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Abstract

Nonlinear, dynamic systems subject to random excitations are frequently met in
engineering practice. The source of randomness can vary from surface randomness in
vehicle motion and environmental changes, such as earthquakes or wind exciting high
rise buildings or wave motions at sea exciting o�shore structures or ships, to electric
or acoustic noise exciting mechanical structures. The research goals are, �rstly,
the computation of stochastic, nonlinear response characteristics (with accuracy
and e�ciency as important criteria) and, secondly, the investigation and thorough
understanding of stochastic, nonlinear response phenomena.

The desire to compute response characteristics, such as the statistical moments
and the power spectral density of the response of these systems, leads to the devel-
opment of methods that can be used to approximate this response. The necessity
of approximation is caused by absence of analytical solutions for general, nonlinear
systems.

The excitations, that will be studied, are stationary, Gaussian processes. These
processes can be white noise processes or processes with band-limited frequency
spectra. The nonlinear system, investigated throughout this thesis, is a piece-wise
linear system, which exhibits a nonlinearity frequently met in engineering practice.
Furthermore, an impacting beam system is studied both experimentally and numer-
ically.

One could classify the approximation methods, developed and discussed in this
thesis, as follows: Monte Carlo simulation using numerical integration methods; lin-
ear approximation methods; and nonlinear approximation methods. When the ex-
citation is a (Gaussian) white noise process, classical integration schemes cannot be
used to obtain sensible results. Suitable integration schemes are based on Itô calcu-
lus. These schemes can be used to compute the response very accurately. Therefore,
it is an e�ective method for the investigation of nonlinear, stochastic response phe-
nomena. Methods that are frequently used in literature, such as closure techniques
and stochastic averaging, merely pursue information regarding the statistical mo-
ments. However, the information in the frequency domain is essential for a thorough
understanding of the system's behaviour. Speci�cally nonlinear response phenomena
are non-Gaussian response, multiple resonance frequencies and, for asymmetric non-
linearities, high-energy low-frequency spectral content (outside a resonance range).
An improved understanding of these phenomena can be obtained by applying band-
limited noise excitations and comparing the resulting response characteristics to the
response characteristics of the same system, when excited by periodic excitations.
In this way, stochastic equivalents of harmonic and subharmonic solutions can be
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perceived. These phenomena can help to understand the occurrence of the multiple
resonance frequencies that were observed in the response to white noise excitations.
Knowledge on the periodic system behaviour can, therefore, fruitfully support the
investigation and understanding of stochastic system behaviour and vice versa.

However, when using numerical integration, extensive CPU-time is needed to
reduce statistical errors on the estimated response characteristics. This becomes
even more important when MDOF systems are studied.

Therefore, the development of computationally more e�cient approximation
methods is desirable. The �rst class of approximation methods, that will be dis-
cussed, uses linear models; the response characteristics of a linear model can be
evaluated analytically and thus e�ciently. A well-known and widely used method
is statistical linearization. However, a serious drawback of the method is the fact
that, for strong nonlinearities, this method fails to predict the speci�cally nonlinear,
frequency domain characteristics of the piece-wise linear system properly. Conse-
quently, energy estimates produced by this method appear to be structurally too
low. This can be dangerous when such estimates are used in system failure crite-
ria. Therefore, a hybrid simulation-linearization method is developed that builds
a higher-order, linear model with approximately the same output power spectral
density (for a reference excitation) as the original, nonlinear system. This idea was
initiated by the knowledge gained while studying the response characteristics of non-
linear systems in the frequency domain. The method makes use of a limited set of
simulated data (applying the reference excitation) on the power spectral density of
the response of the nonlinear system. Using the method of spectral factorization,
a higher-order, linear, stable, causal model can be constructed, which exhibits ap-
proximately that same spectral output to the reference excitation. Consequently,
the speci�cally nonlinear frequency domain phenomena, such as multiple resonance
frequencies and high-energy low-frequency spectral content, are modelled in a linear
fashion. Such a model can, then, be used to estimate the response characteristics
of the original, nonlinear system very e�ciently in case of other excitations. The
method provides more accurate results than statistical linearization.

In order to obtain even more accurate results in an e�cient manner, one could
consider accepting one extra level of modelling complexity: nonlinear models. The
models that are used are �nite-order Volterra systems, which can be described using
merely polynomial nonlinearities. The response characteristics for such systems can
be evaluated e�ciently compared to numerical integration. Moreover, using such
models the response characteristics of the original, nonlinear system can be predicted

very accurately.
Furthermore, the systematic reduction of the original, nonlinear system to lin-

ear models or (nonlinear) Volterra systems sheds light on the root of the nonlinear,
stochastic response phenomena of the original system and thus enlarges the funda-
mental understanding of stochastic, nonlinear, dynamic system behaviour.



Samenvatting

Niet-lineaire, dynamische systemen, die belast worden door stochastische krachten,
komen veelvuldig in de praktijk voor. De bron van stochasticiteit kan bijvoor-
beeld voortkomen uit onregelmatigheden in het rij-oppervlak van voertuigen of uit
de willekeurigheid van omgevingsvariabelen, zoals aardbevingen of wind die hoge
gebouwen belasten. Ook golven op zee, die schepen of boorplatformen belasten,
worden in het algemeen stochastisch gemodelleerd. Verder worden mechanische
structuren vaak ge�exciteerd door stochastische krachten van akoestische of elec-
trische aard. Dit onderzoek heeft twee belangrijke doelstellingen resulterend in twee
onderzoekslijnen. De eerste onderzoekslijn betreft de berekening (approximatie)
van de stochastische eigenschappen van de responsie van stochastisch ge�exciteerde,
niet-lineaire, dynamische systemen, met nauwkeurigheid en e�ci�entie als belangrijke
criteria. Ten tweede, is het zeer belangrijk om fundamenteel begrip op te bouwen
omtrent stochastische, niet-lineaire responsie fenomenen.

De responsie van niet-lineaire, dynamische systemen zal, in het algemeen, be-
naderd moeten worden, daar analytische oplossingen niet voorhanden zijn. Een
belangrijk deel van dit proefschrift zal dan ook gewijd zijn aan de ontwikkeling en
studie van dergelijke approximatie methodes. Met deze methodes kunnen dan de
stochastische eigenschappen van de responsie, zoals de statistische momenten en de
spectrale energie dichtheid, benaderd worden.

De excitaties, die toegepast worden, zijn stationaire, Gaussische processen. Dit
kunnen witte-ruis-processen zijn of processen met een beperkte frequentie band-
breedte. Deze excitaties worden onder andere toegepast op een stukgewijs-lineair
systeem. De niet-lineariteit in dit systeem vertegenwoordigt een veelvuldig in de
praktijk voorkomende niet-lineariteit. Verder wordt ook een experimenteel balk-
systeem beschouwd met een lokale niet-lineariteit in de vorm van een elastische
stop.

De benaderingsmethodes, die aan bod komen, kunnen als volgt geclassi�ceerd
worden: Monte-Carlo-simulatie (gebruikmakend van numerieke integratie), lineaire
benaderingsmethodes en niet-lineaire benaderingsmethodes. Wanneer de excitatie
een witte-ruis-proces is, kunnen klassieke integratie schema's niet gebruikt worden
om de responsie op een zinnige wijze te benaderen. Geschikte numerieke integratie
schema's kunnen in dit geval gebaseerd worden op Itô-calculus. Deze schema's kun-
nen gebruikt worden om de responsie zeer nauwkeurig te benaderen. Numerieke
integratie is daarom ook een zeer geschikte methode om het niet-lineair gedrag
van stochastisch ge�exciteerde, dynamische systemen te onderzoeken. In de lite-
ratuur worden vaak methodes gebruikt, zoals stochastische middeling en sluitings-
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technieken, welke slechts informatie verscha�en ten aanzien van de statistische mo-
menten van de responsie. Echter, de informatie in het frequentie-domein (zoals de
spectrale energie-dichtheid) blijkt essenti�eel te zijn voor een goed begrip van niet-
lineair, stochastisch systeemgedrag. Speci�ek niet-lineaire, stochastische fenomenen
zijn: niet-Gaussische responsie, meervoudige resonantie-frequenties en, voor asym-
metrische niet-lineariteiten, veel laagfrequente energie in de responsie (buiten een
resonantie-gebied). Het begrip ten aanzien van deze fenomenen kan vergroot worden
door de responsie van hetzelfde systeem te bekijken voor excitaties met een beperkte
frequentie bandbreedte. Bovendien werkt het vergelijken van de stochastische en pe-
riodieke responsie karakteristieken van hetzelfde systeem sterk begripsverruimend.
Al doende, kunnen stochastische equivalenten van harmonische en subharmonische
oplossingen waargenomen worden. Deze fenomenen werpen licht op het bestaan van
meervoudige resonantie-frequenties in de responsie op witte-ruis-excitaties. Gecon-
cludeerd kan worden dat kennis ten aanzien van het periodiek gedrag van een systeem
van groot nut kan zijn bij de studie van het stochastische gedrag van dat systeem
en vice versa.

Wanneer numerieke integratie wordt toegepast als benaderingstechniek, kan de
rekentijd aanzienlijk oplopen om de statistische fouten op de stochastische responsie
eigenschappen voldoende te reduceren. Dit probleem wordt nog belangrijker wanneer
systemen met meer graden van vrijheid onderzocht worden.

Als gevolg hiervan is de ontwikkeling van (qua rekentijd) e�ci�entere benaderings-
methodes noodzakelijk. De eerste klasse van alternatieve benaderingsmethodes, die
behandeld wordt, is die van benadering door middel van lineaire modellen. De res-
ponsie van een lineair model kan, over het algemeen, analytisch bepaald worden,
hetgeen dus rekentechnisch erg e�ci�ent is. Een zeer bekende lineaire methode staat
bekend als statistische linearisatie. Echter, een belangrijk nadeel van deze methode is
dat deze, voor het stukgewijs-lineaire systeem, de speci�ek niet-lineaire, frequentie-
domein fenomenen niet goed kan benaderen (voor sterke niet-lineariteiten). Als
gevolg hiervan zijn de schattingen van de variantie van de responsie van dit sys-
teem ook slecht. Deze onnauwkeurigheid kan bijzonder gevaarlijk zijn wanneer deze
schattingen gebruikt worden in faal-criteria voor bepaalde systemen. Daarom is er
in dit proefschrift een hybride simulatie-linearisatie methode ontwikkeld, waarin een
lineair model met een hogere dimensie dan het originele niet-lineaire systeem wordt
geconstrueerd. Dit model geeft, bij benadering, hetzelfde responsie spectrum als het
originele systeem voor een bepaalde referentie-excitatie, waar het model op gebaseerd
is. Het idee voor deze methode is ontstaan door de frequentie-domein-fenomenen van
de responsie van het niet-lineaire systeem goed te bestuderen. De methode maakt
gebruik van een beperkte set gesimuleerde data van het niet-lineaire systeem voor
een bepaalde referentie-excitatie. Gebruikmakend van de methode van spectrale fac-
torizatie kan een lineair, stabiel, causaal, minimum-fase-model (van hogere dimensie)
geconstrueerd worden. De spectrale energie-dichtheid van de responsie van dit model
benadert dan die van het niet-lineaire systeem voor de referentie-excitatie. De meer-
voudige resonantie-frequenties en de grote hoeveelheid laagfrequente energie worden
hierdoor op een lineaire wijze gemodelleerd. Dit model kan vervolgens gebruikt
worden om de stochastische eigenschappen van de responsie van het niet-lineaire
systeem op andere stochastische excitaties op zeer e�ci�ente wijze te benaderen. De
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methode blijkt nauwkeuriger resultaten te leveren dan statistische linearisatie.
Met het doel om, met behoud van e�ci�entie, nog nauwkeurigere resultaten te

behalen is de stap naar benadering met behulp van niet-lineaire modellen gezet. De
gebruikte modellen zijn Volterra-systemen van eindige orde. Hierin spelen slechts
niet-lineariteiten van polynoomvorm een rol. De responsie-karakteristieken van
deze systemen kunnen relatief e�ci�ent ge�evalueerd worden vergeleken met de nu-
merieke integratie-technieken, die voor het het originele, niet-lineaire systeem ge-
bruikt moesten worden. Bovendien, blijkt deze methode zeer nauwkeurige resultaten
te leveren. Dit komt doordat de niet-lineaire responsie-fenomenen van het originele
systeem ook op een niet-lineaire wijze gemodelleerd worden.

De systematische reductie van het originele, niet-lineaire systeem naar eerst li-
neaire modellen en vervolgens niet-lineaire modellen verheldert de oorsprong van
de niet-lineaire, stochastische responsie-fenomenen van het originele, niet-lineaire
systeem. Hierdoor wordt het fundamentele begrip van niet-lineair, stochastische
systeem-gedrag sterk vergroot.





Notation

General notation

0 null vector or matrix
I
n

n� n identity matrix

AT transpose of a vector or matrix A
Trace(A) trace of a matrix A
det(A) determinant of a matrix A

A�1 inverse of a matrix A
A� complex conjugate of a matrix A
F Fourier operator
L Laplace operator
Re(x) real part of complex number x
Im(x) imaginary part of complex number x
erf(x) error function with argument x
R collection of real numbers
C collection of complex numbers
_a total derivative of a with respect to time t
Efxg expected value of stochastic variable x
xE(t) zero-mean equivalent of the stochastic process x(t)

Latin symbols

a term in a di�erential equation
�a drift term in an Itô stochastic di�erential equation
ai coe�cients of the denominator polynomial of the transfer function
b term in a di�erential equation
�b di�usion term in an Itô stochastic di�erential equation

b(n) stochastic step function
bi coe�cients of the numerator polynomial of the transfer function
c damping coe�cient
d force
e restitution coe�cient
fX(x) probability density function of random variable X
h distance between the two half spheres of the beam-impact system
ha height accelerometer
hb thickness beam
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hj jth order Volterra kernel
htri triangular Volterra kernel
hsym symmetric Volterra kernel
k sti�ness linear spring
knl sti�ness one-sided spring
l length beam
le length elastic part of beam
m mass
meff e�ective mass
ma mass accelerometer
ms mass half sphere
mtot total mass rigid part of beam
n natural coordinates
na order of the denominator polynomial of the transfer function
nb order of the numerator polynomial of the transfer function
p order of a �nite order Volterra model

pressure
p0 maximum pressure
pw weak order of convergence of a stochastic integration scheme
ps strong order of convergence of a stochastic integration scheme
q weighting coe�cient
r radius
rj Rayleigh-Ritz coe�cients
rn Fourier coe�cients
t time
t0 initial time
u input
wb width beam
x state variable
x0 initial state
y output variable

prescribed displacement of the rigid frame of the beam-impact system

A cross-section
quotient output/input spectrum

A system matrix
Ab cross-section of beam
C damping matrix
Cxx covariance of stochastic process x(t)
D intensity of a white noise process
D bilinear system matrix
E expected value operator
Eb Young's modulus of elastic beam
Er reduced Young's modulus
FX(x) probability distribution function of stochastic variable X
Fc contact force between the two half spheres of beam-impact system
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Gr Green's function
H Transfer function or frequency response function
I Itô integral

Î Itô sum
IR Riemann integral

ÎR Riemann sum
IRS Riemann-Stieltjens integral

ÎRS Riemann-Stieltjens sum
Ib second moment of area for the cross-section of the beam
J moment of inertia matrix
Jr moment of inertia of the rigid part of the beam
Js moment of inertia of the half sphere
Ja moment of inertia of the accelerometer
K sti�ness matrix
KH Hertzian sti�ness parameter
M number of inputs
M mass matrix
N number of state variables
O object or target function
P transformation matrix
Rs radius half sphere
Rr reduced radius of curvature
Rxx autocorrelation function of a stochastic process x(t)
S estimate for the standard deviation

Sxx power spectral density of a stochastic process x(t)
S0 constant power spectral density of a white noise process
T kinetic energy
U matrix of eigencolumns

V potential energy
variation of a function

W Wiener process

Greek symbols

� nonlinear sti�ness parameter
�j linearization or bilinearization coe�cients

 skewness

̂ estimate for the skewness
�(t) Dirac delta function
� displacement elastic beam relative to rigid frame
�(�x) step function
" error
"lin error in statistical linearization
"bilin error in statistical bilinearization

� dimensionless damping parameter
�Xp p-th order central moment of random variable X



xx Notation

�(x) step function
� kurtosis
�̂ estimate for the kurtosis
� linear system parameter
� mean

hysteresis damping coe�cient
�Xp p-th order statistical moment of random variable X
�D cubic sti�ness parameter of the Du�ng system
� Poisson's ratio
� white noise process
� mass-density
� standard deviation
� time variable
 multi-dimensional polynomial function
! angular frequency
!min minimal angular frequency in a band-limited excitation
!max maximal angular frequency in a band-limited excitation
!band [!min !max]
!bw bandwidth of band-limited excitation (!max � !min)
!f undamped angular eigenfrequency of a �lter
!e angular frequency of a harmonic excitation
!nl (nonlinear) harmonic, angular resonance frequency

�t time step
�W step in a Wiener process

 parameter vector
� transition matrix

phase

Constants

i imaginary unit
e natural logarithmic base
� circumference to diameter ratio of a circle

Abbreviations

CNC cumulant neglect closure
FFT fast Fourier transform
LVDT linear variable di�erential transformer
MDOF multiple degree of freedom
ODE ordinary di�erential equation
SDE stochastic di�erential equation
SDOF single degree of freedom
psd power spectral density
pdf probability density function



1 Introduction

1.1 Objective of the thesis

Thorough understanding of the dynamic system behaviour is of major importance
in many �elds, such as mechanical, electrical, chemical and civil engineering and
the biological and economic sciences. The interest towards this subject stems from
the desire to predict the dynamic behaviour of a system. Using this knowledge of
the system dynamics, one can either adjust one's actions (think of the weather or
economics) or modify or in
uence the system. The modi�cation of a system may be
accomplished in its design process. Thus, dynamics can play an important role in
the optimisation part of a system's design. In system's design one can either think
of achieving speci�ed, desirable goals (with respect to the system's behaviour) or
the minimisation of the probability of system failure. Of course, the understanding
of system dynamics is also of major importance for the control of systems. It should
be noted that this thesis was written from a background of mechanical engineering.
Consequently, the systems that will be investigated stem from this background.

