on the order of 100,000 samples.

In Scenario M1, the analytical framework had a clear advantage in computation time,
computing at least 70 times faster than the MC framework. In Scenario M2, the com-
putation time increased significantly as v was decreased. The long computation times
were a result of the large number of possible arrival orders that were considered. The
analytical method is O(a+n) in the best case where no replenishment agents perform
the same task (typical for mining and agricultural scenarios where there are signifi-
cantly more user agents than replenishment agents), and O(a!(1 + n)) in the worst
case where all replenishment agents perform the same task (for scenarios where there

are significantly more replenishment agents than user agents). Increasing the thresh-
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old multiplier, ~, reduces the computational complexity at the cost of accuracy, with
the computation complexity approaching O(a + n) when v = 1. It should be noted
that calculating the CDF of the multivariate Gaussian distribution using MVNCDF was
responsible for approximately 70% of the computation time of the analytical method

in Scenario M2. The analytical method with greedily chosen order (NC) is O(a+n).

5.5 Summary

This chapter presented and evaluated methods for predicting the future state of a sys-
tem given an estimate of the current state, a schedule for the replenishment agents,
and a model of the uncertainty. A MC approach was first introduced in Section 5.1
as a benchmark for the methods that were subsequently developed. Section 5.2 then
considered the single-replenishment agent case and developed a novel analytical pre-
diction method. This approach made use of Gaussian approximations to the inverse
Gaussian distribution, ratio of Gaussian distributions, product of Gaussian distribu-
tions, and generalised rectified Gaussian distribution, to enable the uncertainty to be
propagated into the future. New Gaussian approximations to the inverse Gaussian

and generalised rectified Gaussian distributions were also formulated.

Following this, Section 5.3 extended the analytical prediction method to scenarios
with multiple replenishment agents. A key difficulty in multi-replenishment agent
scenarios is that the uncertainty in these scenarios means that replenishment agents
may arrive in many different orders at the user agents for any given schedule. This
section presented a method for calculating the probability of an order of arrival given
the arrival times, and used the truncation method from Chapter 4 to condition the
arrival times on the order of arrival. These methods were then used to develop a
prediction framework that efficiently incorporated the different arrival orders. An
alternative algorithm which ignores the multiple possible orders of arrival and simply

greedily selects an order was also introduced.

Finally, the developed methods were evaluated in Section 5.4 using four scenarios—

two single-replenishment agent scenarios and two multi-replenishment agent scenarios.
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In the single-replenishment agent scenarios, the analytical method produced results
that were up to 99.8% accurate in comparison to the benchmark MC method. The
analytical approach was also shown to require orders of magnitude less computation
time. The results for the multi-replenishment agent scenarios broadly mirrored those
for the single-replenishment agent cases. The analytical approach was up to 99.6%
accurate in comparison to the MC, but suffered severe degradation in computation

time for scenarios where there were many possible orders of arrival.

The analytical methods developed in this chapter provide a fast and accurate way
of incorporating uncertainty when predicting the future state of the system. These
methods are now ready to be used within optimisation methods to quickly evaluate
the risk associated with each schedule under consideration. Without these analytical
methods, the optimisation methods would be infeasible due to the excessive computa-
tional time required by the MC method. In multi-replenishment agent scenarios with
many possible orders of arrival, the analytical approach can be very slow. In these
cases, structuring the optimisation method to avoid these cases should enable the
NC analytical framework to be used without any detrimental impact to its prediction

capability, reducing the computational requirement of the algorithms.

The following chapter presents methods for optimising the schedule of the replenish-
ment agents. The chapter ultimately completes the belief space scheduling frame-
work, using the estimation and prediction methods from Chapter 4 and this chapter

in conjunction with the optimisation methods.



Chapter 6

Optimisation

The purpose of this chapter is to develop and evaluate optimisation strategies for
minimising the risk of the system incurring downtime. As shown in Figure 6.1, the
estimation and prediction components of belief space scheduling which were intro-
duced in the previous chapters are critical to the optimisation component. The esti-
mation component generates a belief of the current state of the system which is used
by the optimisation and prediction components when determining the best task or
tasks to be performed next. The optimisation methods use the prediction component

to evaluate the tasks under consideration by predicting the belief of the future state.

Some of the literature examined in Chapter 2 formulated their problems using Mixed-
Integer Linear Programming (MILP) models and used commercial solver packages
such as CPLEX [1] and Gurobi [2] to find the optimal solution. A downside of these
approaches is that they are computationally very expensive. In the case of Kaplan and
Rabadi [54] for example, their MILP model was only solvable for small instances, tak-
ing up to 10 minutes to solve a scenario with only 12 jobs. A deterministic form of the
SCAR scenario could be implemented as an MILP similar to [54], but with the use of
a rolling horizon. However, to incorporate uncertainty using the prediction framework
from Chapter 5 would require a Mixed-Integer Non-Linear Programming (MINLP)
model which is not solvable by these commercial packages [23]. Consequently, three

alternative types of optimisation methods are considered in this chapter—heuristics,
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meta-heuristics, and tree search methods. Heuristics are simple rules of thumb which
typically only consider which task should be performed next, while meta-heuristic
and tree search methods consider combinations of tasks in the form of schedules to
reduce myopia in decision making. Meta-heuristics, such as simulated annealing, use
randomness to find near-optimal solutions for non-convex problems, while tree search
methods, such as branch and bound, are guaranteed to find the optimal schedule.
These methods are used within a Model Predictive Control (MPC)-like framework,

where a new task is generated after the previous one has been completed.

The rest of this chapter is structured as follows: Section 6.1 first outlines the general
framework of the optimisation methods and discusses the choice of finite horizon used.
Section 6.2 then introduces and modifies three heuristics for the SCAR scenario—a
greedy heuristic which allocates the replenishment agent to the user agent that is
expected to exhaust its supply of the resource first, the Apparent Tardiness Cost
(ATC) heuristic which balances the deadline of a user agent with the length of time
taken to service it, and a modified form of the ATC heuristic which incorporates
elements of uncertainty. Section 6.3 presents a simulated annealing meta-heuristic
algorithm which aims to find a good schedule by making random changes to the
schedule, and Section 6.4 then introduces branch and bound tree search methods.

Finally, these optimisation methods are evaluated in Section 6.5.

6.1 Framework

A strategy that has commonly been used in the literature is MPC [78]. In a MPC
framework, the planner generates an optimal sequence of actions for a number of
look-ahead steps [44]. Some earlier methods, such as FF-Replan [117] and methods
that use the maximum likelihood observation assumption [81], used the MPC frame-
work as their primary method of dealing with uncertainty—they treated the problem
as deterministic and frequently replanned to incorporate any unexpected changes to
the system. All of the methods presented in this chapter are used within a MPC-like

framework. Unlike the MPC methods above that replan at every time-step, it is in-
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Figure 6.1 — The components of belief space scheduling. This chapter outlines methods
for optimising the task or tasks that are performed by the system.

tended in this thesis that the replanning should occur after each task is complete. The
primary reason for this is that the time-step in SCAR scenarios is usually significantly
shorter than the time taken to perform a task, and replanning at every time-step may
lead to the task of any given replenishment agent changing frequently. This behaviour
is undesirable for two reasons: Firstly, on mine sites and for other scenarios where
the movement of the replenishment agents is restricted by roads or other obstacles,
switching to a new task may require the replenishment agent to immediately change
direction which, in many cases, is either not possible or is prohibited. Secondly, in
manned scenarios it is generally desirable to avoid changing the assignment of a ve-
hicle once the vehicle is en route as frequently changing the task can lead to operator

confusion.

In belief space planning methods, the number of look-ahead steps, or finite horizon,
is equally defined by a look-ahead time or number of actions as an action is generally
taken at each time-step. For scheduling problems, the choice of finite horizon is

more complicated as tasks do not necessarily take equal lengths of time to complete.
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Using a finite horizon that is defined by a length of time can present issues when
using simulated annealing for reasons that will be discussed in Section 6.3. Thus, a
finite horizon that specifies the number of tasks in a schedule has been used for the
single-replenishment agent case to enable fair comparison between the methods. For
the multi-replenishment agent case, the simulated annealing algorithm was no longer

considered and a finite horizon based on time has been used.

Unlike traditional scheduling problems, replenishment agents in SCAR scenarios may
perform the same task multiple times within a schedule. Intuitively, it does not make
sense for a replenishment agent to perform the same task as the one that it has
just completed. Therefore, the methods presented in this chapter restrict the next
assignment to tasks other than the one just performed. The meta-heuristic and tree
search methods take this one step further, restricting successive tasks in the generated

schedule to be different:

9]‘71‘_1 7£ Ojﬂ‘ Vi € {2,3&},] c {]_, ,m} (61)

where a is the number of tasks in the schedule and m is the number of replenishment
agents. Disallowing these redundant tasks has the benefit of reducing the size of the

search space for these algorithms.

The general structure of the optimisation framework is shown in Algorithm 6.1. This
algorithm is called each time a replenishment agent requires an assignment. If the
current level of the replenishment agent is below a threshold, [, j inresn (line 1), the
only valid task is to send the replenishment agent to the replenishment point to be
replenished (line 2). This threshold is necessary as the heuristics are not able to
incorporate the task of replenishing the replenishment agent. If the resource level is
above the threshold, a schedule or assignment is generated on line 3 using the various

scheduling methods discussed in the remainder of this chapter.

