12,056 research outputs found

    Criteria for Global Stability of Coupled Systems with Application to Robust Output Feedback Design for Active Surge Control

    Get PDF
    The well-known and commonly accepted finite dimensional model qualitatively describing surge instabilities in centrifugal (and axial) compressors is considered. The problem of global output feedback stabilization for it is solved. The solution relies on two new criteria for global stability proposed for a class of nonlinear systems exploiting quadratic constraints for infinite sector nonlinearities. Two families of robust output feedback controllers are proposed. Controllers from the first family ensure global exponential stabilization. The ones from the second family provide integral action but only ensure local exponential and global asymptotic stability. Performance is verified by simulations

    Exponential Δ-tracking and Δ-stabilization of second-order nonholonomic SE(2) vehicles using dynamic state feedback

    Get PDF
    In this paper, we address the problem of Δ-tracking and Δ-stabilization for a class of SE(2) vehicles with second-order nonholonomic constraints. We introduce a class of transformations called near-identity diffeomorphism that allow dynamic partial feedback linearization of the translational dynamics of this class of SE(2) vehicles. This allows us to achieve global exponential Δ-stabilization and Δ-tracking (in position) for the aforementioned classes of autonomous vehicles using a coordinate-independent dynamic state feedback. This feedback is only discontinuous w.r.t. the augmented state. We apply our results to Δ-stabilization and Δ-tracking for an underactuated surface vessel

    Robust Asymptotic Stabilization of Nonlinear Systems with Non-Hyperbolic Zero Dynamics

    Full text link
    In this paper we present a general tool to handle the presence of zero dynamics which are asymptotically but not locally exponentially stable in problems of robust nonlinear stabilization by output feedback. We show how it is possible to design locally Lipschitz stabilizers under conditions which only rely upon a partial detectability assumption on the controlled plant, by obtaining a robust stabilizing paradigm which is not based on design of observers and separation principles. The main design idea comes from recent achievements in the field of output regulation and specifically in the design of nonlinear internal models.Comment: 30 pages. Preliminary versions accepted at the 47th IEEE Conference on Decision and Control, 200

    Output-Feedback Control of Nonlinear Systems using Control Contraction Metrics and Convex Optimization

    Get PDF
    Control contraction metrics (CCMs) are a new approach to nonlinear control design based on contraction theory. The resulting design problems are expressed as pointwise linear matrix inequalities and are and well-suited to solution via convex optimization. In this paper, we extend the theory on CCMs by showing that a pair of "dual" observer and controller problems can be solved using pointwise linear matrix inequalities, and that when a solution exists a separation principle holds. That is, a stabilizing output-feedback controller can be found. The procedure is demonstrated using a benchmark problem of nonlinear control: the Moore-Greitzer jet engine compressor model.Comment: Conference submissio

    Minimal data rate stabilization of nonlinear systems over networks with large delays

    Get PDF
    Control systems over networks with a finite data rate can be conveniently modeled as hybrid (impulsive) systems. For the class of nonlinear systems in feedfoward form, we design a hybrid controller which guarantees stability, in spite of the measurement noise due to the quantization, and of an arbitrarily large delay which affects the communication channel. The rate at which feedback packets are transmitted from the sensors to the actuators is shown to be arbitrarily close to the infimal one.Comment: 16 pages; references have now been adde

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    • 

    corecore