In order to illuminate the scope of the thesis within the research �eld of system
dynamics, one could distinguish, �rstly, between linear and nonlinear systems and,
secondly, between stochastic and deterministic systems. The research �eld of linear,
deterministic systems (area A in �gure 1.1) has been covered extensively by former
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Figure 1.1: Research areas in dynamics.
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work [Zadeh and Desoer, 1963; Meirovitch, 1997; Den Hartog, 1956]. The resulting
knowledge is generally considered to be well-known.

However, many practical engineering systems exhibit nonlinear behaviour. The
source of the nonlinearity can vary from nonlinear springs, nonlinear dampers, dry
friction, and backlash to contact phenomena. Examples of nonlinear dynamic system
components are aircraft landing gear, ships colliding against fenders, bearings, axle
suspensions for vehicles, snubbers in solar panels on satellites, suspension bridges,
o�shore structures, rattle in cog-wheels and so on. The nonlinearity can change the
behaviour of the system dramatically, both in the qualitative and the quantitative
sense. Therefore, extensive research has been done in the �eld of nonlinear dynamic
systems subject to deterministic excitations (area B in �gure 1.1) [Nayfeh and Mook,
1979; Nayfeh and Balachandran, 1995]. A lot of interesting, nonlinear phenomena
can be encountered while observing the response of such systems. Speci�c nonlinear
response characteristics are, for example, harmonic and subharmonic solutions, su-
perharmonic resonances, chaos, bifurcations, multiple (non-unique) solutions and so
on [Thompson and Stewart, 1986; Parker and Chua, 1989; Fey, 1992; Van Campen
et al., 1997a]. Here, harmonic solutions are not sinusoidal solutions but solutions
with the same period time as the excitation. These harmonic solutions are also
called period one solutions. Subharmonic solutions are of a higher period than the
excitation and are also called higher-period solutions.

An aspect that partly de�nes the scope of this work is the type of nonlinearities
that will be studied. The nonlinearities that will be used are of a physical nature.
Consequently, geometrical nonlinearities, which can often be encountered in multi-
body systems, are excluded from this research. The actual type of nonlinearities
will not be limited to the polynomial or even the analytical kind. It can even
be discontinuous and, in general, we will not limit ourselves to weak or moderate
nonlinearities.

In this thesis stochastic systems will be investigated. The meaning of the word
'stochastic' should be clari�ed in order to be able to discuss the practical relevance of
this �eld of research. Of course, stochasticity indicates randomness. A very essential
distinction can be made between what will be termed fundamental randomness and
modelled randomness. Fundamental randomness directs to a true randomness, where
modelled randomness is a randomness that is merely used to model a process, which
is in essence deterministic, however, too complex to model it as such. An example
of the latter form of randomness could be 'rolling the dice'. One could assume that
the outcome of a throw would be predictable when all the variables, that in
uence
the outcome, could be incorporated properly within the model. However, one could
also assume that mere '(bad) luck', referring to a true randomness from a source
beyond rational comprehension, in
uences the outcome of a throw. However, the
well-known luck-factor in the game could again be explained by the fact that the
extreme physical complexity of the process of a throw prevents us from building a
proper deterministic model. A practical model would then incorporate randomness,
either true or merely modelled. Of course, this distinction is an interesting topic for
a philosophical debate. However, the subject will be put to rest here. The point is
that the stochasticity in a model can either model a physical randomness or model
a deterministic process of very high complexity. The former example clari�es the
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extensive practical use of stochastic modelling.

The model form of dynamic systems, which will be used throughout this thesis
is a continuous one, namely, the di�erential equation.

The stochasticity can be introduced in the model (i.e. the di�erential equation(s))
in several ways. Firstly, one could consider a dynamic system with random forcing.
These 'stochastic excitations' are often encountered in practice. The source of ran-
domness can vary from surface randomness in vehicle motion, and environmental
changes, such as earthquakes or wind exciting high rise buildings or wave motions
at sea exciting o�shore structures or ships, to electric or acoustic noise exciting me-
chanical structures. The stochastic excitation exhibits a randomness in time. These
kind of uncertainties are generally modelled as stochastic processes. The same kind
of stochasticity is introduced when one (or more) of the system parameters is a ran-
dom process. Often, this can be viewed (mathematically) as a random excitation,
either parametric or external. Secondly, consider a system with system parameters
or boundary conditions, which are �xed in time, though random. These system
characteristics can be modelled using random variables (not processes) obeying a
certain probability distribution. In this perspective, one could also consider random
initial conditions (of the di�erential equation). In this thesis, merely the in
uence
of the �rst type of randomness (the stochastic excitation) on nonlinear, dynamic
system behaviour will be studied.

Another important choice will be the assumption that the excitations (forcings,
inputs) or system parameters can be modelled as stationary, stochastic processes.
Consequently, only the steady state behaviour of the systems will be investigated.
The motivation for this choice is that in most practical situations the random exci-
tations or random system parameter variations are stationary or are non-stationary
on a large time-scale. This creates the possibility to model these as being stationary.

The kind of practical, stochastic excitations, mentioned before, generally has
relatively broad-banded power spectral densities. The major part of this thesis

will deal with this kind of excitations. However, one could also think of stochastic
excitations that are near-periodic. In system's design, components are often designed
to be excited periodically. Examples are engines, rotor dynamic systems such as
bearings, components of CD players, and so on. However, in practice these forces
often are only nearly periodic due to, for example, inevitable design imperfections or
environmental disturbances. Thus, in reality near-periodic excitations are frequently
met. The deviation from periodicity can have a signi�cant e�ect on the response of
such systems in comparison to the expected periodic response characteristics. This
will be shown to be especially true for nonlinear systems.

Clearly, the introduction of stochasticity within a system model can be neces-
sary in many practical situations. Valuable contributions on the subject of linear,
stochastic systems, (area C in �gure 1.1), can be found in Kwakernaak and Sivan
[1972]; Roberts and Spanos [1990]; Chen et al. [1995]. Generally, linear systems
can be investigated using analytical techniques. However, the scope of the thesis
lies within research area D (�gure 1.1) and thus encloses the topic of nonlinear,
stochastic, dynamic systems.

In the following paragraphs, the research goals will be presented. Within the
scope de�ned earlier, these goals can be formulated as follows: the computation,
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investigation, and thorough understanding of general, nonlinear, stochastic response
characteristics. The �rst element, 'computation', implies the search for methods
(semi-analytical or numerical) that can be used to compute stochastic response fea-
tures. The response information, which is pursued, is not only information regarding
the statistical moments and the probability density function, but also includes the
power spectral density of the response (e.g. the energy distribution in the frequency
domain). An important feature of a response computation method is its balance be-
tween accuracy and e�ciency. However, this is not the sole perspective from which
these methods will be viewed upon. Other features of these methods are the variety
of systems and random excitations, which it can tackle. Moreover, the speci�c set
of stochastic response characteristics that do become available by using the method
is an important characteristic of the method.

It should be stressed that the mere computation (including its accuracy and ef-
�ciency) represents only a part of the whole objective of this research. The actual
investigation of the nonlinear, stochastic response phenomena, that become available
through computation, is of major importance. This e�ort should lead to a thorough
understanding of the root of certain nonlinear, stochastic response phenomena. The
study of these phenomena can be characterised by two things. Firstly, a great deal
of attention will be given to frequency domain characteristics. In literature, often
merely the probability density function (and statistical moments) of the response
are covered. However, it will become clear that crucial information towards the
true understanding of stochastic nonlinear, dynamic behaviour lies in the knowledge
of the power spectral density of the response. Secondly, the stochastic response
features will be compared to the response characteristics in case of periodic (sinu-
soidal) excitation. Too often, the �elds of deterministic and stochastic excitations
are kept separate. A great deal can be learned by observing both simultaneously.
Periodic response characteristics can help to understand certain stochastic response
phenomena. Conversely, knowledge on the stochastic response features of a system
can provide information about the periodic response of that system.

Once a thorough understanding of the stochastic behaviour of a system has been
gained, ideas for the development of new response computation methods can be
created.

From a more general perspective, the research approach followed, incorporates
both a deductive as well as an inductive side. The actual development of response
computation methods mainly follows a deductive path. However, the interpretation
and the path towards physical understanding of the source of certain nonlinear,
stochastic phenomena has both a deductive and inductive side. As mentioned before
there can be a fruitful interaction between those two.

1.2 Response approximation methods

1.2.1 Problem de�nition

In this section, a brief literature survey will be given on the existing methods for the
computation of stochastic response characteristics of nonlinear, dynamic systems.

Beforehand, the class of systems and the class of excitations, which jointly de-
termine the class of problems (within area D in �gure 1.1) to be tackled, should



Introduction 5

be properly de�ned. Furthermore, the response information that should become
available by the application of the methods should be de�ned. Then, the methods,
discussed thereafter, can be judged with respect to their suitability to tackle those
problems.

The class of systems, which de�nes the scope of interest, can be characterised by
the following features:

� systems that can be modelled by one or more di�erential equations;

� polynomial, non-polynomial, and even discontinuous (non-smooth) nonlinear-
ities;

� Multi-Degree-Of-Freedom (MDOF)-systems;

� strong nonlinearities;

� stationary systems.

The choice to aim for methods applicable to systems with a general form of non-
linearity stems from practical considerations. In practice, namely, the form of the
nonlinearity is rarely of a purely polynomial kind. Furthermore, discontinuous non-
linearities, which will be studied extensively throughout this thesis, can be found in
many engineering systems, for example ships colliding against fenders on quay sides,
snubbers in solar panels on satellites, suspension bridges, stops in axle suspensions
for vehicles and so on. Moreover, most engineering systems essentially are MDOF
systems. However, it should be noted that, when complex nonlinearities are consid-
ered, it can be advisable to study a Single-Degree-Of-Freedom (SDOF)-system �rst.
This is surely the case when one is attempting to understand speci�c, nonlinear,
stochastic response phenomena. The decision not to limit ourselves to merely mod-
erate nonlinearities is initiated by the desire to observe, investigate, and understand
truly nonlinear behaviour.

The class of stochastic excitations can be de�ned by the following characteristics:

� Gaussian excitations;

� excitations with broad-banded as well as narrow-banded spectra, either white
or non-white;

� external as well as parametric excitations;

� stationary excitations.

In most practical situations, the random inputs can be accurately modelled as nor-
mally distributed processes; so, the deviation from normality is not signi�cant.
Hereby, we have, thus, imposed a restriction on the probability density function
of the excitations. However, a wide variety of spectral energy distributions for the
excitations is incorporated within the research scope. Most excitations, which stem
from environmental loads acting on mechanical systems, can be modelled by broad-
banded random processes. Situations with parametric excitations can easily be

encountered when one of the system parameters varies randomly in time.
The desired 'steady state' response characteristics are:
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� statistical moments and the probability density function;

� power spectral density.

In literature, the investigation of the stochastic response of dynamic systems is
often merely focussed on the statistical moments and the probability density func-
tion. Consequently, essential information, regarding the dynamic response, remains
hidden. Therefore, it is of the utmost importance that the response information in
the frequency domain, the power spectral density function, is incorporated in the
investigations. It will become clear, throughout this thesis, that the information in
the frequency domain exhibits many interesting, nonlinear, stochastic phenomena.
These frequency domain response characteristics can, moreover, help to understand
the root of speci�c tendencies in the statistical moments of the response.

As mentioned earlier, the research scope is restricted to both stationary (time-
independent) systems and stationary excitations. We, therefore, are merely inter-

ested in the steady state behaviour of the systems.

In the following subsections, several existing methods will be discussed, with re-
spect to their suitability to tackle the problems described above. In the majority
of the methods, that will be described, the assumption is made that the excitation
can be idealised as Gaussian white noise. The practical validity and e�ectiveness
of 'white noise modelling' will be discussed in chapter 2. Realisations of a white
noise process at two distinct points in time are independent by de�nition, no matter
how small the time interval between them. A more formal de�nition of a white
noise process will also be given in chapter 2. When the excitation is a white noise
process, the response of the system can be represented by a Markov process. As a
consequence, the unnormalized probability density function of the response is gov-
erned by a partial di�erential equation, called the Fokker-Planck-Kolmogorov (FPK)
equation [Caughey, 1963a; Lin, 1967; Melsa and Sage, 1973]. The vast majority of
the existing methods makes use of the Markov process assumption. In practical
applications, the justi�cation of the Markov process assumption is usually based on
the following su�cient condition: the increments of the response, during two non-
overlapping time intervals, are independent events. This ideal property can never
be found in a real physical process. However, when the time increments are viewed
as observation time laps, the length of these time laps can be chosen to ensure the
independence of the increments. On the other hand, one will have to choose the ob-
servation time intervals small enough in order to avoid loss of essential information
on the dynamics of the system. As long as there is a randomness in a real physical
process, it is possible to select a long enough observation time interval to ensure
Markov-like appearance of the observed increments.

1.2.2 Monte Carlo simulation

A method for the estimation of the response statistics of randomly excited, nonlinear
systems, within any desired con�dence level, is based on random computation ex-
periments, popularly known as Monte Carlo simulation, see Rubinstein [1981]. For
a review article on Monte Carlo simulation, see Spanos and Mignolet [1989].

Monte Carlo simulation is generally used to validate the results of other ap-
proximation methods, discussed in the following subsections. Namely, Monte Carlo
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simulation can provide very accurate results. However, this accuracy can only be
obtained at the cost of computational e�ciency.

In Monte Carlo simulation, one generates a realisation of the excitation. This
realisation of the excitation is used to compute a realisation of the response by
numerical integration. Obviously, this approach can be applied to estimate both
stationary and non-stationary response statistics. The higher the number of realisa-
tions used, the smaller the expected deviation of the obtained numerical values from
the theoretical values of the response statistics will be. In order to compute statisti-
cal properties of the response accurately, many realisations are required. Therefore,
many computationally expensive integrations will have to be executed. Obviously,
this method is very ine�cient from a computational point of view. This problem
becomes even more evident for MDOF systems.

However, the method of numerical integration can tackle problems incorporating
the entire class of systems and excitations described in section 1.2.1. Furthermore,
both the statistical moments (and probability density function) and the power spec-
tral density can be estimated from the time series of the response that can be com-
puted by numerical integration. This method, thus, answers to all our demands.
Unfortunately, these bene�ts are gained at the cost of computational e�ciency.

It should be noted, that the necessity of a large number of records can often be
eliminated if the interest is con�ned to stationary response statistics. In engineering
practice, it is quite common to assume ergodicity with respect to a speci�c statistical
moment for stationary processes. This assumption allows the determination of this
speci�c ensemble statistical moment by using its temporal counterpart, which is
calculated by using a single sample function of the response.

A subject that should be addressed is that of the numerical integration of the
di�erential equations describing the systems. Excitations with a broad-banded power
spectral density are generally modelled as white noise processes. In that case, the
di�erential equation is termed a 'stochastic di�erential equation' (SDE){ as opposed
to an ordinary di�erential equation (ODE). The concepts of a white noise process
and the SDE will be discussed extensively in chapter 2. Furthermore, extensive
attention will be given to the numerical solution of a SDE. It will be set forth why
classical integration schemes can not be used to solve initial value problems of SDEs.
Therefore, other numerical integration schemes are developed. An extensive survey
on integration schemes for SDEs can be found in Kloeden and Platen [1992].

1.2.3 Perturbation method

In the classical perturbation method, see Crandall [1963], Lin [1967] and Nayfeh
[1973, 1981], the basic idea is to expand the solution to the nonlinear set of equations
in terms of a small scaling parameter, which characterises the magnitude of the
nonlinear terms in these equations. The �rst term in the expansion is simply the
linear response, which is the response when all the nonlinearities in the system are
removed. The subsequent terms express the in
uence of the nonlinearity. As with
perturbation in general, the calculations are usually lengthy and rapidly become
more tedious as the order of the scaling parameter increases. In practice, results are
usually obtained only to the �rst order in the scaling parameter. The method is,
therefore, only valid for small perturbations. Consequently, the perturbation method
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can only be applied e�ectively when weakly nonlinear systems are considered.