The objective of the optimisation, as was defined by Equation 3.8 in Section 3.3, is
to minimise the downtime of the user agents over an infinite horizon. The heuristics

presented in Section 6.2 evaluate each task using a rule of thumb which does not
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Algorithm 6.1: Optimisation framework
Optimiser (2, j)
input : Current system state, ¥; index of replenishment agent requiring
assignment, j
output: Task, 0
1 if 1, ; <lojthresn then // if the level of the replenishment agent is
below the threshold
2 ‘ 6«0
else
3 0 < GetSchedule(s,j) // calculate a schedule or assignment
4 0 «— Oj,l

necessarily correspond to minimising the downtime of the user agents. The combi-
natorial optimisation methods, on the other hand, compare the schedules using an
objective function. To allow comparison of schedules using a finite horizon defined by
the number of tasks, the ratio objective function defined in Equation 5.41 has been

used.

6.2 Heuristics

Heuristics are rules of thumb which are used to select the best task for the agent
to perform next. They are computationally cheap and are heavily used in complex
scenarios where other optimisation methods are too computationally expensive [73].
While heuristics have been used in stochastic scenarios, they have typically ignored
any sources of uncertainty and simply used mean parameter values to determine the
next task assignment [8, 84]. This section introduces three heuristics—a simple greedy
heuristic, a modified version of the ATC heuristic used by Kaplan and Rabadi [54],

and a version of the ATC heuristic that incorporates uncertainty.
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6.2.1 Greedy Heuristic

The Greedy heuristic (G) selects the next task of the replenishment agent based on
which of the user agents is expected to run out of the resource first. This is equivalent
to finding the deadline of the user agent as given on line 16 of Algorithm 5.1. This is
reproduced here for convenience. For each user agent, 7, the deadline, ¢4, is calculated

as:

lui
tdﬂ' - . (62)

Tuyip

where [, ; is the mean value of the belief of the current resource level. The user agent

with the earliest deadline is then selected as the next task for the replenishment agent.

In multi-replenishment agent systems, it is necessary to consider the actions of the
other replenishment agents. One method would be to restrict the user agents under
consideration to those that do not already have a replenishment agent assigned to
them. This method is suitable for scenarios consisting of more user agents than replen-
ishment agents, but will give undesirable results in scenarios where the replenishment
agents outnumber the user agents. In such cases, the actions of the replenishment
agents should be simulated using the framework in Section 5.1 with the mean param-
eter values to calculate the deadline of each user agent given the assignments of the
other replenishment agents, assuming that the replenishment agents that are already

assigned to tasks will arrive before the replenishment agent under consideration.

6.2.2 Apparent Tardiness Cost Heuristic

The ATC heuristic used by Kaplan and Rabadi [54] for the aerial refuelling problem is
a combination of the Weighted Shortest Processing Time first (WSPT) and Minimum
Slack first (MS) rules. It calculates priorities for each task based on the following

formulas:
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T = —; (6-3)

where 7; is the priority of task i, w; is the weight assigned to that task, t;; is the
total processing time of the task, and ¢; is the marginal cost of delay. The marginal
cost of delay used in [54] combined soft and hard deadlines with a ready time for
each task. The SCAR scenarios under consideration in this thesis only have a soft

deadline, yielding a marginal cost of delay of:

(6.4)

gbi — exp (_max((), tdﬂ' - tb,j,i))

Kto;
where 3, ;; is the time at which the replenishment agent begins replenishing the user
agent, t, ; is the average start time for all replenishment tasks for that replenishment
agent, t4, is the deadline for the task, and % is a scaling factor. The scaling factor
biases the behaviour of the ATC heuristic towards the WSPT rule if k is very large,
and towards the MS rule if k is very small. Typical values of k range between 1 and
7. It should be noted that the deadline used by Kaplan and Rabadi [54] is the time
by which the task must be completed, whereas the deadline in a SCAR scenario is the
time before which the replenishment agent must begin replenishing the user agent.
The deadline is calculated in the same way as the greedy heuristic using Equation 6.2,
while the start and processing times are calculated using the mean parameter values

in the equations on line 15 and line 24 respectively in Algorithm 5.1.

Multi-replenishment agent scenarios are treated similarly to the greedy heuristic—
the actions of the other replenishment agents are simulated using the framework in
Section 5.1 with the assumption that the replenishment agents already assigned to
user agents will arrive before the replenishment agent under consideration. In some
cases this will not be a valid assumption. However, it is often desirable to avoid
sending multiple replenishment agents to the same user agent, and this assumption

helps bias the heuristic away from assignments where this is not the case.
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6.2.3 Stochastic Apparent Tardiness Cost Heuristic

In an attempt to incorporate uncertainty into the ATC heuristic, the analytical frame-
work developed in Chapter 5 was used to create the Stochastic Apparent Tardiness
Cost (SATC) heuristic. This is a different approach to that of Reddy and Narendran
[84] and Arnaout et al. [8] who simply used deterministic heuristics in uncertain sce-
narios, ignoring any uncertainty. For the SATC heuristic, uncertainty is incorporated

into the marginal cost of delay function as follows:

({ (Ta; — Ty j)dt

= _ - 6.5
¢; = exp o (6.5)

where T3 ;; and Ty, are calculated as per line 9 and line 10 respectively in Algo-
rithm 5.2, ¢, ; is calculated using the mean values for each T} ;; calculated, and the
integral is calculated using Equation 5.16. The rest of the heuristic remains the same

as the deterministic version in Section 6.2.2.

6.3 Meta-Heuristic

This section describes the Simulated Annealing (SA) method that was used by Kaplan
and Rabadi [54, 55]. SA is a global search algorithm that was inspired by the heating
and cooling process used to anneal metals. It makes random moves to neighbour
solutions by replacing one randomly selected task in the schedule with one of the
other possible tasks, and it accepts worse solutions with a decreasing probability over
time to prevent the algorithm from being trapped in local optima. Algorithm 6.2

outlines the general SA algorithm used in this thesis.

An initial schedule is generated using the ATC heuristic on line 1, and the cost of this
initial schedule is calculated on line 2. The memory is then initialised with the initial
schedule and cost (line 3) and the initial temperature is calculated (line 5). Then,

while the number of iterations does not exceed the maximum number of iterations
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Algorithm 6.2: Simulated annealing
SA(",b, a, k?, a, ’imax, jmax)
input : Current system state, 1; finite horizon, a; initial temperature
coefficient, k; temperature cooling coefficient, a;; maximum number of
iterations, i,,q,; maximum number of inner loop iterations, Jax
output: Best schedule, 0.4
1 Get an initial schedule, 8, of a tasks using the ATC heuristic ATC (2, a)
2 w ¢ CostCalc (), 0)
3 M < {0,w} // initialise the memory with the initial schedule and
cost
4140 // initialise the number of iterations
5 T'<—kxw // calculate the initial temperature by multiplying the
cost by the initial temperature coefficient

6 while 7 < i,,,, do // while less than the maximum number of
iterations

7 g0 // initialise the number of inner loop iterations
while j < j0 do // while less than the maximum number of inner
loop iterations

9 0+ 0 // duplicate the schedule

10 Replace a randomly selected task in 8" with another valid task

11 w' + CostCalc(),0")

12 if W' <w or Rand(0,1) < exp ((w' —w)/T) then

13 Add the schedule and cost to the memory, M <« {6’ w'}

14 0+ 0 w0

15 1 i+ 1, j+t

16 T<+—axT // update the temperature

17 O < lowest cost schedule in M

(line 6), and the number of inner loop iterations does not exceed the maximum
number of inner loop iterations (line 8), neighbour schedules are generated (line 10)
and costed (line 11). Neighbour schedules are generated by replacing one task in the
schedule with one of the other possible tasks, ensuring that the tasks either side are

not the same as the new task.

If the cost of the new schedule is lower than the previously added schedule, or the
probabilistic test is satisfied (line 12), the new schedule is added to the memory
(line 13) and the current schedule and cost are updated (line 14). The iterators are

incremented on line 15 and the temperature is updated on line 16. Finally, the lowest
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cost schedule stored in memory is returned on line 17.

In [54], the finite horizon was simply the total number of tasks, as none of the tasks
were repeated. For SCAR scenarios, the choice of finite horizons is slightly more
complicated. There are two main options of finite horizon—specifying the number of
tasks in the schedule, and specifying the execution time of the schedule. The difficulty
with using a finite horizon based on the execution time with the simulated annealing
method is that the various tasks may take different lengths of time to be executed.
When one task is replaced with another, it can lead to a schedule which now no
longer reaches the finite horizon. This then requires methods of selecting a new task
or tasks at the end of the now incomplete schedule. Using a finite horizon based
on the number of tasks in the schedule, on the other hand, can never result in an
incomplete schedule. While this does result in schedules which take varying lengths
of time to execute, the ratio cost defined in Equation 5.41 facilitates comparison of

the schedules.

6.4 Branch and Bound

This section introduces branch and bound methods for both single-replenishment
agent and multi-replenishment agent SCAR scenarios. Branch and bound is a depth-
first tree search optimisation method, first developed by Land and Doig [62], which
minimises the search space that is explored by ignoring branches where the lower
bound on the cost is higher than the current best cost. One of the desirable char-
acteristics of branch and bound is that it is an anytime optimisation method—a
valid but likely sub-optimal schedule is available at any point during the optimisation

process.

