52 research outputs found

    Exact and optimal quadratization of nonlinear finite-dimensional non-autonomous dynamical systems

    Full text link
    Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages

    Random Finite Set Theory and Optimal Control of Large Collaborative Swarms

    Full text link
    Controlling large swarms of robotic agents has many challenges including, but not limited to, computational complexity due to the number of agents, uncertainty in the functionality of each agent in the swarm, and uncertainty in the swarm's configuration. This work generalizes the swarm state using Random Finite Set (RFS) theory and solves the control problem using Model Predictive Control (MPC) to overcome the aforementioned challenges. Computationally efficient solutions are obtained via the Iterative Linear Quadratic Regulator (ILQR). Information divergence is used to define the distance between the swarm RFS and the desired swarm configuration. Then, a stochastic optimal control problem is formulated using a modified L2^2 distance. Simulation results using MPC and ILQR show that swarm intensities converge to a target destination, and the RFS control formulation can vary in the number of target destinations. ILQR also provides a more computationally efficient solution to the RFS swarm problem when compared to the MPC solution. Lastly, the RFS control solution is applied to a spacecraft relative motion problem showing the viability for this real-world scenario.Comment: arXiv admin note: text overlap with arXiv:1801.0731

    Unconditionally energy stable fully discrete schemes for a chemo-repulsion model

    Get PDF
    This work is devoted to studying unconditionally energy stable and mass-conservative numerical schemes for the following repulsive-productive chemotaxis model: find u ≥ 0, the cell density, and v ≥ 0, the chemical concentration, such that ∂tu − Δu −∇· (u∇v) = 0 in Ω, t> 0, ∂tv − Δv + v = u in Ω, t> 0, in a bounded domain Ω ⊆ Rd, d = 2, 3. By using a regularization technique, we propose three fully discrete Finite Element (FE) approximations. The first one is a nonlinear approximation in the variables (u, v); the second one is another nonlinear approximation obtained by introducing σ = ∇v as an auxiliary variable; and the third one is a linear approximation constructed by mixing the regularization procedure with the energy quadratization technique, in which other auxiliary variables are introduced. In addition, we study the well-posedness of the numerical schemes, proving unconditional existence of solution, but conditional uniqueness (for the nonlinear schemes). Finally, we compare the behavior of such schemes throughout several numerical simulations and provide some conclusions.Ministerio de Economía y Competitividad (MINECO). EspañaEuropean Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER)Vicerrectoría de Investigación y Extensión (Universidad Industrial de Santander

    Mathematical Modeling of Biological Systems

    Get PDF
    Mathematical modeling is a powerful approach supporting the investigation of open problems in natural sciences, in particular physics, biology and medicine. Applied mathematics allows to translate the available information about real-world phenomena into mathematical objects and concepts. Mathematical models are useful descriptive tools that allow to gather the salient aspects of complex biological systems along with their fundamental governing laws, by elucidating the system behavior in time and space, also evidencing symmetry, or symmetry breaking, in geometry and morphology. Additionally, mathematical models are useful predictive tools able to reliably forecast the future system evolution or its response to specific inputs. More importantly, concerning biomedical systems, such models can even become prescriptive tools, allowing effective, sometimes optimal, intervention strategies for the treatment and control of pathological states to be planned. The application of mathematical physics, nonlinear analysis, systems and control theory to the study of biological and medical systems results in the formulation of new challenging problems for the scientific community. This Special Issue includes innovative contributions of experienced researchers in the field of mathematical modelling applied to biology and medicine

    Steady state behaviour of stochastically excited nonlinear dynamic systems

    Get PDF
    corecore