1.2.4 Fokker-Planck equation method

The Fokker-Planck (FPK) equation method can provide information on the station-
ary (or non-stationary) unnormalized probability density function of the response
of a dynamic system. The FPK equation is a partial di�erential equation for the
probability density function of the response incorporating partial derivatives to this
response (and time, in case of a non-stationary probability density function). This
equation should be solved under appropriate boundary (and initial) conditions. For
a more detailed discussion of the Fokker-Planck equation method refer to Caughey
[1971] and Dimentberg [1982]. One could distinguish between methods providing
exact solutions and methods providing approximate solutions of the FPK-equation.

Analytic solution

An exact, analytic solution of the non-stationary FPK-equation, which shows how
the probability density evolves with time, is known only for very special �rst-order

systems, for which the system's response is a scalar Markov process [Caughey and
Dienes, 1961].

One of the �rst to obtain an exact, stationary solution of the FPK-equation for
systems with a nonlinear restoring force and linear damping under external ran-
dom excitations was Kramer [1940]. Caughey [1964], and Caughey and Ma [1983]
extended the solutions to include certain types of nonlinear damping, but still re-
stricted to external excitations. Yong and Lin [1987], Lin and Cai [1988] and Cai and
Lin [1988b] developed a systematic procedure to obtain exact stationary response
solutions for either external or parametric excitations, or both. The class of nonlin-
ear systems, for which this procedure is applicable, is termed the class of generalised
stationary potential, and is claimed to be the broadest class of solvable, nonlinear,
stochastic systems up to that date. The method is said to be also applicable to
MDOF systems. However, the class of generalised stationary potential is too narrow
with respect to the class of systems that we strive to cover.

Approximate solution

Another approach to the problem of determining the time-dependent probability
density function is to solve the FPK-equation by numerical means. A simple and
e�cient numerical scheme can be formulated by employing the random walk ana-
logue Roberts [1978, 1981]. This method can only be applied to 1-dimensional FPK
equations and is, therefore, not applicable to MDOF systems. The numerical inte-
gration of the FPK-equation for MDOF systems quickly becomes very cumbersome,
because of the high dimension of the probability space that is to be discretized.

Summarising, it can be concluded, that the Fokker-Planck equation method is
not suitable to be applied to a wide class of practical MDOF systems. An even more
important shortcoming of the method is that is does not provide information on the
power spectral density of the response.

1.2.5 Stochastic averaging

The method of stochastic averaging has proven to be a very useful tool for deriving
approximate solutions to problems involving the vibration of weakly damped systems
to broad-band random excitation. It was proposed initially by Stratonovich [1963]



Introduction 9

for solving problems concerning noise-excited, dynamic systems. Subsequently, Stra-
tonovich's method was justi�ed and interpreted rigourously by Khasminskii [1966]
and Papanicolaou and Kohler [1974]. For reviews on the stochastic averagingmethod
see Roberts and Spanos [1986] and Zhu [1988].

The basic idea is to use the Markov approximation for the response, so that the
probability density function can be described by the FPK-equation. The stochastic
averaging method was devised to obtain the coe�cient functions in this partial
di�erential equation. For a rederivation of the formulas required for the application
of Stratonovich's stochastic averaging method, see Lin [1986].

The goal of the method is to simplify the FPK-equation, or even reduce the
dimension of the FPK-equation [Zhu, 1988]. Thus, by using stochastic averaging
methods, the di�culties in solving the FPK-equation are relieved and the range of
application of the FPK equation method can be extended.

In random vibration studies, the stochastic averaging method has been applied

principally to systems with one degree of freedom. Often, the equation of motion is a
one-dimensional, second order di�erential equation. Then, the stochastic averaging
method enables the basic two-dimensional (in mechanical systems often displacement
and velocity) Markov process governing the response to be replaced, approximately,
by a one-dimensional Markov process governing an envelope amplitude process. The
appropriate FPK-equation for the envelope amplitude can be easily solved analyt-
ically to yield simple expressions for the stationary probability distribution of the
amplitude process. By considering an associate phase process, approximate analyt-
ical expressions for the joint distribution of the response displacement and velocity
can be derived. The reduction in dimension of the governing FPK-equation, from
two to one, also considerably simpli�es the computation of non-stationary or tran-
sient solutions.

In general, the application of the stochastic averaging method is constrained
to weakly damped systems. For the application to systems with high damping, the
reader is referred to Sri Namachchivaya and Lin [1988]. Furthermore, the application
of the method is generally limited to SDOF systems. The application to MDOF
systems is very limited due to the di�culties in solving a multi-dimensional FPK-
equation. However, it should be noted that externally as well as parametrically
excited systems can be examined.

Furthermore, the standard stochastic averaging method is not particularly useful
for examining the e�ect of nonlinear 'restoring forces'. Namely, the e�ect of these
forces on the probability density function vanishes after averaging. However, in re-
ality the nonlinear `restoring forces' can markedly a�ect the probability distribution
of the response. An approach to tackle this problem is `stochastic averaging of the
energy envelope' [Roberts and Spanos, 1986], in which the total energy of the system
is approximated by a one-dimensional Markov process. Its probability distribution
can then be described by the FPK-equation. This procedure is also only applicable
to SDOF systems.

Summarising, the stochastic averaging method is not suitable to tackle problems
incorporating MDOF systems with nonlinearities of a general form. Moreover, the
method provides no information in the frequency domain.
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1.2.6 Closure techniques

Closure techniques are also based on the Markov process assumption. A very impor-
tant tool for the analysis of Markov processes is the Itô stochastic calculus [Itô, 1944,
1951a,b]. Using the Itô stochastic calculus, the so-called moment equations can be
derived. The description of the Itô stochastic calculus and the actual derivation of
the moment equations will be given in chapter 2. Generally, the moment equations
are a set of di�erential equations in the statistical moments of the response. For
stationary problems, the set of di�erential equations reduces to a set of algebraic
equations.

It is well known that the response of linear, time-invariant systems subject to
Gaussian excitations will generally be Gaussian too [Schetzen, 1980]. As a conse-
quence, the (Gaussian) probability density function can be described using only the
�rst-order and second-order statistical moments (corresponding to the mean and the
mean square of the response). In this case, these moments can be determined by
solving two algebraic moment equations.

However, for nonlinear systems the response to Gaussian excitations is generally
non-Gaussian [Wiener, 1942]. The corresponding, non-Gaussian probability density
function cannot be described using merely the �rst two statistical moments; higher-
order moments become important. These statistical moments are, then, governed
by an in�nite hierarchy of coupled equations. Therefore, some form of a closure
scheme has to be applied in order to make the set of moment equations solvable.
In stochastic dynamics the term `closure' refers to a procedure, by which an in�nite
hierarchy of equations governing the statistical moments of random quantities is
truncated and the values of lower-order moments are computed approximately. One
can distinguish between `Gaussian' and `non-Gaussian' closure.

Gaussian closure

The simplest closure scheme is the Gaussian closure, in which higher moments are
expressed in terms of the �rst-order and second-order moments as if the random
processes involved were normally distributed. In order to express these moments of
higher order (higher than two) in terms of the �rst-order and second-order moments
a `cumulant neglect closure' (CNC) scheme is used, see Wu and Lin [1984]. In the
Gaussian CNC, the closure of the in�nite hierarchy of moment equations is achieved
by setting the third-order and higher-order cumulants (also called semi-invariants) to
zero; see Ibrahim [1985] or Nikias and Petropulu [1993] for a mathematical de�nition
of the cumulants.

The result of the application of the Gaussian CNC is a closed set of nonlinear
moment equations concerning the �rst-order and second-order moments. It should
be noted that this can be implemented for MDOF systems. Moreover, stationary as
well as non-stationary problems can be tackled. In the stationary case, the remaining
moment equations are algebraic. When non-stationary moments are to be computed
a set of di�erential equations will have to be solved by integration. The approximate
moments can be used to form a Gaussian probability density function.

Gaussian closure can yield satisfactory results for systems with weak nonline-
arities. However, the response of strongly nonlinear systems subject to Gaussian
excitations will generally be non-Gaussian, and can, therefore, not be described
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accurately using only the �rst two statistical moments.

Non-Gaussian closure

To overcome the shortcomings of Gaussian closure, non-Gaussian closure schemes
were proposed by Wu and Lin [1984] and Crandall [1985]. In the non-Gaussian clo-
sure, non-Gaussian features of the response are taken into account. Mathematically
speaking, the Gaussian closure can be generalised by successive inclusions of addi-
tional terms, which describe the non-Gaussian features in greater and greater detail.
Of course, the complexity of the closed set of moment equations to be solved be-
comes greater. This becomes even more evident when the system has discontinuous
nonlinearities.

Two approaches can be distinguished. In the �rst approach, the CNC is applied.
Since the third-order and higher-order cumulants of Gaussian random variables are
zero, successive improvements over the Gaussian closure can be obtained by includ-
ing additionally the third-order, fourth-order, �fth-order cumulants and so on. For
example, one could set the �fth-order and higher-order cumulants to zero. The result
is a closed set of nonlinear equations concerning the �rst-order, second-order, third-
order and fourth-order moments. This approach is applicable to MDOF systems
with strong nonlinearities. However, the nonlinearities have to be of a polynomial
kind. Furthermore, external as well as parametric excitations can be treated and
stationary as well as non-stationary problems can be tackled. In the second ap-
proach, the unknown probability density function of the response is approximated
by a truncated Gram-Charlier or Edgeworth series [Crandall, 1985; Ibrahim et al.,
1985; Hampl and Schu�eller, 1989], in which the �rst term is the Gaussian distri-
bution. The coe�cients of the �nite series are then determined using the dynamic
equations of motion of the system. Following this approach, problems which include
nonlinearities of higher complexity can be treated as well. However, MDOF systems
and non-stationary problems are di�cult to treat, due to the di�culties in de�ning
appropriate probability density functions for these cases.

It can be concluded that non-Gaussian CNC can be appropriate to tackle prob-
lems concerning MDOF systems and strong nonlinearities. However, the application
to systems with discontinuous nonlinearities implies the solution of rather complex
nonlinear equations. Furthermore, in Sun and Hsu [1987] it was stated that it might
occur that the validity of the results, provided by the non-Gaussian CNC, is re-
stricted to speci�c areas of parameter values of the equations of motion. In such
cases, non-Gaussian CNC would provide erroneous results in certain parameter ar-
eas. However, in many cases, the extension to the non-Gaussian closure does lead
to an improvement of accuracy of the moments. The most important drawback of
the closure techniques, with respect to the aims of this research, is the fact that this
method does not provide information on the power spectral density of the response.

1.2.7 Linearization methods

A natural method of attacking nonlinear problems is to replace the governing set
of nonlinear di�erential equations by an equivalent set of linear di�erential equa-
tions; the di�erence between the sets being minimised in some appropriate sense.
The stochastic linearization technique can be considered to be an extension of the
equivalent linearization method for the treatment of nonlinear systems under deter-
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ministic excitations [Krylov and Bogoliubov, 1943]. Caughey [1963b] was one of the
�rst to apply the stochastic linearization technique to randomly excited nonlinear
systems.

The basic idea of the statistical linearization approach is to replace the original
nonlinear system by a linear one. This is done in such a way that the di�erence
between the two systems is minimised in some statistical sense. In this way, the
parameters of the linearised system are determined. The response of the nonlinear
system is approximated by the response of the equivalent linear system. So, the
unknown statistics of the response are evaluated approximating the response as a
Gaussian process, when the excitation is assumed to be Gaussian. Recently, Roberts
and Spanos [1990] provided a comprehensive account on statistical linearization.

The use of the Gaussian approximation for the response suggests that stochastic
linearization is very close to Gaussian closure. For externally excited systems, the
two approaches provide the same results. However, when parametric excitations
are applied, di�erent approaches can be used, which do not all show equivalence to

Gaussian closure: linearization of the equations of motion; linearization of the Itô
equation of the system; linearization applied to the coe�cients of Itô's di�erential
rule [Falsone, 1992]. The Itô equation and Itô's di�erential rule will be discussed in
chapter 2. In Falsone [1992], it is shown that only the third approach is equivalent
to Gaussian closure in case of parametrically excited systems. The methods are
extended for application to MDOF systems, see Roberts and Spanos [1990] and
Falsone [1992].

A feature which distincts statistical linearization from all the methods, discussed
earlier (excluding numerical integration), is its capability to provide approximate
information on the power spectral density of the response very easily. Moreover,
the response statistics can be computed analytically, once the actual linearization
has been performed. Consequently, the method is computationally very e�cient
compared to numerical integration.

The linearization approach can be applied to both white and non-white inputs.
Furthermore, Zhu et al. [1993] have investigated a Du�ng oscillator subjected to
narrow-band excitation by means of simulation. It is well-known, that it is pos-
sible for nonlinear systems subjected to sinusoidal excitation to exhibit multiple
stable solutions (depending on the initial conditions) in certain parameter areas.
For narrow-band stochastic excitation, it is shown in Zhu et al. [1993] that for each
combination of the parameters all the statistics of the stationary response are unique
and independent of the initial conditions. However, in a certain domain of the pa-
rameter space there are two more probable motions in the stationary response and
jumps between those more probable motions may occur. This phenomenon only
occurs when the frequency band of the excitation is small enough. It was shown
by Richard and Anand [1983] that the statistics of these more probable motions
can be computed by means of the linearization technique. The 'multiple solutions'
computed by the linearization technique correspond, to some extent, to the "local"
behaviour of sample functions of the response. The response statistics of the total
response can only be computed by linearization when it is known how much time
the system spends in the two more probable motions. So, it can be concluded that
the linearization can be applied to problems with a wide variety of excitation forms.
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Furthermore, it can be applied to systems with non-polynomial and discontinuous
nonlinearities.

The main limitation of the method lies in the fact that it will only provide
accurate results for (very) weak nonlinearities.

So far, linearization of the equations of motion of nonlinear systems has been
achieved by replacing the nonlinear terms in the equations of motion by zero-memory
linear terms. This is optimal when the input is Gaussian. However, in the case of
a nonlinear system the relevant input to the nonlinear term is the response process,
which is often distinctly non-Gaussian (this becomes more evident for stronger non-
linearities). So, conventional linearization is not optimal in these cases. Increased
accuracy may be obtained through the introduction of memory into the linear sub-
stitution. A relatively straightforward approach to introducing memory has been
given by Iyengar [1988]. The resulting linear system is of a higher order than the
original nonlinear system. Therefore, the approach is called higher-order lineariza-
tion. Iyengar [1988] has shown that, for the case of a Du�ng oscillator excited by
white noise, a fourth-order equivalent linear system leads to a signi�cant improve-
ment in accuracy, with regard to the mean square of the response. Moreover, the
power spectrum obtained yields an estimate of the power spectrum of the response
which shows two peaks, re
ecting the existence of subharmonics in the system. This
is in reasonable agreement with digital simulations. However, application to sys-
tems with discontinuous nonlinearities has not been investigated yet and problems
are expected to occur with regard to the analytical computation of the derivatives
of the nonlinear terms, which are needed in this approach.

1.2.8 Nonlinear methods

In equivalent nonlinear methods the original nonlinear system is replaced by an
equivalent nonlinear system. The replacing, equivalent, nonlinear system should be
a system of which the nonlinear stochastic response can be determined rather easily.

In the method proposed by Cai and Lin [1988a] and Cai et al. [1992], the original
nonlinear system is replaced by a nonlinear system belonging to the class of gener-
alised stationary potential. As mentioned in subsection 1.2.4, this class of systems
is the broadest class of nonlinear systems of which exact solutions for the stationary
response can be obtained. In order to choose an appropriate replacement system,
in this method, a residual is de�ned as a measure of the di�erence between the two
systems. This residual is de�ned as the error in the original FPK-equation, intro-
duced by using the solution of the equivalent system as an approximation for the
solution of the original system. The residual is minimised by means of the method of
weighted residuals. This results in a set of constraints for obtaining an approximate
stationary probability density function. One of the constraints coincides with the
criterion of dissipation energy balancing. This criterion implies, that the average
energy dissipation is the same for the original as it is for the replacement system.
The other constraints are useful to calculate the equivalent conservative force of the
equivalent system. When the equivalent system is known, the stationary probability
density of this system can be determined and can be used as an approximate solution

for the original system. This method can yield results with much higher accuracy
than those obtained by statistical linearization. Note that also non-Gaussian proper-
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ties are covered (partly), because the original system is not linearised. However, the
method is only applicable to SDOF systems and does not provide frequency-domain
response information.

Another equivalent nonlinear method is known as partial linearization, see El-
ishako� and Cai [1992]. In partial linearization only the damping of the system
is linearised. The equation thus obtained is amenable to an exact solution. The
equivalent (linear) damping parameter is selected by means of the dissipation en-
ergy balancing criterion, see Cai and Lin [1988a] and Cai et al. [1992]. The proposed
procedure considerably improves the accuracy of the statistical linearization method
and yields simple equations to determine probabilistic characteristics of the system.
The results are less accurate than those obtained by the method described above (of
which partial linearization is a special case). However, the computational e�orts are
reduced. Unfortunately, also the partial linearization method is only applicable to
SDOF systems.