The set of all possible schedules for a given finite horizon can be formed as a tree (see
Figure 6.2) where each node of the tree is a system state and each edge represents
the tasks that can be performed from that system state. Along each edge of the tree,
the evolution of the system state is simulated using one of the frameworks presented

in Chapter 5. If the predicted resource level of the replenishment agents is below a
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threshold, the only valid task is to return to the replenishment point. Similarly, the
set of valid tasks excludes the task previously performed by that agent. This helps

to reduce the size of the tree so that unnecessary tasks are not considered.

Lowest
priority task

Highest
priority task

Highest
priority task

Lowest
priority task

Lowest Highest
priority task priority task

Bottom-first: 1 2 3 4 5 6 7 8 9 10 11 1213 14 1516 17 18
Top-first: 1 7 13 3 9 15 5 11 17 2 8 14 4 10 16 6 12 18

Figure 6.2 — An example tree of solutions—each node is a system state, and each edge
is a different task. The evolution of the system is simulated along each edge. The
numbers at the bottom of the tree outline two different approaches for searching
through a tree. The first line shows the exploration order using the bottom-first
approach, while the second line shows the exploration order using the top-first
approach. The leftmost branch at each node is the highest priority (as calculated
by a heuristic), and the rightmost is the lowest priority.

The order in which the branches of the tree are searched has a significant impact on the
characteristics of the branch and bound algorithm. Two different approaches, shown
in Figure 6.2, were examined. The first approach, bottom-first, searches through the
leaves of one branch first before gradually searching higher in the tree. This approach
has the advantage of minimising the amount of data that has to be stored in the
tree as only the parent nodes of the current schedule under consideration must be
stored. This gives a memory complexity of O(an), where a is the number of tasks in
the schedule and n is the number of user agents. However, it has the disadvantage of

focussing initial optimisation efforts on the later tasks in the schedule.

The other approach, top-first, explores the nodes in priority order with changes ini-
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tially occurring at the start of the schedule in the top of the tree. Each successive
solution examined is in a different high level branch to the previous solution, ensuring
that the breadth of the tree is explored rapidly. This approach requires the calculated
costs, states, and lower bounds of every node visited to be stored in a tree, which

results in a memory complexity of O(n?).

The cost of the current best schedule versus the number of nodes explored for the
two methods is compared in Figure 6.3. Both approaches initially explore the same
branches for the first schedule. However, where the bottom-first approach finds
neighbour schedules which make minor incremental improvements to the cost, the
top-first approach finds substantially better schedules in other branches of the tree.
The bottom-first approach has many desirable characteristics for small optimisation
problems—low memory usage and minimal computational overhead associated with
having to search through the tree. In larger problems, however, it may be computa-
tionally intractable to search through the entire tree and the anytime characteristic
of branch and bound must be exploited. In these cases, the top-first approach is more
desirable as it generally finds lower cost schedules for the same number of nodes ex-
plored as the bottom-first approach. In addition, since it focusses on earlier tasks, it
fits quite well into the MPC-like framework used in this thesis—optimisation efforts
are focussed on the next tasks to be performed rather than the tasks at the end of

the schedule.

6.4.1 Single-Agent Algorithm

The single-replenishment agent branch and bound algorithm is detailed in Algo-
rithm 6.3. It takes as input the current state of the system, a finite horizon, and
an optimisation depth. For the single-replenishment agent case, the finite horizon is
the maximum number of tasks in the schedule to allow comparison with the simu-
lated annealing method. The other input, the optimisation depth, determines how
far down the tree the search goes. It uses the top-first approach to generate the

tree of schedules on the fly, considering all possible combinations of the tasks within
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Figure 6.3 — A comparison of the two different approaches for searching through a

tree. The top-first approach finds lower cost solutions in fewer iterations than the
bottom-first approach.
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the optimisation depth and selecting the remaining tasks using a heuristic. This is
illustrated in Figure 6.4. If the optimisation depth is equal to the finite horizon, the
algorithm will find the optimal schedule for that finite horizon.

Algorithm 6.3: Single-replenishment agent branch and bound
BBSingle (v, ,:1ia1> @ dimax)
input : Current system state, 1,,,,;; finite horizon (number of tasks), a;
optimisation depth, d,,.z
output: Best schedule, 0.
1 Oinitial A empti% ebest — Gmpti% Whest €~ OO
2 T < empty // initialise the tree
3 for all possible combinations of the first d,,q. tasks do

4 d < 0,0 < empty, Y < Vi
5 while d < a do
6 p < ATC(1)) // array of tasks in priority order
7 if d < d,,,, then
8 b < next branch to explore
9 append p, to 0,
else
10 ‘ append p, to 6,
11 if T'(0) does not ezist then
12 (w, 1) < CostCalc(,,riu @)
13 T(0) «+ (w,¥) // store the cost and state in the tree
14 d+—d+1
15 if LowerBound (T, 0) > wp., then
16 ‘ break
17 if LowerBound (T, 0) > wp.s then
18 ‘ continue
19 if w < Wpest then
20 ‘ Whest < W, ebest — 0

On line 6, the ATC heuristic is used to calculate a priority order for searching the
branches at that node. If the level of the replenishment agent is below the level
threshold, I, j thresn, this priority order will only consist of the task of being replen-
ished by the replenishment point. Otherwise, it will consist of all of the tasks in a
priority order except for the last task performed. The ATC heuristic is used here
to improve the search speed of the algorithm through the tree—higher priority tasks
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are more likely to result in a lower cost schedule, reducing the total number of nodes
explored to find the optimal schedule. If the current schedule has fewer tasks than
the optimisation depth (line 7), the next branch to be explored is selected, otherwise

only the highest priority branch is selected (line 10).

Since this algorithm is used within an MPC-like framework and only the first task in
the schedule is used by the scheduler, it is also valid to terminate the optimisation
process once all bar one of the branches from the root node have been eliminated.
The one remaining branch is the first task in the optimal schedule, meaning that the

later tasks do not need to be optimised.

As discussed previously, if low-cost schedules are found quickly within the optimisa-
tion, the branch and bound algorithm will end up exploring less branches to find the

optimal solution than if it did not find the low-cost schedules early on. Therefore, a

1t task Branch and bound

2nd task

3d task

4th task

5th task

6t task Heuristic

nth task

Figure 6.4 — Branch and bound when the optimisation depth is smaller than the
schedule length. The optimisation depth in this example is three tasks—branch
and bound optimises the first three tasks in the schedule, and the remaining tasks
in the schedule are selected using a heuristic.
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good initial schedule can significantly reduce the search time. The ATC heuristic used
on line 6 goes some way towards guiding the initial search towards a good schedule.
Another option is to use the schedule calculated for the previously performed task
as a seed solution, with the first task removed and a final task added using the ATC
heuristic. If this approach is used, it is important to perform a verification on the
initial schedule to ensure that the resource level of the replenishment agent is above

the level threshold whenever the task is to replenish a user agent.

The most important part of branch and bound is estimating the lower bound on the
cost for each node (line 15). This lower bound represents the lowest possible cost of
a complete schedule starting with the sequence of tasks described by that node. The
more accurate the estimate of the lower bound is, the more branches can be pruned,
resulting in a faster search time. A naive heuristic that assumes the maximum possible
time is taken to complete the schedule, as well as assuming that user agents incur
no additional downtime to the finite horizon of the schedule, has been used for this
thesis. This guarantees that the estimated minimum cost of a schedule is below the

actual cost.

When calculating the lower bound, it is important that the time taken to complete
the schedule, t;,:4;, is not underestimated as it is on the denominator of the cost ratio

defined in Equation 5.41. The ratio cost is reproduced here for convenience:

n

Z witempty,i

argmin ¢ = ZZlnt—l (6.6)
tota

The maximum value of #;,;, can be calculated by using the longest time each task
can take when following on from a previous task to find the sequence of tasks which
will take the longest time. The longest time each task can take is calculated by as-
suming that the user agent or replenishment agent is completely empty. Selecting the
sequence of tasks cannot be performed in a greedy manner as this can underestimate
the maximum schedule time. Instead, combinatorial optimisation is used to calculate

the maximum time. While a method like branch and bound could be used to calculate
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the maximum time in each instance, it is more efficient to use dynamic programming
to precompute a lookup table of the maximum times to complete a schedule based

on the previous task and the number of tasks to be selected.

A standard recursive dynamic programming approach similar to that used in [46]
has been used in the single-replenishment agent case for precomputing the maximum
times. Consider the example maximum task times shown in Table 6.1. The dynamic
programming approach is illustrated in Table 6.2. It first calculates the single longest
task to perform after each of the tasks. If the last task was task 0, for example, then
it compares the next possible tasks of 1 and 2. Task 1 is selected as it has a total
time of 150s compared to the time of 100s for task 2. This is performed for all of
the tasks. In the next step, the best pair of tasks to be performed is determined.
Again, if the last task was task 0, the two possible next tasks are task 1 and task
2, and the four possible pairs of tasks are [1,0], [1,2], [2,0], and [2,1]. From the first
stage, it is already known that the optimal task to perform after performing task 1 is
task 2, and the optimal task to perform after performing task 2 is task 0. Therefore,
the four possible pairs of tasks are reduced to just [1,2] and [2,0]. This process is
repeated up to the finite horizon of the schedule. Using this process means that, even
as the number of tasks is increased, there are still only two options that need to be
considered for each task in each step as the other options have already been shown

to be suboptimal.