The main shortcomings of these methods are, thus, the lack of applicability to
MDOF systems and the fact that no frequency-domain information can be obtained.

A method that can be applied to MDOF systems and provides information on
the power spectral density of the response is equivalent statistical quadratization.
The equivalent statistical quadratization method was introduced by Spanos and
Donley [1991, 1992] as an extension to the equivalent linearization method. The
linearization method often fails to estimate the spectral properties of the response
accurately for strongly nonlinear systems. This is sometimes due to the fact that
the power spectra of the response of linear systems span only the frequency range
of the excitation spectrum. However, signi�cant responses outside this range are
possible for nonlinear systems. The quadratization method was developed to over-
come this shortcoming of the linearization method and is suitable for application
to MDOF systems. In the quadratization method, the nonlinear system is replaced
by an equivalent system with polynomial nonlinearities up to quadratic order. Con-
sequently, the solutions of the nonlinear, equivalent system can be approximated
using the Volterra series method, see Schetzen [1980]. The non-Gaussian response
probability function is approximated by a third-order Gram-Charlier expansion. In
Spanos and Donley [1991, 1992], it is shown that the quadratization method provides
much more accurate results than the linearization method. It should be noted that
the method is also applicable to systems with non-polynomial nonlinearities.

1.2.9 Concluding remarks

A wide variety of methods to approximate the response of nonlinear, dynamic sys-
tems to random excitations has been discussed in the former sections. Based on the
necessary properties, formulated before in section 1.2.1, for a response approxima-
tion method, the potential of all the methods, described before, can be assessed. One
of the most limiting demands seems to be the desire to investigate MDOF systems.
Moreover, the need for response information in the frequency domain seems to be a
very restrictive demand.

Methods which are not in con
ict with the criteria, formulated in section 1.2.1,
are:

Numerical integration Virtually any problem, within the scope of section 1.2.1,
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can be tackled using numerical integration methods. Moreover, any desired
level of accuracy can be attained. So, simulation is pre-eminently suitable for
the purpose of detailed and accurate investigation of the stochastic, steady
state behaviour of strongly nonlinear, dynamic systems.

However, rather extensive computational e�ort is generally needed to achieve
the high levels of accuracy. This problem becomes even more evident for
MDOF systems. Here, the second main goal of this research presents itself:
the e�cient approximation of the response statistics.

Statistical linearization The method of statistical linearization can also be ap-
plied to the total set of problems de�ned in section 1.2.1 and is very e�cient.
In particular, the stochastic response characteristics of the linear model can be
evaluated analytically, once the optimal, linear model has been constructed.
However, for strongly nonlinear systems the method is known to lose accuracy
fast.

Statistical quadratization The quadratization method incorporates a natural in-
crease of modelling complexity with respect to linearization. It can also be
applied to a wide variety of problems.

1.3 Outline of the thesis

Chapter 2 starts with an introduction on the modelling using white noise processes.
Consequently, the concept of a SDE will be illuminated. The correct derivation of
the SDE from the physical equations of motion will be described. In order to be
able to treat SDEs, Itô 's calculus is described. Moreover, extensive attention will be
given to tools for the numerical solution of these SDEs. This chapter, thus, provides
all the necessary tools to perform numerical simulations with SDEs.

In chapter 3, the focus lies on the investigation and understanding of typically
nonlinear, stochastic response phenomena. The additive power of these investiga-
tions (compared to former research) lies in the fact that a great deal of attention is
given to the study of frequency-domain characteristics. Both numerical integration
and statistical linearization are used to estimate the response characteristics. These
methods are applied to a nonlinear system with a piece-wise linear sti�ness term.
This system is known to exhibit a wide variety of complex and interesting, nonlinear
response phenomena, in case of periodic (sinusoidal to be precise) excitations [Shaw
and Holmes, 1983; Fey et al., 1996; Van Campen et al., 1997a]. Firstly, the res-
ponse of the system to white noise excitations is studied. By gaining insight in the
stochastic, nonlinear response characteristics, the shortcomings of the linearization
approach can be explained and understood. In this way, ideas for a new response
approximation method evolve. In order to explain the source of certain response
phenomena (that occur in case of white noise excitations), the response of the same
system to band-limited Gaussian excitations is investigated. A natural extension of
this research path is to study the response of the piece-wise linear system to very

narrow-banded random excitation (nearly periodic). The response characteristics to
random excitations are compared to the response characteristics in case of periodic
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excitations. It will become clear that a great deal can be learned from the simul-
taneous study of periodic and stochastic response characteristics. In a qualitative
sense, many corresponding characteristics can be found.

In chapter 4, a highly nonlinear system is investigated both numerically and ex-

perimentally. The system is a beam with a nonlinearly elastic stop. The stochastic
response characteristics of this system to both broad-banded and narrow-banded
noise excitations are investigated experimentally. Many of the general, nonlinear
response phenomena, described in chapter 3, are also found in these experiments.
The main purpose of chapter 4 is to give the insights gained in chapter 3 experi-
mental backup and to increase the general value of the response phenomena, dis-
cussed in chapter 3, by studying another system, which exhibits, moreover, multiple
degrees-of-freedom. Both SDOF and MDOF models of the system are investigated
through numerical simulations. In the chapters 3 and 4, knowledge on many in-
teresting, nonlinear, stochastic response phenomena is gained. Moreover, the root
of the shortcomings of the statistical linearization approach is illuminated using
this knowledge. As a consequence, ideas concerning a new approximation method
root from this knowledge. The development of other methods to approximate the
response statistics is desirable since, �rstly, statistical linearization is very inaccu-
rate for strongly nonlinear systems and, secondly, numerical integration techniques
appear to be relatively ine�cient from a computational point of view.

In chapter 5, a new hybrid simulation-linearization method is developed. In
this method, a simulation with a reference excitation (for example white noise)
has to be performed. The resulting frequency domain response data are, then,
used to build a linear model of higher dimension, which exhibits approximately
the same power spectral density of the output as the original nonlinear system for
the reference excitation. The model is constructed using the spectral factorization
technique [Papoulis, 1977]. For this technique, two approaches are developed; one
using Fourier theory and one using potential theory. The resulting linear, higher-
dimensional model can, then, be used to estimate the response characteristics of the
nonlinear system to other excitations (for example non-white excitations) in a very
e�cient manner. The accuracy of the method is generally higher than that of the
conventional linearization approach.

In chapter 6, a method that incorporates nonlinear models is developed and dis-
cussed. These models are low-order Volterra systems. The response statistics of such
systems can be estimated more e�ciently than using numerical integration. Using
these models certain speci�cally nonlinear characteristics of the original, nonlinear
system can be predicted very well. The accuracy is generally higher than that of
the linearization methods. Of course, this is at the cost of computational e�ciency.
This nonlinear approximation technique (termed bilinearization or Carleman lin-
earization [Rugh, 1981]) is used to construct optimal (in some statistical sense)
Volterra models. This method is not developed merely from the point of view of

e�ciency. The gradual increase of complexity of the approximate models from linear
(including models of higher dimension) to nonlinear (Volterra) models provides us
with valuable information with respect to what kind of (nonlinear) system-elements
are responsible for what kind of response phenomena (discussed in chapter 3 and 4).

In chapter 7, conclusions concerning both the knowledge gained on the subject of
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general, nonlinear, stochastic response phenomena and the methods used to estimate
these characteristics will be given.





2 Stochastic di�erential equations

2.1 Introduction

The type of systems considered in this thesis can be described by a set of di�erential
equations of the form

dx(t)

dt
= a(x(t)) + b(x(t)) u(t); t � t0; x(t0) = x0; (2.1)

in which u(t) is an M -dimensional column-vector with excitations that evolve in
time t and x(t) is an N -dimensional column-vector with state variables. The N -
dimensional column-vector a(x(t)) and the N �M matrix b(x(t)) do not depend
explicitly on time. So, only stationary systems are considered. The di�erential
equations treated in this thesis exhibit two very important features:

1. a(x(t)) (and/or b(x(t))) are nonlinear functions;

2. u(t) is a stochastic process, which represents an external excitation when
b(x(t)) is constant and a parametric excitation when b(x(t)) depends on x(t).

Now, if u(t) is a white noise process �(t), equation (2.1) is termed a stochastic
di�erential equation (SDE). Such a SDE can be interpreted in the sense of Itô or in
the sense of Stratonovich [Arnold, 1974, 1998; Kloeden and Platen, 1992; Oksendal,
1998]. Both interpretations provide mathematically valid formulations for SDEs. In
section 2.3, the Itô formulation will be discussed thoroughly. Moreover, the di�erence
between the Itô and Stratonovich interpretations of the SDE will be discussed brie
y.

2.2 Stochastic processes

Before we go any further, the concept of a stochastic process should be introduced.
It is important to clarify the di�erence between a random variable and a stochastic
(random) process. A random variable X (on R) is de�ned by its probability distri-
bution. The probability distribution FX(x) of a random variable X can be de�ned
as

FX (x) = probability(X � x) = P (X � x): (2.2)

Moreover, the probability density function fX(x) of a random variable X can be
de�ned as

fX(x) =
dFX(x)

dx
: (2.3)
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Now, the p-th statistical moment �Xp (p = 1; 2; 3; : : : ) of a random variable X can
be written as

�Xp = �p = EfXpg =
1Z

�1

xpfX(x) dx; (2.4)

whereas

�Xp = �p = Ef(X � �X)
pg =

1Z
�1

(x� �X )
pfX(x) dx (2.5)

is termed the p-th central moment. In (2.4) and (2.5), 0E0 is the expected value
operator, which is de�ned by

Efg(X)g =
1Z

�1

g(x)fX (x)dx: (2.6)

In order to be able to give meaning to the concept of a stochastic process the
joint distribution function of a sequence of random variables X1; X2; : : : ; Xn should
be introduced:

FX1X2:::Xn
(x1; x2; : : : ; xn) = P (Xj � xj ; j = 1; 2; : : : ; n): (2.7)

A sequence of random variables X1; X2; : : : ; Xn; : : : may describe the evolution of a
stochastic system over discrete instants of time t1; t2; : : : ; tn; : : : : X(t1), X(t2); : : : ,
X(tn); : : : . This is called a stochastic process. The totality of its joint distribution
functions FXj1

Xj2
:::Xj

k

(jk = 1; 2; : : : and k = 1; 2; : : : ) is termed the probability law
of the stochastic process. Hereafter, we will write these distributions as Ftj1 tj2 :::tjk
to emphasise the role of the time instants. When all the joint distribution functions
are Gaussian we call the process a Gaussian process.

As mentioned before, the stochastic processes, considered in this thesis, are sta-
tionary processes. This is an interesting class of processes since they represent a
probabilistic equilibrium (steady state). This means that the speci�c point in time,
on which the process is examined, is not relevant. A process is strictly stationary if
its joint distribution functions are all invariant under time displacements:

Ft1+�t;t2+�t;::: ;tn+�t = Ft1;t2;::: ;tn ; n = 1; 2; 3; : : : : (2.8)

When the mean �X = �1 = � and the variance �2
X

= �2 are constant and the
covariance function satis�es CXX(tj ; tk) = Ef(Xj��)(Xk��)g = CXX (tj�tk), the
process is termed wide-sense stationary. The latter form of stationarity is a weaker
stationarity condition than that of strict stationarity, since merely stationarity with
respect to the �rst-order and second-order moments is required.

Furthermore, only ergodic processes will be considered. As mentioned before, it is
quite common to assume ergodicity for stationary processes in engineering practice.
The thorough validation of such an assumption is generally not a trivial matter.
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However, this subject will not be discussed in more depth here. A stationary process
X(t) (with time taking values in R) with mean � and autocorrelation function
RXX(�) = EfX(t)X(t+ �)g is ergodic if for every realisation xk(t) of the process
X(t) the following relations hold:

� = �x = lim
T!1

1

2T

TZ
�T

xk(t) dt;

RXX(�) = Rxkxk(�) = lim
T!1

1

2T

TZ
�T

xk(t) xk(t+ �) dt 8 �:

(2.9)

Thus, an ergodic process is characterised by the fact that the time averages of the
realisations equal the ensemble averages. When both stationarity and ergodicity
hold, the value of a Gaussian process on a certain time instant is a random variable

with a Gaussian probability density function. Furthermore, this probability density
function is the same for all time instants.

Besides the information on the probability density function (or the statistical
moments), we will also pursue information in the frequency domain. Consequently,
the power spectral density of a stochastic process will be investigated continually.
The power spectral density SXX(!) of a stochastic process X(t) can be de�ned as
the Fourier transform of the autocorrelation function:

SXX(!) =
1

2�

1Z
�1

RXX(�) e
�i!� d�; (2.10)

in which ! is the angular frequency and i =
p
�1. The power spectral density of a

process measures its average power per unit angular frequency at a certain angular
frequency.

2.2.1 White noise

Here, special attention will be given to a white noise process �(t). In random vi-
bration, white noise is used extensively to model excitations with a broad-banded
frequency spectrum. The name 'white noise' stems from the fact that its average
power is uniformly distributed in frequency, which is a characteristic of white light.
Thus, it has a constant power spectral density. This means that all frequencies

contribute an equal amount of energy to the stochastic process up to in�nite fre-
quencies. Consequently, a white noise process has an in�nite variance. The fact that
in�nitely high frequencies contribute to the process implies that it has zero memory.
The stationary covariance function C��(�) of a white noise process (with zero mean
��), therefore, is a constant multiple of the Dirac delta function �(t):

C��(�) = Ef�(t)�(t+ �)g = R��(�) = D �(t); (2.11)

where D is termed the intensity of the white noise. This implies that two values
of a realisation of a white noise process are uncorrelated, no matter how close they
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are in time. Combination of (2.10) and (2.11) yields the following expression for the
power spectral density of a white noise process:

S��(!) =
1

2�

1Z
�1

R��(�)e
�i!�d� =

D

2�

1Z
�1

�(t)e�i!�d� =
D

2�
=: S0: (2.12)

Due to the characteristics mentioned above, white noise can not be a stochastic pro-
cess in the usual sense, but must be interpreted in the sense of generalised functions
(like the Dirac delta function), see Kloeden and Platen [1992], Grigoriu [1995b] and
Pugachev and Sinitsyn [1987].

For obvious reasons, a white noise process can not exist in practice. However,
white noise can be used to model broad-banded processes. Moreover, using �ltered
white noise (coloured noise) one can approximate processes with a wide variety of
spectral characteristics. Consequently, in such cases, the white noise modelling ap-
proach can be applied as well by interpreting the �lter as a part of an augmented
system, which is, then, excited by white noise. When the excitation u(t), in equa-
tion (2.1), is a white noise process, the response x(t) generally is a Markov process
[Kloeden and Platen, 1992]. A Markov process possesses the Markov property. The
Markov property states that the increments of a Markov process are independent.
There are conditions under which such Markov modelling is appropriate and mean-
ingful. In practice, the use of a Markov process model is (almost always) justi�ed
when the increments of the response in two non-overlapping intervals are indepen-
dent. The response is Markovian if the excitation is independent at any two time
instances, regardless of their distance in time. White noise is such a process. The
justi�cation of the use of white noise in the modelling is based on the comparison of
two time scales: (1) the correlation time scale of the 'real' excitation process and (2)
the relaxation time scale of the system. The requirement of independent increments
is approximately satis�ed when the correlation time scale of the excitation is much
shorter than the relaxation time scale of the system.

Furthermore, a Gaussian white noise process (also called the 'Langevin process')
is the formal derivative of a Wiener process W (t):

�(t) =
dW (t)

dt
: (2.13)

A Wiener process is continuous everywhere and di�erentiable nowhere [Kloeden
and Platen, 1992]. This again leads to the conclusion that white noise can not be a
stochastic process in the usual sense. AWiener process is a mathematical description
of a Brownian motion process. A Brownian motion process is the erratic motion of
a grain of pollen on a water surface due to the bombardment of the grain by water
molecules. A Wiener process W (t) has the following properties:

1. W (t) is a Gaussian process;

2. W (0) = 0;

3. EfW (t)g = 0;
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4. EfW (t1) W (t2)g = min(t1; t2) =
1
2
(j t1 + t2 j � j t1 � t2 j).

The fourth property means that the Wiener process possesses the Markov prop-
erty. Consequently, using the fact that EfW (tk)�W (tj)g = 0, the autocorrelation
function of the Wiener increments should be zero for non-overlapping increments:

Ef(W (t4)�W (t3))(W (t2)�W (t1))g =EfW (t4)W (t2)g+EfW (t3)W (t1)g �
EfW (t3)W (t2)g �EfW (t4)W (t1)g

=t2 + t1 � t2 � t1 = 0;

(2.14)

if t1 < t2 < t3 < t4. Note that, consequently,

Ef�W 2g =Ef(W (t2)�W (t1))
2g = t2 � t1 = �t: (2.15)

Moreover, it should be noted that the fourth property of the Wiener process also
implies that it is a non-stationary process. In �gure 2.1, an example of a realisation
of a Wiener process is shown. In �gure 2.2, a part of this realisation is magni�ed.
The comparison of these �gures illustrates the fourth property of the Wiener process.
Furthermore, it is apparent from �gure 2.2 that the random character of the process
is independent of the time scale of the observation.
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Figure 2.1: An example of a realisation of a

Wiener process W (t).
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Figure 2.2: Zoomed view of the realisation

of W (t) in �gure 2.1.

2.3 Ito stochastic calculus

We can, now, introduce the white noise process in equation (2.1):

dx(t)

dt
= a(x(t)) + b(x(t)) �(t); t � t0; x(t0) = x0: (2.16)
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This equation is often called a nonlinear Langevin equation. This di�erential equa-
tion can be written as

dx(t) = �a(x(t)) dt+�b(x(t)) �(t) dt; (2.17)

or equivalently as

dx(t) = �a(x(t)) dt+�b(x(t)) dW (t); (2.18)

which is termed the Itô equation. Herein, W is an M -dimensional Wiener process
with componentsW 1;W 2; : : : ;WM , which are independent scalar Wiener processes.
Generally, �a(x) is termed the drift coe�cient and �b(x) is termed the di�usion coef-
�cient. For �bjk, the jk-th component of �b(x), and �aj , the j-th component of �a(x), it
holds that

�bjk =
p
Dk bjk; j = 1; 2; : : : ; N and k = 1; 2; : : : ;M; (2.19)

�aj = aj +
1

2

NX
l=1

MX
k=1

�blk
@�bjk

@xl
; j = 1; 2; : : : ; N; (2.20)

where aj(x) is the j-th component of a(x) and bjk is the jk-th component of b(x) in
equation (2.16). Moreover, Dk is the intensity of the k-th component of �.

The double summation expression is due to the Wong-Zakai correction term
[Wong and Zakai, 1965]. We will brie
y discuss the necessity of this correction. Let
x�(t) be the solution of the following stochastic di�erential equation (in the sense of
Itô [1951b]):

dx�(t) = a(x�(t)) dt+ b(x�(t)) dW (t); t � t0; x
�(t0) = x0: (2.21)

Furthermore, let x(n) be the solution of the ordinary di�erential equation, which
can be obtained from the stochastic di�erential equation (2.21) by replacing the

Wiener process W with W (n), where W (n) is a piecewise linear approximation for

the Wiener process W (W (n) converges to W for n!1) on a partition 0 < t
(n)
0 <

t
(n)
1 < : : : < t

(n)
j

< : : : < t
(n)
n = T , with

W (n)(t) =W
t
(n)

j�1

+ (W
t
(n)

j

�W
t
(n)

j�1

)
t� t

(n)
j�1

t
(n)
j
� t

(n)
j�1

(2.22)

for t
(n)
j�1 � t � t

(n)
j

and j = 1; 2; : : : ; n. In Wong and Zakai [1965], it is shown that

x(n) will not converge (for n ! 1) to x�, but to the solution of (2.18). It should
be noted that for external excitations (all components of �b are independent of x) �a
is equal to a. Consequently, the Wong-Zakai correction only produces e�ect if the
excitation is parametric.

Equation (2.17) can also be interpreted as an integral equation:

x(t) = x(t0) +

tZ
t0

�a(x(�)) d� +

tZ
t0

�b(x(�)) �(�) d�: (2.23)
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Using equation (2.13), this integral equation can be written as

x(t) = x(t0) +

tZ
t0

�a(x(�)) d� +

tZ
t0

�b(x(�)) dW (�): (2.24)

Herein, the integrals are determined component-wise, with the j-th component being
given by

xj(t) = xj(t0) +

tZ
t0

�aj(x(�)) d� +

mX
k=1

tZ
t0

�bjk(x(�)) dWk(�): (2.25)

The �rst integral of (2.23) and (2.24) can be interpreted as a Riemann integral with
a stochastic integrand. However, the second integral of both equations needs more
attention.

Let us investigate whether the second integral of (2.23) can be interpreted as a
Riemann integral too. A Riemann integral exhibits the following form:

IR =

BZ
A

y(s) ds: (2.26)

This integral can be approximated by a Riemann sum

ÎR =

mX
k=1

y(&
(m)
k

) (s
(m)
k

� s
(m)
k�1); (2.27)

where s
(m)
k�1 � &

(m)
k

� s
(m)
k

and A � s
(m)
k

� B. If the Riemann sum ÎR converges (for

m ! 1) to the same value for every choice of &
(m)
k

within the interval [s
(m)
k�1; s

(m)
k

],
the Riemann integral exists (and de�nes IR) and we call the function y(s) Riemann
integrable.

The second integral in (2.23) is not well-de�ned as a Riemann integral since
�b(x(t)) �(t) is not a Riemann integrable function. This is a consequence of the fact
that a white noise process has zero memory. Consequently, for di�erent choices of

&
(m)
k

the Riemann sum will not converge to the same value. Moreover, a white noise
process has in�nite variance and an unbounded function is not Riemann integrable.

Now, let us investigate whether the second integral in (2.24) can be interpreted
as a Riemann-Stieltjens integral. A Riemann-Stieltjens integral has the following
form:

IRS =

BZ
A

y(s) dg(s): (2.28)

Note that the second integral of equation (2.24) is of such a form. The Riemann-
Stieltjens integral can be approximated by a Riemann-Stieltjens sum

ÎRS =

mX
k=1

y(&
(m)

k
) (g(s

(m)

k
)� g(s

(m)

k�1)): (2.29)
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If the derivative of g(s) (g0(s) = dg(s)

ds
) exists, one can, of course, write the Riemann-

Stieltjens integral as a Riemann integral. However, the Wiener process is di�er-
entiable nowhere. So, it can again be concluded that the second integral of equa-
tion (2.24) can not be interpreted as a Riemann integral. When the Riemann-

Stieltjens sum converges to the same value for every choice of &
(m)
k

, the integral (2.28)
is Riemann-Stieltjens integrable. Two conditions for this property, which together
are su�cient, are:

1. y(s) should be Riemann integrable;

2. g(s) should be of bounded variation.

In order to introduce the concept of the variation of a function y(s) on the interval

s 2 [A;B], let A = s
(m)
0 < s

(m)
2 < : : : < s

(m)
m = B an arbitrary partition of [A;B]

with �(m) = max1�k�m �
(m)

k
! 0 for m ! 1, where �

(m)

k
= s

(m)

k
� s

(m)

k�1. Then,

the total variation V B
A
(y) of the function y on [A;B] is de�ned as the supremum

over all such partitions of the sums of the absolute value of the increments of y:

V BA (y) = sup
m!1;�(m)

!0

mX
k=1

j y(s(m)
k

)� y(s
(m)
k�1) j : (2.30)

If V B
A
(y) <1 we say that y is of bounded variation on [A;B].

So, the question should now be whether the Wiener process is of bounded vari-
ation. In Kloeden and Platen [1992], it is stated that a function y(s) is of bounded
variation on [A;B] if and only if its derivative y0(s) exists for almost all s 2 [A;B].
Consequently, the Wiener process can not be of bounded variation. It can, therefore,
be concluded that the second integral on equation (2.24) can not be interpreted as
a Riemann-Stieltjens integral either.

To overcome this problem, another de�nition for this kind of integrals will be
introduced in the following section.

2.3.1 The Ito integral

To avoid the problem that arises when trying to interpret the second integral in (2.23)
and (2.24) as Riemann or Riemann-Stieltjens integrals, respectively, the Itô integral
will be introduced. For the sake of simplicity, the scalar case will be discussed here.

In order to de�ne the Itô integral, a very important choice is made. This choice
is re
ected by the fact that the Itô integral I(�b), where

I(�b) =

TZ
0

�b(x(�)) dW (�); (2.31)

is approximated by the Itô sum Î(�b(n)), where

Î(�b(n)) =

nX
k=1

�b (x(�k�1)) (W (�k)�W (�k�1)) =

nX
k=1

�bk �Wk : (2.32)
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The superscript n in �b(n) expresses that �b(n) approximates �b as a stochastic step
function with n intervals on [0; T ]. In order to de�ne the stochastic step function
�b(n), consider partitions of t = [0; T ] of the form 0 = t

(n)
1 < t

(n)
2 < : : : < t

(n)
j

< : : : <

t
(n)
n+1 = T with t

(n)
j+1 � t

(n)
j
�! 0 for j = 1; 2; : : : ; n as n �!1. The stochastic step

function can now be described by

�b(n)(t) = �b(t
(n)
j

) for t
(n)
j
� t � t

(n)
j+1 (2.33)

for j = 1; 2; : : : ; n and n = 1; 2; 3; : : : . The actual choice, mentioned above, is that
the integrand �b(x(�)) in (2.31) is evaluated at the left side of the integration interval,
� = �k�1, see (2.32). The thought behind this choice is the following demand:

Ef�b(�)W (t)g = 0 if � � t; (2.34)

which means that the excitation at a certain point in time should not in
uence
the solution at earlier times. To be more speci�c, the integrand �b(x(�)) is non-
anticipative if and only if � = �k�1 is chosen in the Itô sum.

At this point, an important question is whether Î(�b(n)) converges to a limit (for
n!1), which will then de�ne I(�b) for this choice of �. Now, a condition for such
convergence can be stated as follows:

If

Z T

0

Ef(�b(t)� �b(n)(t))2g dt �! 0 for n!1

then Î(�b(n)) =

Z T

0

�b(n)(t) dW (t) �! I(�b) =

Z T

0

�b(t) dW (t)

in the mean-square sense:

(2.35)

Below, the validity of this condition will be discussed. The basic question is whether
the limit limn!1 Î(�b(n)) exists and in what sense it is a limit. Here, we shall use
mean-square convergence. This means that we want to investigate whether a limit
LI exists, such that

lim
n!1

Ef(Î(�b(n))� LI)
2g = 0: (2.36)

However, the limit value LI is unknown. We now use that
n
Î(�b(n))

o
n

is a Cauchy

sequence [Douglass, 1996] if

8 " > 0 9 n0 8 n � n0 8 m � n0 : Ef(Î(�b(n))� Î(�b(m)))2g < ":

Consequently, for large m and n,

Ef(Î(�b(n))� Î(�b(m)))2g < " (2.37)

is a necessary and su�cient condition for the existence of the limit LI in the sense
of (2.36). Due to the linearity of the operator Î , this condition is equivalent to

Ef(Î(�b(n) � �b(m)))2g < ": (2.38)
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Now, the following equivalence is used:

Ef(Î(�b(n) � �b(m)))2g < "()
TZ
0

Ef(�b(n) � �b(m))2g dt < ": (2.39)

To support the validity of this equivalence, consider a step function q(r) for which,
according to (2.32),

Ef(Î(q(r)))2g = E

(
rX
k=1

rX
l=1

(q
(r)
k
�Wk)(q

(r)
l
�Wl)

)
: (2.40)

Because of property (2.34), which is inherent to Itô's choice to use the left side of the

integration interval for computing values for q(r), �Wk is independent of q
(r)
k

and

q
(r)
l

when k > l and is independent of �Wl for k 6= l, due to the Markov property
of W :

E
n
q
(r)
k
q
(r)
l
�Wk�Wl

o
= E f�Wkg E

n
q
(r)
k
q
(r)
l
�Wl

o
= 0; (2.41)

because Ef�Wkg = 0. By symmetry the same holds for l > k :

E
n
q
(r)
k
q
(r)
l
�Wk�Wl

o
= E f�Wlg E

n
q
(r)
k
q
(r)
l
�Wk

o
= 0: (2.42)

The case k = l provides the only non-zero contribution to Ef(Î(q(r)))2g:

E
n
(Î(q(r)))2

o
= E

(
rX

k=1

(q
(r)
k
)2 (�Wk)

2

)
=

rX
k=1

E
n
(q

(r)
k
)2
o
�tk; (2.43)

because q
(r)
k

is independent of Wk and E
�
�Wk

2
	
= �tk, see (2.15). Due to the

fact that q(r) are step functions

E
n
(Î(q(r)))2

o
=

rX
k=1

E
n
(q

(r)
k
)2
o
�tk =

TZ
0

E
n
(q

(r)
k
)2
o
dt: (2.44)

Of course, what holds for q(r) also holds for �b(n)��b(m), which con�rms the equivalence
in (2.39). Now the following conditional relation will be used:

If for a �xed m = mf

lim
n!1

Z T

0

E
n
(�b(n) � �b(mf ))2

o
dt =

Z T

0

E
n
(�b� �b(mf ))2

o
dt <

1

4
"

then

Z
T

0

E
n
(�b(n) � �b(m))2

o
dt < " for n;m!1:

(2.45)



Stochastic di�erential equations 29

Under this condition it, thus, holds that Ef(Î(�b(n)��b(m)))2g < ", see (2.39). Then,n
Î(�b(n))

o
n

is a Cauchy sequence and is, therefore, convergent. Consequently, the

limit LI exists and (2.35) is shown to be correct. The condition, see (2.35),

TZ
0

E
n
(�b� �b(n))2

o
dt �! 0 for n!1 (2.46)

is a weak one and is easily met. When �b is mean-square continuous, that is when
Ef�b2g is continuous, it holds that

E
n
(�b(n) � �b)2

o
�! 0 as n!1: (2.47)

It can be proven, see Kloeden and Platen [1992], that, consequently, (2.46) holds.
The function �b is generally not mean-square continuous, but it can be approximated
arbitrarily close by one that is [Kloeden and Platen, 1992].

It can , now, be concluded that, for general �b, the limit of the Itô sum exists and
this is what we call the Itô integral. It is important to note that the fact that the
left side of the integration interval was chosen is crucial in the convergence of the
Itô sum.

To compare the Itô integral with the Riemann and Riemann-Stieltjens integrals,
a few properties of the Itô integral, which it shares with the conventional Riemann
and Riemann-Stieltjens integrals, are given below:

1. The linearity property:

t1Z
t0

�
c1�b1(�) + c2�b2(�)

�
d� = c1

t1Z
t0

�b1(�) d� + c2

t1Z
t0

�b2(�) d�; (2.48)

2. The additivity property:

t2Z
t0

�b(�) d� =

t1Z
t0

�b(�) d� +

t2Z
t1

�b(�) d�: (2.49)

However, the Itô integral also has the peculiar property that

tZ
0

W (�) dW (�) =
1

2
W 2(t)� 1

2
t (2.50)

in contrast to

tZ
0

y(�)dy(�) =
1

2
y2(t) (2.51)
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from classical calculus for a di�erentiable function y(t) with y(0) = 0. The origin of
the extra term '� 1

2
t' in equation (2.50) will be explained in section 2.3.2.

It should be noted that the Itô integral (2.31) reduces to a Wiener integral

I(�b) =
R T
0
�b dW when �b is independent of x. This simpli�es the evaluation of that

integral considerably, since in such a case �b does not play any role in this integral.
However, as will be set forth in section 2.4, the evaluation of the response x through
the integral equation (2.24) will still involve Itô integrals when �a(x) is a nonlinear
function of x.

Ito versus Stratonovich

In the former section, the Itô interpretation of the SDE and the stochastic integral
was discussed. Actually, the Langevin equation (2.16) is meaningless without an
interpretation rule, in case of parametric excitations. There are two mathematically
correct interpretations, due to Itô and Stratonovich. In this thesis these interpreta-
tions will not be discussed in all detail but only a brief description of the di�erence
between these interpretations will be given. A clarifying contribution on this subject
can be found in Van Kampen [1981].

Itô's interpretation is characterised by the choice to evaluate the integrand of the
stochastic integral at left side of the integration interval. In this case, the Wong-
Zakai correction term, discussed earlier in this section, should be taken into account.
However, equation (2.16) can also be interpreted as a Stratonovich SDE [Kloeden
and Platen, 1992]. In that case, the Wong-Zakai correction is super
uous. In the
Stratonovich formulation the integrand is evaluated as a halfway interpolation of
the values of the integrand at the right side and left side of the integration interval.
Consequently, the non-anticipativeness of the response, which was guaranteed in Itô's
de�nition, is lost here. On the other hand, the methods of classical calculus, such
as for example the chain rule, are also valid in case of Stratonovich's interpretation.
This is, however, not the case for Itô SDEs. Therefore, the development of Itô
stochastic calculus was necessary. In the next sections, some aspects of Itô's calculus,
such as:

1. the stochastic equivalent of the classical chain rule: the Itô formula;

2. the Itô -Taylor expansions, which are the stochastic equivalents of the classical
Taylor-expansions,

will be discussed. These tools of Itô calculus are essential for the development of
numerical integration techniques for Itô SDEs.

Here, we have chosen to use the Itô interpretation of the SDE, because only then
the non-anticipativeness of the response is guaranteed. This is physically, to say the
least, desirable, since it re
ects a causality condition.