Table 6.1 — Example maximum task times in seconds

Previous task 0 1 2

Next task
0 - 100 300
1 150 - 150

2 100 200 -




6.4 Branch and Bound 136

Table 6.2 — Dynamic programming example showing the next tasks and total time (in
parentheses) for the tasks

Number of tasks 1 2 3
Previous task
0 1(150) 1,2(350) 1,2,0 (650)
2 (100) 2,0 (400) 2,0,1 (550)
1 0 (100) 0,1 (250) 0,2,0 (500)
2 (200) 2,0 (500) 2,0,1 (650)
2 0 (300) 0,1 (450) 0,2,0 (700)

1(150) 1,2 (350)  1,2,0 (650)

6.4.2 Multi-Agent Algorithms

This section introduces two branch and bound methods for multi-replenishment agent
scenarios. The first method, outlined in Algorithm 6.4, is similar to the branch
and bound algorithm outlined for single-replenishment agent scenarios. The second
method avoids selecting tasks such that replenishment agents arrive at similar times

to one another, allowing the cost calculation detailed in Algorithm 5.8 to be used.

For the multi-replenishment agent case it is necessary to use a finite horizon based on
the total execution time of the schedule to ensure that the schedules of each individual
replenishment agent take similar lengths of time. Using a finite horizon based on
the number of tasks could result in a schedule where one replenishment agent takes
significantly longer to complete the schedule compared to the other replenishment
agents. The finite horizon used in Algorithm 6.4 is the time after which the last task
in the schedule for each replenishment agent must finish. Calculating the lower bound
on the cost of the schedule is simplified by this choice of finite horizon—instead of
requiring a dynamic programming approach to estimate the maximum execution time
of a partial schedule, the maximum time in this case can be estimated by assuming

that the longest possible task starts at the finite horizon.

Algorithm 6.4 begins by inserting into the schedule any tasks that are currently being
performed by the replenishment agents (line 5). It then updates the state with the
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Algorithm 6.4: Multi-replenishment agent branch and bound

BBMulti (¢initial7 75h0'rizon> dmam)

input : Current system state, 1,,,.,4;; finite horizon (time), thorizon;
optimisation depth, d,,qz

output: Best schedule, 0.

1 Hinit'ial < empt:% ebest — emptya Whest < OO
2 T < empty // initialise the tree
3 for j € {1,...,m} do
4 if replenishment agent j is currently setting up, replenishing a user agent,
or packing up then
5 ‘ append task to Oyitiar,;
6 (Winitials Yinitia) < CostCALe (Wypiars Oinitial)
7 T(Oinitiat) < (Winitiats Cinitiar) // sStore the cost and state in the tree
8 for all possible combinations of the first d,,q. tasks do
9 t<0,d < 0,0 < Oinitiai, Y < Yinitial
10 while t < t),0i20n, dO
11 J < earliest free replenishment agent
12 p < ATC(a), j) // array of tasks in priority order
13 if d < d,,,, then
14 b <— next branch to explore
15 append p, to 0;
else
16 ‘ append p, to 6;
17 if T'(0) does not ezist then
18 (w, 1) < CostCalc(W,,iria, @)
19 T(0) «+ (w,¥) // store the cost and state in the tree
else
20 | (w, %) < T(0)
21 d<+d+1,t + GetMinTime (¢))
22 if LowerBound (T, 0) > wp.s; then
23 ‘ break
24 if LowerBound(T',0) > wp.,; then
25 ‘ continue
26 if w < Wpest then
27 ‘ Whest < W, Hbest «— 0
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initial schedule (line 6) and stores this in the tree (line 7). Then, at each node in the
tree, the algorithm selects a task for the replenishment agent that is expected to finish
its previous task first (line 11) and calculates whether it is possible for that partial
schedule to lead to a lower cost schedule than the current best schedule (line 22). Tt

follows this process until the lowest cost schedule is found.

The second branch and bound method follows the exact same structure as Algo-
rithm 6.4 with one key difference—the ATC function on line 12 is modified to only
return tasks where the replenishment agent will not arrive at a user agent at a sim-
ilar time to any of the other replenishment agents. The cost calculations on line 6
and line 18 are then executed using the MultiCostCalcGreedy method outlined in
Algorithm 5.8. The reasoning behind this approach is that it should reduce the
computational impact of adding replenishment agents to the scenarios by avoiding
the consideration of multiple arrival orders. This should not compromise the perfor-
mance of the algorithm as replenishment agents are allocated to user agents that are

not being serviced by another replenishment agent.
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6.5 Results

This section compares the performance of the heuristic, meta-heuristic, and branch
and bound optimisation methods in the single-replenishment and multi-replenishment
agent scenarios that are outlined in Section 5.4.1. Section 6.5.1 presents the results for
Scenarios S1 and S2, and Section 6.5.2 presents the results for Scenarios M1 and M2.
Each method was tested 50 times in each scenario. All methods were implemented

in Python and calculation times were calculated on a 2.8GHz Intel i7-640M.

6.5.1 Single-Agent Scenarios

The algorithms that were tested in the single-replenishment agent scenarios are:

Greedy heuristic, G

Deterministic ATC heuristic, ATC

Stochastic ATC heuristic, SATC

Simulated annealing using a cost function that incorporates uncertainty, SA

Branch and bound using a cost function ignoring uncertainty, DBB

Branch and bound using a cost function that incorporates uncertainty, SBB

The cost function used in the DBB method assumes that there is no uncertainty in
the parameters of the agents and uses the mean values of the agent parameters. The
SA and SBB methods both use the analytical cost calculation method developed in
Section 5.2.

Of all of the optimisation methods examined, the G heuristic is the only method which
does not take any parameters as an input. The ATC and SATC methods both have
a scaling parameter that modifies the behaviour. As the SA method uses the ATC

heuristic to generate the initial schedule, it also takes as input the scaling parameter,
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along with the schedule length, the initial temperature coefficient, temperature cool-
ing coefficient, maximum number of inner loop iterations, and maximum number of
iterations. Kaplan and Rabadi [54] give suggestions for these parameters. An initial
temperature coefficient of 50, a temperature cooling coefficient of 0.95, a maximum
number of inner loop iterations of 15, and a maximum number of iterations of 2000
were found to give good results in the examined scenarios. Finally, the DBB and
SBB methods take as input parameters the schedule length, the number of tasks to

optimise, and the scaling parameter for the ATC heuristic.

Scenario S1

The user agents in this scenario were each equipped with discrete sensors at 20%, 40%,
60% and 80% of capacity. Each sensor had an uncertainty standard deviation of 1%
of the maximum capacity. The replenishment agent was assumed to have perfect
sensing for both position and resource level. Each simulation lasted for 5 hours of
simulated time, with the initial resource level of each agent initialised to a random
value between 50% and 100% of maximum capacity to simulate realistic, in-progress

resource levels.

The k scaling parameter for the ATC and SATC methods was first tuned by running
multiple simulations with & values between 1 and 7. As shown in Figure 6.5, the
best results were achieved using a k value of approximately 2.5 for the 4-user agent
scenario, and approximately 5.5 for the 5- and 6-user agent scenarios. This means
that the behaviour is biased more towards the MS rule than the WSPT rule for the

4-user agent scenario in comparison to the 5- and 6-agent scenarios.

The SA, DBB, and SBB methods were run using finite horizons of n 4+ 1, n + 2, and
n+ 3 tasks, where n is the number of user agents in the system. The number of tasks
optimised in the DBB and SBB methods was equal to the schedule length for this
scenario, meaning that the schedules that were returned by these algorithms were the

optimal schedules given the finite horizon.

The results for the 4-user agent scenario are shown in Figure 6.6. The performance
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Figure 6.5 — Percentage downtime versus k value for the ATC heuristic in the 4-, 5-,
and 6-user agent cases for Scenario S1.

of the SA, DBB, and SBB methods improved as the finite horizon was increased.
In the case of SBB, the improvement was substantial—when using a finite horizon
of 5 tasks it actually had the worst performance of all of the methods. However,
with a finite horizon of 7 tasks, the SBB method produced the overall best result.
The poor performance of SBB when using the short finite horizon was due to the
algorithm oscillating between two short tasks. This behaviour is demonstrated in
Figure 6.7. When a longer finite horizon is used in Figure 6.7b, the oscillations are
removed. This is side-effect of using the number of tasks in the schedule as the finite
horizon. For a fixed number of tasks, the shorter the tasks are the less time there
is for downtime to be accumulated. However, the short tasks are generally not good
choices as they are typically oscillating between just two user agents that are close
together, at the expense of the remaining user agents. As the finite horizon was
increased, the algorithms were able to see the negative effects of choosing short tasks,
resulting in no oscillations. DBB does not suffer as much from these oscillations as the

initial schedule produced using the ATC heuristic in the DBB algorithm is usually
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a zero-cost schedule that is returned immediately. The ATC and SATC heuristics
outperformed the G heuristic, and actually produced comparable results to SA. This
is an interesting result as it indicates that SA was unable to find a substantially better

schedule than the initial schedule generated by ATC.