2.3.2 The Ito formula

The Itô formula is the stochastic counterpart of the classical chain rule. It is of
major importance for several reasons:

1. it re
ects that Itô calculus di�ers from classical calculus and can help to un-
derstand some peculiar properties of the Itô integral, see e.g. (2.50);
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2. it can be used to derive the moment equations of the response;

3. it can be used to derive the so-called Itô-Taylor expansions, which are the
stochastic counterparts of the classical Taylor expansions. These expansions
are of great interest, since they are commonly used to construct numerical
integration schemes.

Let y(t) be a stochastic process, which is de�ned by y(t) = g(t; x(t)) for t � t0,
where g has continuous second-order partial derivatives. Furthermore x(t) is given
by

dx(t) = �b(x(t)) dW (t): (2.52)

Note that the drift term is omitted here for the time being. For a continuously
di�erentiable x(t) the chain rule of classical calculus would result in the following
di�erential for y(t):

dy(t) =
@g(t; x(t))

@t
dt+

@g(t; x(t))

@x
dx(t): (2.53)

In this case, only the �rst-order partial derivatives of g appear.
In contrast, when x(t) is given by equation (2.52) we need to take into account

that (dx(t))2 = �b2(dW (t))2. Hence, Ef(dx(t))2g = Ef�b2g dt, since �b(x(t)) and
W (t) are independent by de�nition of the Itô integral, giving us a �rst order dt
term coming from the second-order part of the Taylor expansion for g. To be more
speci�c, we have

�y(t) =g(t+�t; x(t) + �x(t)) � g(t; x(t)) =

�
@g

@t
�t+

@g

@x
�x

�

+
1

2

�
@2g

@t2
(�t)2 + 2

@2g

@t@x
�t�x+

@2g

@x2
(�x)2

�
+ : : : ;

(2.54)

where the partial derivatives are evaluated at (t; x(t)). It can be shown that this
implies [Kloeden and Platen, 1992] that

dy(t) =

�
@g

@t
(t; x(t)) +

1

2
�b2(x)

@2g

@x2
(t; x(t))

�
dt+

@g

@x
(t; x(t)) dx(t); (2.55)

with the equality interpreted in the mean-square sense and with second-order and

higher-order terms discarded. This is a stochastic chain rule known as the Itô for-
mula. It contains an additional term (underlined part), which is not present in the
classical chain rule (2.53). This term relates to the extra term in integrals like (2.50).
For example, with x(t) =W (t) and y(t) = x2(t), so �b = 1 and g(t; x) = x2, we have

dy(t) = d(x2(t)) = dt+ 2x(t) dx(t); (2.56)

or

W (t)dW (t) =
1

2
d(W 2(t)) � 1

2
dt: (2.57)
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This sheds light on the peculiar property of the Itô integral in equation (2.50). The
Itô formula is commonly expressed in terms of the di�erentials dt and dW (t). This
is easily done in (2.55) since dx(t) = �b(x) dW (t). In general, a stochastic di�erential
equation can also include a drift term: dx(t) = �a(x) dt+�b(x) dW (t). Consequently,
the Itô formula transforms to

dy(t) =

�
@g

@t
(t; x(t)) + �a(x)

@g

@x
+

1

2
�b2(x)

@2g

@x2
(t; x(t))

�
dt

+�b(x)
@g

@x
(t; x(t)) dW (t);

(2.58)

or in an integral formulation:

y(t2)� y(t1) =

t2Z
t1

�
@g

@t
(�; x(�)) + �a(�; x(�))

@g

@x
(�; x(�))

+
1

2
�b2(x(�))

@2g

@x2
(�;X(�))

�
d�

+

t2Z
t1

�b(x(�))
@g

@x
(�; x(�)) dW (�):

(2.59)

For a vector stochastic process x the Itô formula can be expressed as

dg(x(t)) =

�
@g

@t
+

1

2
Trace

�
�b�b
T

gxx

��
dt+ gx

T dx; (2.60)

where 'Trace' is the matrix operation for the summation of the diagonal elements of
the matrix, T is the transpose operator, gxx is the Jacobian matrix and gx

T is given
by

gTx =

�
@g

@x1
;
@g

@x2
; : : : ;

@g

@xj
; : : : ;

@g

@xn

�
; (2.61)

with x = fx1; x2; : : : ; xj ; : : : ; xngT . In appendix A, it is shown how the Itô formula
can be used to derive the moments equations of a Markov process x(t) obeying (2.18).
Furthermore, in the following section, the Itô formula will be applied in order to
derive the so-called Itô-Taylor expansions.

2.4 Ito-Taylor expansions

Classical numerical integration schemes, developed for deterministic di�erential equa-
tions, are, generally, constructed using the classical Taylor expansions, see Dormand
[1996] and Butcher [1997]. These integration schemes can only be applied success-
fully when the integrands are su�ciently smooth. White noise is de�nitely not
smooth. Numerical integration schemes suitable to handle SDEs are based on Itô
integration. For this purpose, the Itô-Taylor expansion is developed as a stochas-
tic counterpart of the classical Taylor expansion. This Itô-Taylor expansion can
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be used to construct integration schemes, which are speci�cally �t to tackle SDE-
problems. In this section, the Itô-Taylor expansion will be derived using the Itô
formula. Furthermore, the di�erence with respect to the classical Taylor expan-
sion will be clari�ed. Consequently, the necessity of essentially di�erent numerical
integration schemes for SDEs is illuminated.

Firstly, we will brie
y discuss the classical Taylor expansion. Consider the solu-
tion x(t) of a scalar ordinary di�erential equation:

dx(t)

dt
= a(x(t)); (2.62)

with initial value x(t0) for t 2 [t0; T ]. This can be written as an integral formulation:

x(t) = x(t0) +

tZ
t0

a(x(�)) d�: (2.63)

When g is a continuously di�erentiable function of x(t), we have, by the chain rule,

dg(x(t))

dt
=
@g(x(t))

@x
a(x(t)); (2.64)

which can be expressed as the integral equation

g(x(t)) = g(x(t0)) +

tZ
t0

Lg(x(�)) d�; (2.65)

in which the operator L (commonly known as the Lie derivative or directional deriva-
tive La) is de�ned as L = a @

@x
. When g(x) = x, we have Lg = a and L2g = La.

Consequently, (2.65) reduces to (2.63). When relation (2.65) is now applied to the
function g = a in the integral in (2.63), we obtain

x(t) = x(t0) +

tZ
t0

0
@a(x(t0)) +

�1Z
t0

La(x(�2)) d�2

1
A d�1

= x(t0) + a(x(t0))

tZ
t0

d�1 +

tZ
t0

�1Z
t0

La(x(�2)) d�2 d�1;

(2.66)

which is the simplest non-trivial Taylor expansion for x(t). Equation (2.65) can
again be applied to the function g = La in the double integral in (2.66) to derive

x(t) = x(t0) + a(x(t0))

tZ
t0

d�1 + La(x(t0))

tZ
t0

�1Z
t0

d�2 d�1 +Q3; (2.67)

with remainder term

Q3 =

tZ
t0

�1Z
t0

�2Z
t0

L2a(x(�3)) d�3 d�2 d�1: (2.68)



34 Chapter 2

For a general n + 1 times continuously di�erentiable function g this method gives
the classical Taylor formula in the integral form:

g(x(t)) =g(x(t0)) +

rX
l=1

(t� t0)
l

l!
Llg(x(t0))

+

tZ
t0

: : :

�rZ
t0

Lr+1g(x(�r+1)) d�r+1 : : : d�1;

(2.69)

for t 2 [t0; T ] and r = 1; 2; 3 : : : .

The Taylor formula (2.69) has proven to be a very useful tool in numerical analy-
sis. It provides approximations of a su�ciently smooth function in a neighbourhood
of a given point to any desired level of accuracy. This expansion depends on the
values of the function and some of its higher derivatives at the expansion point,

weighted by the corresponding multiple time integral. In addition, there is a re-
mainder term which contains the next multiple time integral, but now with a time
dependent integrand.

To expand the increments of smooth functions of Itô processes, for example in the
construction of numerical methods, it is advantageous to have a stochastic expansion
formula with analogous properties to the deterministic Taylor formula. A stochastic
Taylor formula can be based on the iterated application of the Itô formula. We will
term this expansion the Itô-Taylor expansion.

This Itô formula will now be applied to derive Itô-Taylor expansions. Let x(t)
be the solution of a scalar Itô stochastic di�erential equation in integral form (2.24).
Then, for any twice continuously di�erential function g the Itô formula (2.59) gives

g(x(t)) =g(x(t0))

+

tZ
t0

�
�a(�; x(�))

@g(x(�))

@x
+

1

2
�b2(�; x(�))

@2g(x(�))

@x2

�
d�

+

tZ
t0

�b(�; x(�))
@g(x(�))

@x
dW

= g(x(t0)) +

tZ
t0

L0g(x(�)) d� +

tZ
t0

L1g(x(�)) dW (�);

(2.70)

in which L0 and L1 are the following operators:

L0 = �a
@

@x
+

1

2
�b2

@2

@x2
; L1 = �b

@

@x
: (2.71)

In analogy with the classical Taylor expansions, we apply the Itô formula to the
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function g = �a and g = �b in (2.24) and obtain

x(t) = x(t0)

+

tZ
t0

0
@�a(x(t0)) +

�1Z
t0

L0�a(x(�2)) d�2 +

�1Z
t0

L1�a(x(�2)) dW (�2)

1
A d�1

+

tZ
t0

0
@�b(x(t0)) +

�1Z
t0

L0�b(x(�2)) d�2 +

�1Z
t0

L1�b(x(�2)) dW (�2)

1
A dW (�1)

=x(t0) + �a(x(t0))

tZ
t0

d�1 +�b(x(t0))

tZ
t0

dW (�1) + �Q2;

(2.72)

with remainder

�Q2 =

tZ
t0

�1Z
t0

L0�a(x(�2)) d�2 d�1 +

tZ
t0

�1Z
t0

L1�a(x(�2)) dW (�2) d�1

+

tZ
t0

�1Z
t0

L0�b(x(�2)) d�2 dW (�1) +

tZ
t0

�1Z
t0

L1�b(x(�2)) dW (�2) dW (�1):

(2.73)

This is the simplest non-trivial Itô-Taylor expansion. We can continue it by applying
the Itô formula to all the integrands of the double integrals of (2.72), which results
in

x(t) = x(t0) + �a(x(t0))

tZ
t0

d� +�b(x(t0))

tZ
t0

dW (�)

+ L0�a(x(t0))

tZ
t0

�1Z
t0

d�2d�1 + L1�a(x(t0))

tZ
t0

�1Z
t0

dW (�2)d�1

+ L0�b(x(t0))

tZ
t0

�1Z
t0

d�2dW (�1) + L1�b(x(t0))

tZ
t0

�1Z
t0

dW (�2)dW (�1)

+ �Q3;

(2.74)

with remainder �Q3 as given in appendix B. The main properties of the Itô-Taylor
expansion are apparent in the preceding relations. We have an expansion with the
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multiple Itô integrals with constant integrands:

tZ
t0

d�;

tZ
t0

dW (�);

tZ
t0

�1Z
t0

d�2 d�1;

tZ
t0

�1Z
t0

dW (�2) d�1;

tZ
t0

�1Z
t0

d�2 dW (�1);

tZ
t0

�1Z
t0

dW (�2) dW (�1);

(2.75)

and a remainder term involving the next multiple Itô integrals, but now with non-
constant integrands. The Itô-Taylor expansion can, in this sense, be interpreted as
a generalisation of both the Itô formula and the classical Taylor formula.

It is clear that the di�erence between the classical Taylor expansion and the Itô-
Taylor expansion gives rise to numerical stochastic integration schemes that di�er
essentially from the classical numerical integration schemes. An important observa-
tion is that even for external excitations the Itô-Taylor expansion for x(t) involves
Itô integrals for nonlinear �a(x(t)).

2.5 Numerical solution of stochastic di�erential equations

Generally, nonlinear SDEs are not solvable analytically. Therefore, the solution will
have to be approximated numerically by time discrete approximations. In order to
compute these time discrete approximations for the Itô process x in equation (2.18),
integration schemes will have to be developed. Kloeden and Platen [1992] give an
extensive survey on this subject. Commonly, these integration schemes are based on
the Itô-Taylor expansions, described in section 2.4. These schemes will be termed
Taylor schemes. In order to use these expansions to derive time discrete approxima-
tions, the multiple Itô integrals in (2.75) will have to be evaluated.

2.5.1 Time discrete approximation

Consider an Itô process x satisfying the stochastic di�erential equation

dx = �a(x) dt+�b(x) dW (2.76)

on t0 � t � T with x(t0) = x0. This process will be approximated by Y , where
Yj = Y (�j) corresponds to a discrete time instant �j of the given time discretization
t0 = �1 < �2 < : : : < �j < : : : < �n = T of [t0; T ]. For the sake of simplicity, here,

an equidistant discretization is assumed: �j+1 � �j = �t for j = 1; 2; : : : ; n� 1. In
order to investigate the convergence of such approximations Y for increasing n, a
convergence criterion should be introduced. Now, two di�erent types of convergence
can be distinguished for the time discrete approximation of Itô processes:

1. strong convergence;

2. weak convergence.

With respect to strong convergence we de�ne an absolute error criterion:

"s = Efj x(T )� Y (T ) jg; (2.77)
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which re
ects a measure of pathwise closeness at the time instant T . The strong
convergence criterion is used when approximation of a certain realisation of the
response process is pursued. For schemes with a strong convergence order ps the
error "s relates to the time step �t and the convergence order through

"s = Ks(�t)
ps : (2.78)

However, we are not particularly interested in speci�c realisations of the response
process. More important are its stochastic characteristics, such as the statistical
moments. Therefore, one could also de�ne a measure of convergence with respect to
these moments. The error can then be de�ned by the 'mean error':

"w =j Efx(T )g �EfY (T )g j; (2.79)

where the error "w is related to a weak order of convergence pw and �t through

"w = Kw(�t)
pw : (2.80)

Numerical integration schemes can be derived using the Itô-Taylor expansions.
The desired order of convergence determines the truncation that must be used.
Generally, for a certain scheme, which originates from a speci�c truncation of the
Itô-Taylor expansion, it holds that pw > ps, since the weak convergence criterion
represents a weaker type of convergence. The Itô-Taylor truncation required for
a certain strong convergence order will in general involve more terms of the Itô-
Taylor expansion than the Itô-Taylor truncation required for the same order of weak
convergence. So, the error in the statistical moments will, generally, decrease faster
(as �t decreases) than the error on the pathwise solution.

We will, now, brie
y discuss two schemes that can be derived using truncations of
the Itô-Taylor expansion. When the Itô-Taylor expansion is truncated as in (2.72),
the result is the Euler scheme:

Yj+1 = Yj + �a(Yj)�t+�b(Yj)�W; (2.81)

because

�j+1Z
�j

d� = �j+1 � �j = �t and

�j+1Z
�j

dW (�) =W (�j+1)�W (�j) = �W: (2.82)

From section 2.2 we know that the increments �W of the Wiener process are inde-
pendent, Gaussian, random variables with zero mean and variance Ef�W 2g = �t.
For these increments we can use a sequence of independent, Gaussian pseudo-random
numbers. In Kloeden and Platen [1992] it is shown that the Euler scheme has strong
convergence order 0:5 and weak convergence order 1:0. Of course, when applied to
a speci�c system the convergence order of the numerical schemes will depend on the
speci�c �a and �b at hand. However, generally, in the name of a scheme the maximum
attainable convergence order (for that scheme) is indicated.
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Since we are merely interested in the statistical properties of the Itô response pro-
cess, weak schemes will be used throughout this thesis. When all the double stochas-
tic integrals of the Itô-Taylor expansion are included in the truncation, see (2.74), a
Taylor scheme of weak order 2.0 can be derived:

Yj+1 =Yj + �a(Yj)�t+�b(Yj)�W

+
1

2
�b(Yj)�b

0(Yj)f(�W )2 ��tg+ �a0(Yj)�b(Yj)�Z

+
1

2

�
�a(Yj)�a

0(Yj) +
1

2
�a00(Yj)�b

2(Yj)

�
�t2

+

�
�a(Yj)�b

0(Yj) +
1

2
�b00(Yj)�b

2(Yj)

�
f�W�t��Zg;

(2.83)

Herein, the following weak approximations for the multiple Itô integrals of (2.75)
can be given by [Kloeden and Platen, 1992]:

�n+1Z
�n

�1Z
�n

dW (�2)dW (�1) =
1

2
((�W )2 ��t);

�n+1Z
�n

�1Z
�n

dW (�2)d�1 = �Z;

�n+1Z
�n

�1Z
�n

d�2dW (�1) = �W�t��Z:

(2.84)

Furthermore, in (2.83) 0 = @

@x
while �Z is normally distributed with zero-mean,

variance Ef(�Z)2g = 1
3
�t3 and covariance Ef�Z�Wg = 1

2
�t2 [Kloeden and

Platen, 1992]. Note that the peculiar property (2.50) of the Itô integral e�ects
on the numerical integration scheme through (amongst other integrals) the �rst
double Itô integral in (2.84). In practice, �Z and �W can be determined from two
independent, Gaussian, random variables U1 and U2 with unit variance by means of
the transformation

�W = U1

p
�t; �Z =

1

2
�t3=2(U1 +

1p
3
U2): (2.85)

In Kloeden and Platen [1992] it is shown that this scheme can be simpli�ed by using
the fact that we have much more freedom with the weak convergence criterion than
with the strong convergence criterion as far as the generation of the noise increments
is concerned. The use of the second random variable �Z can be avoided by replacing
�W by �Ŵ and �Z by 1

2
�Ŵ�t:

Yj+1 =Yj + �a(Yj)�t+�b(Yj)�Ŵ +
1

2
�b(Yj)�b

0(Yj)f(�Ŵ )2 ��tg

+
1

2

�
�a(Yj)�a

0(Yj) +
1

2
�a00(Yj)�b

2(Yj)

�
�t2

+
1

2

�
�a0(Yj)�b(Yj) + �a(Yj)�b

0(Yj) +
1

2
�b00(Yj)�b

2(Yj)

�
�Ŵ�t;

(2.86)
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Herein, �Ŵ has analogous moment properties as �W , which are satis�ed by a
Gaussian random variable with variance �t. By using the Itô-Taylor expansions in
the manner described by the former two examples many more schemes with other
weak and strong convergence orders can be derived. In Kloeden and Platen [1992]
it is stated that schemes of weak order pw can be derived using truncations of the
Itô-Taylor expansion, which include multiple Itô integrals up to multiplicity pw.

Of course, these Taylor schemes can only be applied e�ectively when the partial
derivatives of �a and �b with respect to x can be evaluated analytically. Furthermore,
the implementation of such schemes can be a rather complex matter. Therefore,
so-called derivative-free schemes can be derived from the Taylor schemes using �nite
di�erence approximations for the derivatives in these Taylor schemes. Platen [1987]
developed an explicit, second-order weak scheme, which will be used extensively
throughout this thesis:

Yj+1 = Yj +
1

2
(�a(�) + �a(Yj))�t+

1

4

�
�b(�+) + �b(��) + 2�b(Yj)

�
�Ŵ

+
1

4

�
�b(�+) + �b(��)

���
�Ŵ

�2
��t

�
�t�

1
2

(2.87)

with supporting values

� = Yj + �a(Yj)�t+�b(Yj)�Ŵ ; �� = Yj + �a(Yj)�t� �b(Yj)
p
�t:

For obvious reasons, the numerical stability of the integration schemes should be
checked. This can be done by considering the numerical stability of a scheme with
respect to a linear, stochastic di�erential test-equation of the form:

dx = � x dt+ dW: (2.88)

where � is a real number with � < 0. So, �a = � x and �b = 1. Let us assume that
we can write a given numerical scheme, when applied to the test-equation (2.88), in
the form

Yj+1 = Yj K(��t) + �Rj ; (2.89)

where �Rj represents the terms with random variables. Herein, the speci�c system
under investigation and the applied integration scheme jointly determine the form
of K. Now, the particular set of numbers ��t, for which

� < 0 and det(K(��t)) < 1; (2.90)

is termed the region of absolute stability of the scheme. If �t is chosen in such
a way that ��t lies within that region, the scheme is numerically stable for the
test-equation. Of course, for nonlinear systems some kind of linearised, worst-case
scenario will have to be considered.

2.6 Summary

The most important conclusion of this chapter is that SDEs can not be solved
numerically using classical integration techniques. Integration techniques based on
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Itô calculus can be used to tackle this problem. Let us summarise the steps of
reasoning towards this conclusion:

1. the excitation is modelled using a white noise process;

2. consequently, the di�erential equation, that describes the dynamic system, is
not an ODE but an SDE;

3. the solution of the SDE (in integral formulation) cannot be expressed in terms
of Riemann or Riemann-Stieltjens integrals;

4. to overcome this problem the Itô integral is de�ned. In this de�nition the
fact that the response of the dynamic system should not anticipate on the
excitation is crucial;

5. this speci�c de�nition of the Itô integral implies that functions of the solution
of the SDE do not obey the classical chain rule, but a 'stochastic chain rule':

the Itô formula. In the Itô formula an extra term appears, which is absent in
the classical chain rule;

6. iterated application of this Itô formula yields the Itô-Taylor expansion. This
expression is the stochastic counterpart of the classical Taylor expansion, from
which it essentially di�ers. This di�erence stems from the fact that certain
terms of a speci�c order in the Taylor expansion will contribute to terms of
a lower order in the the Itô-Taylor expansion. Consequently, truncations of a
speci�c order of the Taylor and Itô-Taylor expansions will di�er;

7. the expansions mentioned above are generally used to derive numerical inte-
gration schemes. Due to the fact that the Itô-Taylor expansion di�ers from
the classical Taylor expansion, the numerical integration schemes based on the
Itô-Taylor expansion di�er essentially from their classical counterparts.

In Kloeden and Platen [1992] a wide variety of numerical schemes for SDEs is pre-
sented. What kind of scheme is chosen depends on the system at hand and the
information that is desired. As stated before, when path-wise approximations of
realisations of the response process are sought, strong schemes should be used. How-
ever, often one is merely interested in the statistical properties of the response. Then,
weak schemes should be used. As in classical numerical integration, the order of the
integration scheme should be chosen based on the knowledge on the system under
investigation.



3 Simulated stochastic nonlinear response

phenomena

In this chapter, some characteristic phenomena in the stochastic response of a certain
class of nonlinear systems will be studied. As the main computational tool we will
use numerical integration using the procedures described in the previous chapter in
case of white noise excitations. This study involves questions like: "what happens?"
and "why does it happen?". So, the main goals of this chapter are:

1. to discover general, nonlinear, stochastic response phenomena using an induc-
tive approach;

2. to obtain understanding on the origin of these phenomena.

In literature, the attention is, unfortunately, merely focussed on gaining infor-
mation with respect to the probability distribution of the response (pdf, statistical
moments). However, essential information on stochastic, nonlinear behaviour is en-
closed in the frequency domain. Therefore, especially the power spectral density
function of the response will be monitored repeatedly to gain insight in the roots of
a wide variety of nonlinear phenomena.

A second important angle of incidence in this thesis is the proposition that the
simultaneous observation of deterministic (periodic) and stochastic behaviour of non-
linear, dynamic systems can be very bene�cial for gaining thorough understanding
of speci�c aspects of stochastic, nonlinear behaviour. To illuminate this, additional
investigations on the response to random excitations with a band-limited frequency
spectrum are performed. Moreover, the characteristics of the response to nearly pe-
riodic, though random, excitations are studied and compared to the characteristics
of periodic responses.

In order to evaluate the behaviour of a nonlinear system in case of white noise
excitation, the Itô-integration techniques, discussed in chapter 2, are used. The
results are compared to those obtained by the application of the far more e�cient and
widely-used method of statistical linearization. By de�nition, this method provides
rather inaccurate results for (strongly) nonlinear systems. The origin of the failing
of this method can be illuminated through observations of the simulated response
characteristics in the frequency domain. That speci�c knowledge provides us with
ideas for more accurate approximation methods, which will be developed, discussed
and applied in the chapters 5 and 6.
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3.1 The nonlinear dynamic system

The nonlinear, dynamic system, that will be used throughout this thesis, is depicted
in �gure 3.1. This piece-wise linear system is governed by the following, second-order
di�erential equation:

m �x+ c _x+ k x+ knl �(x) x = d; where �(x) =

�
0 if x � 0
1 if x < 0

; (3.1)

and d is a stationary, random, Gaussian, zero-mean excitation process.

k

b m

knl

d = random force

x

Figure 3.1: The nonlinear dynamic system.

Sti�ness nonlinearities of this one-sided form can be found in many engineering
systems. Some examples are elastic stops in vehicle suspensions, snubbers on solar
arrays connected to satellites [Van Campen et al., 1997b], suspension bridges or
models used in the o�shore industry [Thompson and Stewart, 1986]. Fey [1992]
and Van de Vorst [1996] used this system as a SDOF model for a beam with a
nonlinear (one-sided) support. With k = m = 1, the di�erential equation can be
written as

�x+ 2� _x+ x+ � �(x) x = d; (3.2)

where � = c=(2
p
mk) = c=2 is the dimensionless damping parameter and � = knl=k

the nonlinearity parameter. These parameters will be varied to examine the e�ect
of the amount of damping and the level of nonlinearity on the stochastic behaviour
of the system.

Here, a SDOF system is chosen to avoid the extra level of complexity that extra
degrees of freedom impose. A strongly nonlinear, MDOF system will be investigated
in chapter 4. Despite the simplicity of the nonlinearity of the system and the fact
that it is a SDOF system, it exhibits very complex, nonlinear behaviour. This par-
ticular system is chosen, because it is known to exhibit a wide variety of interesting,
speci�cally nonlinear response phenomena, when excited periodically (sinusoidal ex-
citation) [Shaw and Holmes, 1983; Thompson and Stewart, 1986; Fey, 1992; Van de
Vorst, 1996]. Some of these nonlinear, deterministic response characteristics will be
discussed brie
y in section 3.2. That knowledge will give us the chance to evaluate
the stochastic behaviour of this system against the background of its deterministic
behaviour [Van de Wouw et al., 1997].

When the random excitation is a white noise process �, with autocorrelation
function R��(�) = D �(�), the di�erential equation (3.2) can be transformed to the
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form of an Itô equation, see (2.18). This results in the drift and di�usion coe�cients

�a = a =

�
_x

�2� _x� x� ��(x)x

�
and �b = b =

�
0p
D

�
(3.3)

respectively, since the Wong-Zakai correction produces no extra terms in this exter-
nally excited case.

3.2 Survey of periodic response characteristics

Extensive work on the periodic behaviour of the piece-wise linear system has been
done by Shaw and Holmes [1983], Fey [1992] and Van de Vorst [1996]. In �gure 3.2,
the maximum absolute displacement jx jmax is plotted as a function of the angular
excitation frequency !e of the periodic (sinusoidal) excitation for the weakly non-
linear case of � = 1. The periodic response data for the stronger nonlinear case
� = 6 is plotted in �gure 3.3. Here, the excitation is cos(!et). To calculate these
periodic responses, a time discretization method combined with a path-following
technique has been used [Fey, 1992]. These �gures clearly illustrate the existence
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Figure 3.2: Maximum absolute displacement vs. excitation frequency for periodic excitation

and � = 1.

of harmonic (period one) and subharmonic (higher period) solutions. Furthermore,
for !e 2 [0:6; 0:7], also a superharmonic resonance exists. It should be noted that
the period time of a harmonic solution equals that of the excitation. Moreover, a

harmonic solution consists of the frequencies !e; 2!e; 3!e; : : : and so on. A 1/n
subharmonic solution, however, comprises the frequencies 1

n
!e;

2
n
!e;

3
n
!e; : : : , where



44 Chapter 3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−2

10
−1

10
0

10
1

10
2

s

s

s

s

s

s

s

u
u

harmonic

1/2 subharmonic

1/3 subharmonic

’s’:  Stable

’u’:  Unstable

Angular excitation frequency !e

jx
j m
a
x

� = 0:1
� = 0:01

Figure 3.3: Maximum absolute displacement vs. excitation frequency for periodic excitation

and � = 6.

the response period is the nth multiple of the excitation period. Furthermore, in
a n superharmonic resonance one or more higher harmonics cause resonance in a
(sub)harmonic response. The stability of the periodic solutions is indicated by the
symbols 's' and 'u' in the legend. It can be seen that in the frequency range of the
'closed loop' 1/3 subharmonic solution multiple stable solutions exist. Clearly, the
subharmonic resonances become more powerful for stronger nonlinearities. More-
over, higher damping gradually suppresses nonlinear e�ects such as subharmonic
resonances.

3.3 Statistical linearization

For the evaluation of the response statistics of the piece-wise linear system, the
statistical linearization method [Roberts and Spanos, 1990] will be used. The results
of the linearization method will be compared to the response statistics estimated
using the numerical integration techniques, discussed in chapter 2.

The basic idea of statistical linearization is to replace the original, nonlinear
system by a linear model. The system parameters of the linear model are chosen in
such a way that the linear model is optimal in some statistical sense with respect to
the original, nonlinear system. This means that the response statistics of the linear
model (which follow from a straightforward analytical procedure) are approximations
for the most relevant response statistics of the nonlinear system

Let us, now, describe the method in more detail. Since the excitation is external,
see section (1.2.7), the linearization will be performed on the equations of motion of
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the nonlinear system. For the nonlinear system (3.2), a suitable linear model can be
written as

�x+ 2� _x+ �1 xE + �0 = d; (3.4)

where xE = x � Efxg. Since �xE = �x, _xE = _x due to stationarity and, thus,
�0 = Efdg, equation (3.4) can be written as

�xE + 2 � _xE + �1 xE = dE with dE = d�Efdg: (3.5)

Throughout this thesis merely zero-mean excitation processes will be considered,
implying that �0 = 0.

The next step is the de�nition of an error, which embodies the di�erence between
the nonlinear system and the linear model:

"lin = (x+ � �(x) x)� �1 xE ; (3.6)

for some �1. Subsequently, our goal is to minimise "lin in the mean-square sense.
This minimisation of Ef"2

lin
g with respect to �0 and �1 results in the following

equations:

�1 =
EfxE(x+ � �(x) x)g

�2
x

; (3.7)

Efx+ � �(x) xg = 0; (3.8)

At this point, �x, �x and �1 form the three unknowns of the linearization problem.
So, for a unique solution, besides the equations (3.7) and (3.8), a third equation
is necessary. This equation can be derived from frequency domain considerations.
Namely, for a linear system (with frequency response function H(i!)) the relation
between the auto power spectra of input d and output x obeys

Sxx(!) =j H(i!) j2 Sdd(!): (3.9)

The frequency response function H(i!) is given by

H(i!) =
1

�1 � !2 + 2 i ! �
: (3.10)

Using (3.9), the variance of the response can be computed using

�2
x
=

1Z
�1

Sxx(!) d! =

1Z
�1

j H(i!) j2 Sdd(!) d!: (3.11)

When the excitation is a white noise process with intensity one (Sdd(!) =
1
2�
), (3.11)

yields

�2x =
1

4 � �1
: (3.12)
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The next step is to solve the equations (3.7), (3.8) and (3.12) simultaneously. In
doing so, beforehand, the expected values Efx0(x+� �(x) x)g and Efx+� �(x) xg
have to expressed in terms of �x and �

2
x by assuming a Gaussian probability density

function, see appendix C. It should be noted that the response of a linear system
to Gaussian excitation is, generally, Gaussian too. The equations (3.7), (3.8) and
(3.11) form a set of coupled, nonlinear, algebraic equations. Once the optimal values
for �x, �

2
x
and �1 are computed, the probability density function of the output of

the linear model is given by a normal distribution:

f(x) =
1p
2��x

exp(� (x� �x)
2

2�2
x

): (3.13)

It should be noted that, consequently, the deviation from normality of the response
of the original, nonlinear system can not be approximated using such a linear model.
Moreover, one can evaluate the power spectral density of the response of the linear
model using (3.9).

3.4 Response to white noise excitation

Let us consider the piece-wise linear oscillator excited by a white noise excitation
with intensity one. The numerical (explicit, second-order, weak) scheme (2.87) is
used to compute time-discrete approximations of realisations of the response pro-
cess. An explicit scheme is chosen, because the derivatives needed in the Itô-Taylor
schemes do not exist everywhere for the piece-wise linear system. The choice for
a second-order scheme was based on extensive e�ciency investigations between the
Euler scheme, the second-order scheme and higher-order schemes (also for this ap-
plication). According to the weak convergence criterion, the computed realisations
converge (with the weak convergence order) to the realisations of the real response
process in the sense of their statistical moments. Of course, the numerical stabil-
ity of the integration scheme was checked and ensured. Moreover, time-discrete
approximations using di�erent time steps were computed to be able to guarantee
convergence to a certain desired level. This desired level of accuracy is taken signi�-
cantly smaller than the level of the statistical error (due to the �nite sample lengths)
on the estimated response statistics.

In the following sections, these realisations are used to estimate the following
response statistics:

1. statistical moments up to the fourth order;

2. probability density function;

3. power spectral density (frequency domain information).

Successively, speci�cally nonlinear characteristics with respect to these response
statistics will be observed. The results of these simulations will be compared to
the results provided by statistical linearization. Doing so, the shortcomings of the
linearization technique can be illuminated along with their origin.

The response statistics of the piece-wise linear system will be discussed for dif-
ferent levels of nonlinearity; from weakly nonlinear (� = 1) to strongly nonlinear
(� = 6).
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3.4.1 Statistical moments

The statistical moments that will be monitored are:

1. the mean �x;

2. the standard deviation �x;

3. the skewness 
x =
�3

�
3=2

2

;

4. the kurtosis �x =
�4

�22
,

with �p (p = 1; 2; 3; 4) de�ned in (2.5). The mean and the standard deviation
are well-known response statistics. Together, they entirely de�ne the probability
distribution of a Gaussian process. The standard deviation is an important measure
for the amount of energy in the stochastic process. The skewness is the scaled,
third-order, central moment, which indicates the asymmetry in the process. For
a Gaussian process the skewness is zero. Absolute values of 
 in excess of about
0:5 correspond to noticeable asymmetry in the probability density function, where
absolute values higher than 2 point to an extreme asymmetry. The kurtosis is the
scaled, fourth-order, central moment. For a Gaussian process the kurtosis is 3.
Values higher than 3 manifest a probability distribution with relatively extensive
tails.