The 5-user agent scenario results, shown in Figure 6.8, follow the same trends as the 4-
user agent scenario—the results for SA; DBB, and SBB improved as the finite horizon
was increased, with SBB 8 producing the best results, particularly in terms of the
number of simulations with 100% uptime. SA was outperformed by the branch and
bound methods, and was not able to match the performance of the ATC heuristic.
The G heuristic was again outperformed by the ATC and SATC heuristics, with
significantly worse performance than in the previous scenario. The results for the 4-
and 5H-user agent scenarios clearly show the benefit of using an objective function that
incorporates uncertainty over one that does not. As DBB is unable to differentiate
between zero cost solutions, it instead relies on the priorities generated by the ATC
heuristic to select a good task in cases where downtime is unlikely. The advantage
of SBB over DBB is illustrated in Figure 6.9. SBB will find that selecting a schedule
that will replenish the user agent at point «a is significantly less risky than at point b,
whereas DBB will return a zero cost for both schedules and is unable to differentiate
between them. Therefore, point b may be chosen sometimes by the deterministic cost
estimate, leading to an incurred cost when the actual resource level is as shown in

Figure 6.9.

Finally, the results for the 6-user agent scenario are shown in Figure 6.10. In this
scenario, none of the methods were able to prevent the user agents from incurring
downtime. This scenario is very interesting—while the G heuristic has terrible per-
formance, the remaining methods all have approximately the same performance. In
particular, there is no noticeable difference between the DBB and SBB methods. This
is to be expected as, in over-utilised scenarios like this, the objective function incor-
porating uncertainty will return an expected cost that is very close to the mean, and

hence similar to that returned by an objective function that ignores uncertainty.

The calculation times for the methods are shown in Table 6.3. The heuristics have
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Figure 6.6 — (a) shows the box and whisker plots for the percentage downtime in
Scenario S1 with 4 user agents. The number next to the SA, DBB, and SBB
methods is the number of tasks in the schedule. (b) shows the percentage of
simulation runs with 100% uptime for each method.
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Figure 6.7 — Partial simulation results showing the user agent resource levels over time
using the SBB method in Scenario S1 with 4 user agents. In (a), a schedule length
of 5 tasks was used. Note the oscillations between the tasks of replenishing user
agents 2 and 3, marked in red. In (b), a schedule length of 12 tasks was used and

the oscillations between short tasks are no longer present.
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Figure 6.8 — (a) shows the box and whisker plots for the percentage downtime in
Scenario S1 with 5 user agents. The number next to the SA, DBB, and SBB
methods is the number of tasks in the schedule. Note that some of the results for
the G method have been cut-off to improve readability. (b) shows the percentage
of simulation runs with 100% uptime for each method.
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Figure 6.9 — Level of a user agent showing predicted level, uncertainty, and actual
level. Replenishing at points a and b is treated identically if uncertainty is ignored.
If uncertainty is considered, replenishing at point a is preferred over replenishing
at point b.

the shortest calculation time, taking just a fraction of a second to generate a task
allocation. The calculation time of SA slightly increases with both the number of
user agents and the number of tasks in the schedule. The DBB and SBB methods
show a much larger variation in the time taken. In the 4- and 5-user agent scenarios,
DBB takes significantly less time than SBB. In these scenarios, the DBB algorithm
generally finds a zero-cost schedule within the first few schedules tested and is able to
return this schedule immediately without having to explore the rest of the tree. The
SBB algorithm, on the other hand, will never find a zero-cost schedule and will only
return a schedule once the entire tree has been sufficiently explored. In the 6-user
agent case, the calculation times for DBB have increased significantly as it is highly
unlikely that the DBB algorithm will find a zero-cost schedule. SBB still has a longer
calculation time which is a direct consequence of the more computationally expensive

prediction framework used.
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Figure 6.10 — Box and whisker plots for the percentage downtime in Scenario S1 with
6 user agents. The number next to the SA, DBB, and SBB methods is the number
of tasks in the schedule. Note that some of the results for the G method have been
cut-off to improve readability. None of the methods were able to prevent the user
agents from exhausting their supply of the resource, so these results are omitted.

Table 6.3 — Calculation times in seconds for Scenario S1

Method G ATC SATC  SA SA SA
Schedule Length - - - n+1 n+2 n+3
No. of User Agents, n
4 4.55E-5 1.37e-4 3.088-4 498 585 6.55
5 2.38E-5 1.48E-4 2.73E-4 6.54 7.62 7.96
6 5.00e-5 1.84e-4 3.20e-4 7.05 835 9.68
Method DBB DBB DBB SBB SBB SBB
Schedule Length n+1 n+2 n+3 n+1 n+2 n+3
No. of User Agents, n
4 1.70e-2 1.90E-2 2.80E-2 0.157 0.421 0.884
5 3.20E-2 4.90E-2 4.60E-2 0.605 1.12 2.51

6 1.51 2.06 7.46 811 202 37.8
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Scenario S2

All of the agents in this scenario were assumed to have perfect sensors such that there
is no uncertainty in the current state. The initial resource levels of all agents were
initialised to a random value between 50% and 100% of maximum capacity, and the

simulation lasted for 180 days of simulated time.

Before testing the optimisation methods, the ATC scaling parameter, k, was tuned.
Values of k = 3 for the large and medium replenishment agents, and k£ = 5 for the
small replenishment agent were found to give good results. Various schedule lengths
were also tested. Figure 6.11 shows the number of simulations with 100% uptime for
various schedule lengths using the SBB method with an optimisation depth of 2 tasks.
As can be seen, the peak value is achieved at a schedule length of 25 tasks. At short
schedule lengths, the performance is very poor due to oscillations from the preference
for shorter tasks. Beyond 25 tasks, it is likely that the suboptimal decisions made
by the ATC heuristic accumulate to such a point that the benefit of using a longer
look-ahead distance is negated. SA, DBB, and SBB were all tested using a schedule
length of 25 tasks. Finding the optimal schedule in this scenario is intractable and
therefore the anytime nature of branch and bound was used to limit the runtime of
the algorithms. This was achieved in two ways—the optimisation depth was varied,
and a hard size limit of 10,000 nodes was placed on the solution tree. This limit of

10,000 nodes is used for all remaining scenarios.

Figure 6.12, Figure 6.13, and Figure 6.14 show the results for each method which
broadly mirror those for Scenario S1. The benefit of the directed optimisation of the
branch and bound methods on an initial schedule generated by the ATC heuristic is
evident here. Even if only the first task is optimised, the branch and bound meth-
ods provided a significant decrease in downtime over the ATC heuristics. The SA
method, on the other hand, struggled in these larger scenarios as it does not focus
the optimisation on the earlier tasks in the schedule and was unable to sufficiently

explore the search space to yield an improvement over the ATC heuristics.

The SATC heuristic outperformed the deterministic ATC heuristic in the medium and
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small replenishment agent cases in terms of downtime, but was outperformed by the
ATC heuristic in the large replenishment agent case. DBB was clearly outperformed
by SBB in the large and medium replenishment agent cases, particularly in terms of
percentage of scenarios with 100% uptime. Both methods had similar performance
in the small replenishment agent case, corroborating the results obtained in Scenario

S1.

The computation times for each optimisation method are detailed in Table 6.4. While
the G, ATC, and SATC heuristics computed very quickly, the combinatorial opti-
misation methods took significantly longer. The results for the branch and bound
methods mirror those for Scenario S1—DBB is generally very fast except in the small

replenishment agent scenario where it is unable to quickly find a zero-cost schedule.
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Figure 6.11 — Percentage of simulations with 100% uptime in Scenario S2 with the large
replenishment agent for various schedule lengths using SBB with an optimisation
depth of 2 tasks.
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Percentage downtime versus method for large replenishment agent
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Figure 6.12 — (a) shows the box and whisker plots for the percentage downtime in
Scenario S2 with the large replenishment agent. The number next to the DBB and
SBB methods is the optimisation depth of the branch and bound algorithm. Note
that some of the results for the G method have been cut-off to improve readability.
(b) shows the percentage of simulation runs with 100% uptime for each method.
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Percentage downtime versus method for medium replenishment agent
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Figure 6.13 — (a) shows the box and whisker plots for the percentage downtime in
Scenario S2 with the medium replenishment agent. The number next to the DBB
and SBB methods is the optimisation depth of the branch and bound algorithm.
Note that some of the results for the G method have been cut-off to improve
readability. (b) shows the percentage of simulation runs with 100% uptime for
each method.
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Percentage downtime versus method for small replenishment agent
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Figure 6.14 — Box and whisker plots for the percentage downtime in scenario S2 with
the small replenishment agent. The number next to the DBB and SBB methods
is the number of tasks in the schedule that are optimised. Note that the G results
have been cut-off to improve readability. None of the methods were able to prevent
the user agents from exhausting their supply of the resource, so these results are

omitted.
Table 6.4 — Calculation times in seconds for Scenario S2
Method G ATC SATC SA
Replenishment Agent
Large 9.71e-4 1.61E-3 2.09e-3 13.5
Medium 1.03e-3 1.50E-3 2.10E-3 13.9
Small 1.03e-3 1.64E-3 2.00E-3 13.1
Method DBB1 DBB2 DBB3 SBB1 SBB2 SBB3
Replenishment Agent
Large 0.664 0.674 0.668 1.68 11.9 12.2
Medium 0.671 0.639 0.638 1.88 21.7 39.5

Small 2.38 24.2 29.8 1.68 20.1 48.6
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Single-Agent Summary

The above results clearly demonstrate the benefit of considering more than just
the next task in the optimisation process. The heuristics consistently produced the
worst performance, with the G heuristic performing significantly worse than the other
heuristics. The SATC heuristic appeared to have an advantage over the deterministic
ATC heuristic in some scenarios, but was outperformed in others. Overall, the benefit

of incorporating uncertainty in the ATC heuristic appears to be minimal.

Surprisingly, the SA method was only able to match the performance of the ATC and
SATC heuristics, despite using the ATC heuristic to generate the initial schedule.
The branch and bound optimisations that focus on the earlier tasks in the schedule
produced significantly better results for a similar computation time to the SA method.
For the multi-replenishment agent scenarios, the G, SATC, and SA methods are no

longer considered.

6.5.2 Multi-Agent Scenarios

The algorithms tested in the multi-replenishment agent scenarios were:

Deterministic ATC heuristic, ATC

Branch and bound using a cost function ignoring uncertainty, DBB

Branch and bound using a cost function that incorporates uncertainty, SBB

Branch and bound using a cost function that incorporates uncertainty and

avoids sending replenishment agents to the same task at similar times, SBB NC

The schedule length for the DBB and SBB methods in these cases was based on time
rather than the number of tasks. The SBB method was tested using v values of 1,
0.1, and 0.01.
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Scenario M1

The agents in this scenario had the same suite of sensors as the user agents in Scenario
S1. Similarly, the simulations were run for 5 hours of simulated time with the initial
resource levels of all agents initialised to a random value between 50% and 100% of
maximum capacity. The ATC heuristic was used with a scaling value, k, of 3. A
schedule horizon of 2000s, and an optimisation depth of 9 tasks, were used for the
DBB and SBB methods. The results for this scenario are shown in Figure 6.15. These
results follow the same trend as the single-replenishment agent scenarios—the ATC
heuristic had the worst performance, followed by the DBB method, with the SBB
methods producing the lowest and most consistent downtime results. Varying ~ did
not impact the results for the SBB method, and the SBB NC algorithm produced
almost identical results to the full SBB algorithms. As can be seen in Figure 6.15b, the
SBB methods again produced the best results in terms of percentage of simulations

with 100% uptime.

The calculation times for each method are detailed in Table 6.5. The ATC and DBB
methods took the least amount of time, with the SBB algorithms all taking between
13 and 14 seconds. The significantly lower calculation time of the DBB method was
due to the same reasons as discussed in Scenario S1—the algorithm was able to quickly
find a zero-cost schedule and return this schedule immediately. As there were only
two replenishment agents in this scenario, most schedules had only one or two likely

arrival orders, resulting in minimal difference between the various SBB methods.

Table 6.5 — Calculation times in seconds for Scenario M1

ATC DBB SBB1 SBBO0.1 SBBO0.01 SBBNC
1.46E-3 0427 139 13.3 13.2 13.9
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Figure 6.15 — (a) shows the box and whisker plots for the percentage downtime in
Scenario M1. The number next to the SBB methods is the threshold multiplier
value, v. SBB NC refers to the multi-replenishment agent SBB algorithm that
avoids sending replenishment agents to the same user agent at similar times. (b)

shows the percentage of simulation runs with 100% uptime for each method.
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Scenario M2

All of the agents in this scenario were assumed to have perfect sensors and each
simulation was run for 1 hour of simulated time. The initial resource level of each
replenishment agent was set to 100%, and the initial resource levels of the user agents
was set to a random value between 50% and 100% of maximum capacity. Unlike in the
other scenarios, two of the replenishment agents started at the replenishment point,
with the remaining three each starting at a different user agent. An ATC scaling
value of 2 was found to produce good performance. For the DBB and SBB methods,
a schedule horizon of 400s and an optimisation depth of 5 tasks were used. Initially,
the SBB NC algorithm would sometimes fail to find a valid schedule. The requirement
for successive tasks of the replenishment agents to be different was relaxed slightly for
the SBB NC method to enable it to find valid schedules—it was allowed to perform
the task of being replenished by the replenishment point multiple times in a row.
This highlights a potential failing of the SBB NC algorithm—it may be impossible

to find a good schedule in scenarios with very high uncertainty and few user agents.

The results for Scenario M2 are shown in Figure 6.16. Interestingly, the ATC heuris-
tic actually outperformed the DBB algorithm in terms of median downtime in this
scenario. Varying the v parameter had a small effect on the SBB results with the me-
dian downtime decreasing as v was decreased. The SBB NC algorithm produced the
best results, outperforming the other SBB methods by a significant margin. It was
actually the only method to achieve runs with 100% uptime—6% of the simulations

had 100% uptime.

Calculation times for the methods are detailed in Table 6.6. Here there is a large
variation between the SBB methods, with the SBB NC approach taking far less time
than the full SBB methods. In particular, the SBB approaches took significantly
more time as v was decreased and more arrival orders were considered. The intu-
itive strategy of avoiding replenishment agents arriving at the same time was clearly

beneficial, both in terms of downtime and calculation time.
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Percentage downtime versus method
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Figure 6.16 — Box and whisker plots for the percentage downtime for Scenario M2.
The number after SBB is the threshold multiplier value, v. SBB NC refers to
the multi-replenishment agent SBB algorithm that avoids sending replenishment
agents to the same user agent at similar times.

Table 6.6 — Calculation times in seconds for Scenario M2

ATC DBB SBB1 SBBO0.1 SBBO0.01 SBBNC
2.328-4 0.486  20.2 37.8 99.6 12.2

6.6 Summary

This chapter introduced and evaluated methods for optimising the actions of the
replenishment agents in SCAR scenarios. After introducing the optimisation frame-
work in Section 6.1, Section 6.2 presented several heuristics, including a new form
of the ATC heuristic that attempted to incorporate some aspects of the uncertainty.
Section 6.3 then introduced a SA meta-heuristic that had been successfully applied
to similar scenarios in the literature. This method used the ATC heuristic to gener-
ate an initial schedule, and then performed random manipulations of the schedule to

find a good schedule. Finally, several branch and bound approaches were developed
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in Section 6.4. Branch and bound strategies which focussed search efforts on earlier
tasks were introduced for both single-replenishment agent and multi-replenishment
agent scenarios. In addition, the SBB NC branch and bound approach which actively

avoids sending replenishment agents to the same task at similar times was detailed.

The above methods were evaluated in Section 6.5 using several single- and multi-
replenishment agent scenarios. The branch and bound methods using the framework
developed in Chapter 5 were shown to result in the lowest downtime. In particular,
these methods consistently resulted in the highest number of simulations in which
none of the user agents exhausted their supply of the resource. The branch and bound
method which ignored uncertainty in its prediction framework had the next best
performance, with SA and the heuristics following it. The undirected optimisation
approach of SA struggled to find good solutions, particularly in scenarios with a large
search space, while the heuristics made myopic decisions resulting in high downtime.
In the multi-replenishment agent scenarios, the SBB NC approach was shown to
outperform the other methods, highlighting the benefit of avoiding replenishment

agents arriving at similar times.

The SBB algorithms, making use of the prediction framework from Chapter 5, were
of most benefit in scenarios where the replenishment agents were on the cusp of being
able to prevent the user agents from incurring downtime. In situations where they
were completely unable to prevent the user agents from exhausting their supply of
the resource, the branch and bound method that ignored uncertainty, DBB, produced
similar results to the SBB algorithms. Similarly, in situations where there is very little
risk of the user agents exhausting their supply of the resource there is unlikely to be
any difference between the DBB and SBB methods, and even the ATC heuristic would

likely be sufficient for preventing downtime.

The downside of the branch and bound approaches is that they are computationally
expensive in comparison to the heuristics, particularly in large scenarios. Larger
scenarios have not been investigated as they are computationally infeasible with this
implementation, and the benefit of examining them is limited as the tested scenarios

already demonstrate the value of the developed methods. In the multi-replenishment



6.6 Summary 159

agent scenarios, the calculation time of the prediction framework grows significantly
as more orders of arrival are considered. As the SBB NC method does not suffer
from this, it consequently offers the best computational performance of the branch

and bound methods using the developed prediction framework.

All of the algorithms were implemented in Python and are currently unoptimised
with many opportunities existing for improving their computational performance.
The following optimisations are outside the scope of this thesis and are listed here as
a guide to a practical implementation. The current implementation does not store
the predicted state of the system at each node of the tree and instead calculates the
cost at each node by simulating from the current state. By storing the predicted state
at each node and only simulating the next task rather than the entire schedule up to
that point could increase the speed by an estimated 5 times in large scenarios, with
the speed-up increasing as the schedule length is increased. Using a language such
as C could increase the speed of the algorithm by between 10 and 1000 times [16],
and using parallel branch and bound algorithms can give a speed-up proportional to
the number of processors used [61]. Parallel methods could also be easily applied to
the multi-replenishment agent prediction framework. Using conservative estimates,
a speed-up of at least 100 times is feasible, resulting in sub-second calculation times

for all of the scenarios examined.



Chapter 7

Conclusion

The purpose of this thesis was to develop methods for scheduling under uncertainty in
scenarios that are typical in robotic, agricultural, defence, and mining domains. The
Stochastic Collection and Replenishment (SCAR) scenario was introduced to model
these scenarios, and novel methods for the estimation, prediction, and optimisation
problems that compose belief space scheduling were presented. Taking inspiration
from the field of belief space planning, this thesis used probability distributions over
the state of the system rather than individual states as is common in the scheduling
literature. A key focus of this thesis was the development and use of analytical and
approximation methods to address the excessive computational requirements of ex-
isting methods. The methods developed in this thesis resulted in a scheduling system
that produced superior results to existing scheduling methods within a reasonable

time frame.

This chapter presents a summary of the thesis in Section 7.1, followed in Section 7.2 by
an overview of the contributions that have been made. Finally, Section 7.3 concludes

by proposing avenues for future work.
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7.1 Summary

Chapter 2 reviewed the current literature in the fields of scheduling and belief space
planning. Existing methods of scheduling, particularly in collection and replenish-
ment scenarios, were shown to ignore many of the characteristics of SCAR scenarios,
the most significant being the uncertainty inherent in real-world scenarios. Litera-
ture on haul truck scheduling provided observations on the necessary characteristics
of a practical scheduling system. Belief space planning methods were then reviewed.
These methods were either prohibitively expensive in terms of computation time, or
shown to make inappropriate assumptions for them to be applicable to the problem

of scheduling in SCAR scenarios.

Chapter 3 presented a rigorous problem definition of the SCAR scenario. The prob-
lem definition covered the parameters and behaviour of the agents, and the objectives

of the optimisation problem.

An analytical constrained Kalman Filter (KF) for uncertain constraints was devel-
oped in Chapter 4 for estimating the state of the system. This method applies
to constraints that are described by Gaussian distributions. Approximations for ap-
plying interval constraints were presented and were shown to be good approxima-
tions compared to numerical methods. This soft-constrained KF was then compared
against unconstrained and hard-constrained KFs for tracking the resource level of an
agent with several uncertain discrete sensors. When the sensors had no uncertainty,
the hard- and soft-constrained KFs had identical results, outperforming the uncon-
strained KF by 14.5%. As the uncertainty of the sensors was increased, the tracking
performance of the soft-constrained KF approached that of the unconstrained KF,
outperforming it by only 3.9% when the uncertainty of the sensors was 2.5%. The
performance of the soft-constrained KF relative to the hard-constrained KF increased
as the sensor uncertainty was increased, with it outperforming the hard-constrained
KF by 11.1% when the sensor uncertainty was 2.5%. The main advantage of the
soft-constrained KF is that it is able to incorporate the uncertain constraints to im-

prove the state estimate compared to the unconstrained KF without producing the
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overconfident estimates that are the result of ignoring the constraint uncertainty.

Chapter 5 developed two types of methods for predicting the future state of a
system given a schedule. The first, a Monte Carlo (MC) approach, used multiple
samples from the parameter probability distributions to build up the distribution of
the future state. The second approach was an analytical method that used several
approximations to propagate the entire probability distributions without having to
sample the distributions. As part of this, new Gaussian approximations to the inverse
Gaussian distribution and generalised rectified Gaussian distribution were introduced.
In multi-replenishment agent scenarios it is necessary to consider the order in which
the replenishment agents arrive at their tasks. Methods for calculating the probability
of an order of arrival, and then subsequently adjusting the arrival times for a specific
order of arrival, were introduced. An alternative framework that was designed to be
used in conjunction with an optimisation method that avoids multiple orders of arrival
was also developed. In several single-replenishment agent and multi-replenishment
agent scenarios, the analytical method was shown to produce comparable results to
the MC approach while generally computing significantly faster. When comparing
schedules, it was up to 99.8% accurate in comparison to the MC approach. In multi-
replenishment agent scenarios with many replenishment agents and high uncertainty,
consideration of the multiple orders of arrival resulted in a significant increase in
the computation time of the analytical method, rendering it infeasible for practical

scenarios.

Finally, Chapter 6 introduced heuristic, meta-heuristic, and branch and bound op-
timisation methods that were combined with the estimation and prediction methods
from Chapter 4 and Chapter 5. The heuristic and meta-heuristic methods were
adapted from the existing literature on collection and replenishment scenarios pri-
marily as benchmarks for the branch and bound methods. All of these methods were
used within a Model Predictive Control (MPC)-like framework where a new allo-
cation or schedule was calculated after each task was performed. The branch and
bound methods were designed to exploit the MPC-like framework by focusing opti-

misation efforts on earlier tasks within the schedule so that good schedules could be
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found quickly. A branch and bound method which avoids multiple orders of arrival of
the replenishment agents was also developed for use with the alternative prediction
framework in multi-replenishment agent scenarios. Of the methods tested, the branch
and bound approaches using the analytical prediction framework from Chapter 5 con-
sistently produced the best results. The heuristics produced myopic decisions, the
undirected optimisation of the meta-heuristic was unable to sufficiently explore the
search space, and the branch and bound approaches ignoring uncertainty were unable
to differentiate between low- and high-risk schedules. In multi-replenishment agent
scenarios, the branch and bound algorithm that avoids multiple orders of arrival was
shown to have the best performance of the branch and bound approaches in terms of
minimising both the downtime of the user agents and the computation time of the

algorithm.

7.2 Contributions

The major contribution of this thesis was a framework for scheduling under uncer-
tainty in SCAR scenarios, known as belief space scheduling. More specifically, the

thesis contributions were:

e A mathematical formulation of the SCAR scenario, including a description of
the optimisation objectives. The SCAR scenario relaxed many of the assump-
tions of existing scenarios in the literature by using an infinite time-horizon and

incorporating uncertainty into the formulation.

e A method of approximating the conditional probability distribution of a Gaus-
sian distributed variable that is conditioned on one or more Gaussian distributed
variables as a Gaussian distribution. This was applied to the constrained KF
problem using the truncation method where it was shown to outperform exist-
ing unconstrained and hard-constrained KF methods. Unlike existing methods
for soft constraints which use numerical integration, this approach presented

an analytical solution to the integration. The constrained KF was used in the
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belief space scheduling framework to estimate the current state of the system

in the presence of uncertain discrete sensors.

e A continuous-time, analytical framework for predicting the future state of a
system given a schedule and uncertainty model. Where existing methods are
computationally slow or unprincipled in their treatment of uncertainty, the pro-
posed framework was computationally efficient and calculates a risk-weighted
cost. When benchmarked against a MC approach, it was shown to produce sim-
ilar discrimination performance while computing orders of magnitude faster.
This framework enabled uncertainty to be accurately and efficiently incorpo-

rated into the optimisation methods.

e Several branch and bound optimisation methods for use within a MPC-like
framework for single- and multi-replenishment agent SCAR scenarios. These
were compared with existing heuristic and meta-heuristic methods where the
benefit of the directed optimisation of the branch and bound methods in com-
parison to the myopic decisions of the heuristics and the undirected optimisa-
tion of the meta-heuristic was clear. The branch and bound approaches that
used the analytical prediction framework to incorporate uncertainty into the
optimisation also outperformed the branch and bound algorithms that ignored

uncertainty.
e A Gaussian approximation for inverse Gaussian distributed variables.

e A Gaussian approximation of the generalised rectified Gaussian distribution.
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7.3 Future Work

The work presented in this thesis opens a variety of future research avenues:

e The soft-constrained KF developed in this thesis is specifically for constraints
and state estimates that are described by Gaussian distributions, and existing
solutions for constrained KFs using other probability distributions have typi-
cally used numerical integration. Depending on the distribution types, it may be
possible to derive analytical expressions for use in a soft-constrained KF. This
would enable sensors which have non-Gaussian uncertainty to be incorporated

efficiently.

e As shown in the results of Chapter 5, a source of error in the prediction frame-
work results from the approximation of inverse Gaussian distributed variables
degrading when the standard deviation of the original variable is large. Devel-

oping an improved approximation would lead to reduced error in comparison to

the MC method.

e One of the current limitations of the multi-replenishment agent prediction frame-
work is that the calculation of the probability of an order of arrival using existing
CDF approximation methods is extremely slow. It has already been shown that,
for some scenarios, it is viable to structure the optimisation in such a way that
only one arrival order is highly probable, negating the need for this calculation.
However, for scenarios where the ratio of replenishment agents to user agents
is very high and there is high uncertainty, this may not be possible. Such sce-
narios will require faster methods of approximating the CDF, or algorithmic
improvements that can minimise the need for the CDF calculation, to achieve

real-time operation.

e An interesting avenue of future work on the optimisation side is to use a chance-
constrained framework, where a schedule must satisfy a probability that the
user agents will not exhaust their supply of the resource. This then enables the

scheduler to optimise other aspects of the problem such as the distance travelled
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or the operating cost of the replenishment agents, or use a hierarchical objective
function which combines multiple objectives. The analytical prediction method
presented in this thesis can easily be used in a chance-constrained framework—
the probability of a user agent incurring downtime can be calculated from the
distributions for the downtime of each user agent that are already generated by

the framework.

e The current optimisation methods all require the Apparent Tardiness Cost
(ATC) heuristic scaling parameter as an input. It may be possible to select
an appropriate scaling parameter each time the optimisation algorithm is run
by performing an optimisation using schedules purely generated by the ATC
heuristic and varying the scaling parameter. This would go part way towards a

system that does not require calibration by operators when the scenario changes.

e The method used to calculate the lower bound on the cost of a schedule in
this thesis is very conservative due to the difficulty of estimating the cost to
complete a partial schedule. Methods which produce a less conservative lower
bound will enable the branch and bound algorithm to prune more branches,

improving the computational performance.

e Some interesting algorithmic areas of future work include partitioning multi-
replenishment agent problems into multiple single-replenishment agent prob-
lems, decentralised methods, and utilising parallel processing methods. These
methods may reduce the computational requirements of the solution. Paral-
lel versions of branch and bound already exist and offer the opportunity for

significant computational speed gains.
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Appendix A

Integrals

A.1 Calculation of the Area

The area of the distribution given by Equation 4.38 is calculated as follows:

e ¢}
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A0

The first integral results in the CDF of the standard normal distribution and is equal
to 1:

[ e ()= =

The second integral does not have an indefinite integral, but a definite integral is

provided in [35]:
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A.2 Calculation of the Mean
The integral in Equation 4.41 is calculated as follows:
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The first integral, Equation A.5, is evaluated as:
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The second integral, Equation A.6, requires integration by parts. Let

u = erf (i;\l;;) dv = (exp (—§2/2> d¢ (A.8)
then
— )2
du = 01,1' \/zexp <—(<2;§jz)> d¢ v = —exp (—C2/2> (A.9)
This gives:
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For the remaining integral, completing the square in the exponent gives:
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then
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To summarise:
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A.3 Calculation of the Variance

The integral in Equation 4.42 is calculated as follows:
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Now consider each of these integrals separately. The integral in Equation A.16 is

given by:
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For the integral in Equation A.17, let
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then

() () et

__Z 01 iexp (— © ;U‘%f’i)2> ( Zerf (é) _Cexp (—(2/2)> dc (A.26)

Equation A.25 calculates to:

ot (25 (2ot () o) =0 nan

The integral in Equation A.26 can be split into the following integrals:

(A.28)

T2 oS58 (i) -t
NECCIRN
_/\F% ( < M”)) exp (—¢?/2) d¢ (A.29)
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Using the formula provided in [35], the integral in Equation A.28 equates to:

_ (Cfﬂc,i)Q

7 o ( e )erf <<> d¢ = V2merf (“) (A.30)

Oei V2 2(02,+1)

— 00

The integral in Equation A.29 has the same exponent as in Equation A.12. Let

C(Uz,i +1) = fleg

u:
Oci
then
r[2¢ (¢ = pre)? 2
[ e (45 e ()
'U‘Zi
T [2eXP (_2(02#1)) u?
— Z i i - |d A.31
sy (“’““’)QX‘)(z(aaﬁn)“( )
Let
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then

i)

(X (X d

- / \/7 U O-czej—p ) 2( +1) (Uc,imU +,uc,i) eXp <_U2) dv

(A.32)
2
% 2v/20.; exp (—2lé“>
o (0c,:+1)
= / N Oy v exp (—v2) dv (A.33)
2
% 2, €XP ( 2(0%;1)) )
+ / N O exp (—v )dv (A.34)
The integral in Equation A.33 equates to
2 .
oo 2\/50'(;’@‘ exp <_2in;l)> ,
/ NS v exp (—v ) dv
“z,i
2\/500,2' exp (—Q(JEJH)) exp (—v2)]™ 0 (A35)
Vr(oZ; +1) 2 B '
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The integral in Equation A.34 equates to:

2

Hei
00 2fbe; €XP (—Q(Uzi’ﬂ)
ﬁ(ag,i +1)3/2

) exp (—v?) do

“g,i
2ftc; exp (_ 202, +1)
GG
Mg,i
QMC,i exp (_ 2(05,2'—"_1))
T @

o

> Bﬁerf(v)}

—00

(A.36)

To summarise, the integral in Equation A.17 simplifies to:

__O/O % exp (—52/2) erf (Cg;f;g) d¢
Ng,i

24te,; Xp <_2<o—§,i+1>
B (02, +1)32

> — V2rert (“) (A.37)

2(03,1' + 1)

The integral in Equation A.18 equates to:

(e o]
—00

/ 2piC exp (—¢*/2) d¢ = [—piexp (—¢?/2)] " =0 (A.38)

The integral in Equation A.19 is similar to the integral evaluated in Section A.2 and

equates to:

T G — fey A u?,i
/ 2MZC exp (—<2/2> erf ( O_Ci\/g dC = 0.27_’_1 exXp _TH (A39)

c,i
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The integral in Equation A.20 is the integral of a Gaussian distribution:

o0

_Z i exp (—¢*/2) d¢ = [u?\/Zerf (\%)L@ - Nor (A.40)

Using the formula provided in [35], the integral in Equation A.21 equates to:

r 2 2 C — Heg 2 —He,i
[O 5 €Xp (—C /2) erf ( o2 ) d¢ = p2\2merf (2@%1—1-1)) (A.41)

Summarising:

7 (¢ — ) exp (—¢*/2) [1 + erf (i_\%ﬂ d¢

2 —er /vbc,z‘
V2 ((1 +417) (1 f (2(0; - 1)))) (A.42)

2 12 fhei
- _ ) ’ _21
N +1eXp< 2(03,Z-+1)> <Uii+1 “)]

c,




Appendix B

Additional Kalman Filter Results

This appendix presents additional results for the soft-constrained Kalman Filter (KF)
developed in Chapter 4. Consider a robot moving along a corridor. The corridor has
a wall 10m in front of the initial position of the robot, and discrete position sensors
placed at 1m intervals. The position sensors can detect which side of the sensor the
robot is on. The robot has an initial velocity of 10cm/s and accelerates at lcm/s?
for 20 seconds, then decelerates at lem/s? for 20 seconds, before again accelerating
at lem/s? until it reaches the far wall. Two types of robots were considered—one
with standard deviations on the acceleration and initial velocity of o, = lem/ s> and
0, = 3cm/s respectively (Robot A), and a more certain one with standard deviations
on the acceleration and initial velocity of o, = 0.5cm/ s and o, = 1.5cm /s respectively
(Robot B). The standard deviation of the set-point of the sensors was also varied,
with standard deviations (in cm) of o, € {0, 5, 10, 15,20, 25, 30} tested. The position
of each robot was tracked using the following KF run at 10Hz:

x 1 At ATtQ
T = u = {x} F = G = (B.1)
x 0 1 At

The covariance of the process noise was given by:
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At A3
Q=GG"o*=|* 2|2 (B.2)
a A 3 a
S5 A
The KF was initialised with:
R 0 0 0
T = P = (B.3)
0.1 0 03

A position sensor changing its reading was incorporated as a noisy measurement of

the position:

H = {1 O} R = [ag] (B.4)
At each time step, position sensors whose reading did not change were not incorpo-
rated into the KF. The aim of the constrained KF approach here was to use the
absence of measurements to improve the state estimate—while the robot was in be-
tween sensors, the sensors were treated as constraints on the state of the system. The
truncation method presented in Chapter 4 was compared with an unconstrained KF,
and a hard-constrained KF. Each combination of robot, sensor uncertainty, and KF

method was tested 1000 times.

The time-average Root Mean Squared Error (RMSE) and percentage improvement
between methods for Robot A are shown in Figure B.1, and the results for Robot B are
shown in Figure B.2. For Robot A, both the hard-constrained and soft-constrained
methods provided a significant benefit over the unconstrained KF, with an improve-
ment of over 40% in tracking performance when the sensors have no uncertainty. As
the uncertainty of the sensors was increased, the soft-constrained method slightly
outperformed the hard-constrained method. The process noise for Robot B was sig-
nificantly less than Robot A. As a result, the uncertainty of the sensors played a larger
role in determining the performance of the methods. As can be seen in Figure B.2, the

hard-constrained KF was significantly outperformed by the unconstrained KF once
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the sensor uncertainty was above 10cm. In these cases, the estimate produced by the
hard-constrained KF was overconfident, and the soft-constrained KF outperformed
the hard-constrained KF by over 17%. An example of the overconfident estimates pro-
duced by the hard-constrained method is shown in Figure B.3. The soft-constrained
KF strikes a balance between the high uncertainty of the unconstrained KF and the

overconfident estimates of the hard-constrained KF.

One might argue that the truncated state estimate should be fed back into the KF
as this will result in more confident estimates. Figure B.4 shows the effects of this
feedback. As can be seen, the resultant estimate is more confident. However, this
estimate can become overconfident and fail to accurately represent the actual state.

For further discussion on this, please see Simon and Simon [94].
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RMSE versus sensor uncertainty
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Figure B.1 — RMSE and percentage improvement between methods for Robot A as
the sensor uncertainty is varied.
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Percentage improvement between methods (%)

RMSE versus sensor uncertainty
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Figure B.2 - RMSE and percentage improvement between methods for Robot B as
the sensor uncertainty is varied.
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Position versus time for unconstrained Kalman filter Position versus time for hard—constrained Kalman filter
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Position versus time for soft-constrained Kalman filter
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Figure B.3 — Comparison of the actual and estimated positions with uncertainty for
Robot B with sensor uncertainty of 15cm. (a) shows the unconstrained KF. In (b),
the hard-constrained KF is overconfident, resulting in a two-o confidence interval
that does not include the actual position. Using the soft-constrained KF in (c),
the actual position stays within the uncertainty of the estimate.
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Position versus time for soft—constrained Kalman filter
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(a) Soft-constrained KF without feedback
Position versus time for soft—constrained Kalman filter
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(b) Soft-constrained KF with feedback

Figure B.4 — Comparison of the actual and estimated positions with uncertainty for
Robot A with sensor uncertainty of 15cm. In (a), the truncated estimate is not
fed back into the Kalman filter, while in (b), the truncated estimate is used by the
Kalman filter.
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