In case of simulations, these statistical moments will be approximated by so-
called estimators. These estimators are computed using m independent samples of
length n. In these samples the transient part of the response is omitted, since merely
the steady state part of the response is of interest. The estimators for the mean, the
standard deviation, the skewness and the kurtosis are

�x =
1

m

mX
j=1

�xj =
1

mn

mX
j=1

nX
k=1

xjk ;

Sx =
1

m

mX
j=1

Sj =
1

mn

mX
j=1

nX
k=1

(xjk � �xj)
2

n� 1
;


̂x =
1

m

mX
j=1


̂j =
1

mn

mX
j=1

nX
k=1

(xjk � �xj)
3

(n� 1)S3
j

;

�̂x =
1

m

mX
j=1

�̂j =
1

mn

mX
j=1

nX
k=1

(xjk � �xj)
4

(n� 1)S4
j

;

(3.14)

respectively, where xjk is the k-th discrete value (of the steady state part) of the
j-th sample. The 95 % con�dence intervals of these estimators can be determined



48 Chapter 3

by

j �x� �x

�x
j �

1:96 S�xj
�x
p
m

with S�xj =

vuut mX
j=1

(�xj � �x)2

m� 1
; (3.15)

j Sx � �x

�x
j �

1:96 SSj
Sx
p
m

with SSj =

vuut mX
j=1

(Sj � S)2

m� 1
; (3.16)

j 
̂x � 
x


x
j �

1:96 S
̂j

̂x
p
m

with S
̂j =

vuut mX
j=1

(
̂j � 
̂)2

m� 1
; (3.17)

j �̂x � �x

�x
j �

1:96 S�̂j
�̂x
p
m

with S�̂j =

vuut mX
j=1

(�̂j � �̂)2

m� 1
: (3.18)

The idea behind this is that �x, Sx, 
̂x and �̂x are normally distributed due to the
central limit theorem [Papoulis, 1965].

In �gure 3.4, the estimates and con�dence intervals for the mean (due to both
simulation as well as linearization) are shown as a function of the nonlinearity pa-
rameter �. The con�dence intervals provide information on the liability of the
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Figure 3.4: Estimation of the mean �x for � = 0:01.

estimators. The mean increases with increasing nonlinearity. This is quite logical,
since the asymmetry in the system increases for increasing �. Furthermore, the

�gure shows that the linearization results are rather accurate except for stronger
nonlinearities.
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In �gure 3.5, the results for the standard deviation are shown. This �gure shows
that the error in the linearization result increases fast for an increasing nonlinear-
ity. It should again be emphasised that the standard deviation is a very important
response statistic, since it is often used in failure criteria for engineering systems.
With this in mind, the error induced by the linearization approach can be considered
unacceptably high for stronger nonlinearities. To be more speci�c, the linearization
method structurally underestimates the standard deviation �x. This can be un-
derstood by studying the frequency domain statistics, which will be discussed in
section 3.4.3.
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Figure 3.5: Estimation of the standard deviation �x for � = 0:01.

The information with respect to the higher-order moments, like skewness and
kurtosis, will also be very informative, since the response of a nonlinear system to a
Gaussian excitation will generally be non-Gaussian. In �gure 3.6, the estimate for
the skewness is depicted (along with its 95 % con�dence intervals) for an increasing
nonlinearity. Clearly, a stronger nonlinearity induces a higher asymmetry in the
response, indicated by a higher value for the skewness. This asymmetry clearly
roots from the one-sidedness of the sti�ness characteristic of the piece-wise linear
system.

In �gure 3.7, the estimate for the kurtosis is shown. It visualises that the estimate
for the kurtosis also deviates more and more from its Gaussian value (� = 3) for
stronger nonlinearities. It can be concluded that the response diverges progressively
from a normal distribution when � increases.

3.4.2 Probability density function

The deviation of the response statistics from normality will also be re
ected in the
probability density function. The �gures 3.8 and 3.9 display the pdf for � = 1
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Figure 3.6: Estimation of the skewness 
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and � = 6, respectively. For the simulation estimates the 95 % con�dence intervals
are included. Again the simulation results are compared to the results of statistical
linearization, which gives a Gaussian pdf. Figure 3.9 clearly demonstrates the asym-
metry of the response for � = 6. For � = 1, this asymmetry is obviously less present.
For � = 6, the response characteristics indicate distinctly non-Gaussian behaviour.
To test the hypothesis that the response is signi�cantly non-Gaussian, a signi�cance
test could be performed. The test of Shapiro and Wilk [Shapiro and Wilk, 1965,
1968] is designed especially to test on normality. The application of this test to
realisations of the response of the piece-wise linear system, for � = 0:01 and � = 6,
showed that the response should be regarded as being signi�cantly non-Gaussian
(on a 99 % signi�cance level).
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Figure 3.8: Probability density function

f(x) for � = 1 and � = 0:01.
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Figure 3.9: Probability density function

f(x) for � = 6 and � = 0:01.
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3.4.3 Power spectral density

In literature, very little attention has been paid to the frequency domain characteris-
tics of nonlinear, dynamic systems excited by stochastic processes. It will be shown
that this information can be of great value for the understanding of the system's
stochastic behaviour.

In the �gures 3.10 and 3.11, the power spectral density 1 of the response, Sxx(!),
is plotted for two di�erent levels of nonlinearity. The power spectral density of the
response is estimated numerically using the Welch method [Oppenheim and Schafer,
1975]. The con�dence levels of the estimates of the power spectral density are
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Figure 3.10: Power spectral density Sxx(!)

for � = 1 and � = 0:01.
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Figure 3.11: Power spectral density Sxx(!)

for � = 6 and � = 0:01.

omitted in these �gures. This is done because graphically one would not be able to
distinguish the estimate of the psd from its intervals anyway. The main resonance
frequency (at ! = 1:17 for � = 1 and shifting to ! = 1:45 for � = 6) is dominating
these �gures. The resonances at higher frequencies are situated at multiples of the
main resonance frequency. These 'extra' resonances are direct consequences of the
nonlinearity of the system. Since the energy in the response process can be visualised
by the area beneath the graph of the power spectral density, the higher resonances
contribute extra energy.

It should be noted that the presence of the 'extra' resonances becomes more
evident for higher nonlinearities; for higher damping levels (for example � = 0:1)
and a weak nonlinearity (� = 1) the higher resonances can almost disappear, see
�gure 3.12. The results with respect to the power spectral density (for � = 6 and
� = 0:01) demonstrate another striking nonlinear response property; namely, the
presence of a large amount of energy at low frequencies. This can be visualised by
looking at a realisation of the response x, see �gure 3.13. The asymmetry of the
nonlinearity is the cause for this phenomenon. Namely, when such a system with
an asymmetric nonlinearity is forced by an excitation comprising two frequencies !1

1It should be noted that throughout this thesis two-sided power spectral densities will be used.

However, the power spectral densities are merely shown for positive frequencies since they are

symmetric around ! = 0.
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Figure 3.12: Power spectral density Sxx(!) for � = 1 and � = 0:1.

and !2, the response does not only contain those two frequency components and
their multiples but also the 'di�erence'-frequency !2 �!1. The random excitations,
discussed here, consist of innumerable, close frequencies. When these frequencies lie
within a resonance area, which is always the case for white noise excitations, the
response contains a large amount of energy at (low) di�erence-frequencies.

Lang and Billings [1997] derived explicit expressions for the output frequency
range of nonlinear systems with polynomial nonlinearities (so-called Volterra sys-
tems, see chapter 6). Their expression relates the output frequency range to the
input frequency range and their results also supports the low-frequency spectral
contents phenomenon. Furthermore, their expression implies that, for a quadratic

0 200 400 600 800 1000 1200 1400 1600
−10

−5

0

5

10

15

t

x
(t
)

Figure 3.13: Realisation of the response x(t) for � = 6 and � = 0:01.
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sti�ness nonlinearity, the response comprises twice the input frequency range besides
the input frequency range itself. Following the same reasoning, a cubic sti�ness
nonlinearity will result in a contribution to the output frequency range of thrice
the input frequency range. Moreover, the expression con�rms that for asymmetric
sti�ness nonlinearities a low-frequency output contribution can be induced by an
input that has a zero low-frequency spectral content. Of course, the nonlinearity at
hand is more complex than those polynomial nonlinearities. However, the charac-
teristics of systems with polynomial nonlinearities illustrate the existence of higher
resonance frequencies as well as the large amount of low-frequency energy in the
response process.

In the �gures 3.10 and 3.11, also the linearization result with respect to the power
spectral density is shown. The linearization technique is unable to predict the higher
resonances as well as the low-frequency phenomenon. These shortcomings of such
a linear model representation are the main causes for the fact that this approxi-
mation technique structurally underestimates the standard deviation. It should be
noted that also the nonlinear, frequency-domain phenomena become more evident
for stronger nonlinearities. For higher damping levels both e�ects, described above,
gradually become less apparent. Summarising, we have found explanations for the
inaccuracy of the linearization estimate for the standard deviation (energy mea-
sure) by observing the frequency-domain characteristics. It can be concluded that
statistical linearization provides erroneous results for strongly nonlinear systems.

So, there is a strong need for the development of more accurate approxima-
tion methods for the situation where numerical integration proves (still) too time-
consuming.

Next, let us compare the stochastic response characteristics (�gures 3.10 and 3.11)
with the periodic response characteristics (�gures 3.2 and 3.3) of this system as pre-
sented in section 3.2. At �rst sight the �gures show great similarity. However, it
should be emphasised that in the �gures 3.2 and 3.3 the horizontal axis embodies the
angular frequency of the harmonic excitation, whereas in the �gures 3.10 and 3.11
it embodies the frequencies in the response. The resonance frequencies of the har-
monic and subharmonic solutions, in the periodic case, correspond with the main
resonance frequency and the higher resonance frequencies of the response, in case of
white noise excitations. Furthermore, for a weak nonlinearity (� = 1) the subhar-
monic solution (in case of periodic excitation) is small and will even disappear for
a higher level of damping (� = 0:1), see Fey [1992]. For the same system-parameter
settings, the higher resonance peaks in the power spectral density of the response

to white noise will disappear too. So, there is clearly a relation between the deter-
ministic and stochastic phenomena. To elucidate this relation and to link frequency
components in the white noise excitation to frequency components in the response,
we will focus on band-limited, random excitations in the next section.

Finally, in order to broaden the scope of the observed phenomena, an interesting,
stochastic phenomenon is illustrated by analysing a well-known system, namely the
(cubic spring) Du�ng system:

�x+ 2� _x+ x+ �D x3 = �; (3.19)

where �D is the nonlinearity parameter. The sti�ness term of this system is sym-
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metric. Consequently, the power spectral density of the response will not have a
large spectral content at low frequencies and the skewness will be zero. However, a
(third harmonic) higher resonance bump is observed for weak damping (� = 0:003),
see �gure 3.14. Clearly, the resonance 'peaks' are of a concave form in contrast to
the convex form of the resonance peaks in the �gures 3.10 and 3.11. This can be
assigned to an e�ect, which is related to the form of the well-known back-bone curve
for periodic excitations.
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Figure 3.14: Power spectral density Sxx(!) for �D = 6 and � = 0:003.

3.5 Response to band-limited stochastic excitation

In order to study the e�ect of excitation frequency components on de�nite charac-
teristics in the response, simulations with Gaussian excitations with band-limited
spectra are performed. The shape of the power spectral density of such an excita-
tion is displayed in �gure 3.15. In this approach, similarities between stochastic and
periodic response characteristics can be illuminated.

3.5.1 Generation of realisations of a band-limited stochastic process

The energy of a band-limited random process is concentrated in the frequency band
[!min; !max] (for both positive and negative frequencies). For any shape of the
power spectral density of the Gaussian process, within that frequency band, one can
simulate realisations of such a process using a method, developed by Shinozuka [1972]
and Yang [1972]. The idea behind the method is that a one-dimensional Gaussian,
random process d(t) with zero mean and a one-sided power spectral density So

dd
(!),

with

Sodd(!) =

�
2 Sdd(!) for ! � 0
0 for ! < 0

; (3.20)
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Figure 3.15: Power spectral density of a band-limited excitation Sdd(!).

can be represented by a sum of cosine functions with a uniformly distributed random
phase �. A realisation �d(t) of d(t) can be simulated by:

�d(t) =
p
�! RefY (t)g; (3.21)

in which RefY (t)g is the real part of Y (t) and

Y (t) =

NX
k=1

�q
2 S0

dd
(!k) e

i�k

�
ei!kt (3.22)

is the �nite complex Fourier transform of
p
2 So

dd
(!) ei�, in which � are the realisa-

tions for �, and �! = !k�!k�1. The Fourier transform can be e�ciently computed

using the Fast Fourier Transform (FFT) algorithm.
Then, we can get a realisation of the response process using numerical integration

techniques. Because the excitation d(t) does not contain in�nitely high frequencies
(like white noise does), equation (3.1) is not a stochastic di�erential equation. There-
fore, classical integration techniques can be used to solve it numerically.

3.5.2 Application to the piece-wise linear system

The response of the piece-wise linear system will be studied for excitations char-
acterised by speci�c frequency bands. Here, our main goal is to obtain insight in
what kind of nonlinear e�ects play a role in the stochastic response; in particular, a
better understanding can be obtained of the appearance of the higher resonances in
the case of white noise excitation. For each of the simulations, the frequency band
parameters !min and !max are chosen in such a way that the excitation frequency
band coincides with the major part of a speci�c resonance peak without overlapping
adjacent resonance peaks.

Let us look at a frequency range in which the (stable) harmonic solution of the

periodically excited system, with � = 6 and � = 0:01, exists. Accordingly, we choose
a frequency band for the excitation, in which its spectrum is uniformly distributed,
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with !band = [!min !max]=[1.13 1.76], see �gure 3.16. For such an excitation
spectrum, realisations of the input process are generated. Next, realisations of the
response process are computed and the estimate of the psd of the response process
is depicted in �gure 3.17. Recall that, for a periodic excitation with frequency !e,
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Figure 3.16: Power spectral density of

the excitation Sdd(!) for

!band=[1.13 1.76].
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Figure 3.17: Power spectral density of

the response Sxx(!) for

!band =[1.13 1.76].

the harmonic solutions comprise the multiple frequencies !e; 2!e; 3!e; : : : . A simi-
lar phenomenon can be observed in �gure 3.17. We, therefore, term this stochastic
solution a stochastic equivalent of a harmonic solution or 'stochastic harmonic' so-
lution. Additionally, we can recognise a low-frequency energy contribution with the
same origin as for white noise excitations.

In analogy with the former, an excitation with its frequency band covering the
main part of the second resonance peak in �gure 3.11 is applied (!band =[2.58 3.22]).
It should be noted that, for periodic excitations, a branch of 1/2 subharmonic so-
lutions exists in this frequency range, see �gure 3.3. The power spectral density of
the response is shown in �gure 3.18. A striking characteristic in this �gure is that
the response not only shows resonances at multiples of the frequency range of the
excitation, but also at ! 2 !band=2. Recall that, for periodic excitations with fre-
quency !e, a 1/2 subharmonic solution comprises the frequencies 1

2
!e; !e; 2!e; : : : .

Therefore, we term such a random response a stochastic equivalent of a 1/2 subhar-
monic solution or 'stochastic 1/2 subharmonic' solution. In �gure 3.19, the power
spectral density of a 'stochastic 1/3 subharmonic' solution is shown resulting from
a random, band-limited excitation with !band =[4.03 4.67]. Fey [1992] showed that
for higher levels of damping (� = 0:1) and a relatively weak nonlinearity (� = 1)
the 1/3 subharmonic solution can cease to exist. The same is true for its stochastic
counterpart, see �gure 3.20.

So, the stochastic equivalents of harmonic and subharmonic solutions appear
and disappear for the same system-parameter settings as in the case of periodic
excitation. Still, an explanation for the multiple resonances in case of white noise
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Figure 3.18: Power spectral density of

the response Sxx(!) for

!band =[2.58 3.22].
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Figure 3.19: Power spectral density of

the response Sxx(!) for

!band =[4.03 4.67].

excitations is to be found. Therefore, the results of two band-limited excitations are
displayed in �gure 3.21. The response psd for !band =[1.77 2.58] does not completely
�ll the convex valley (in the frequency band [1.77 2.58]) of the response psd due to an
excitation in the frequency band !band =[1.13 1.77], see �gure 3.21. This elucidates
the phenomenon that the response to white noise excitations (for � = 6 and � = 0:01)
exhibits multiple resonance peaks. The multiple resonances were shown to disappear
for � = 0:01 and � = 1 in �gure 3.12. Figure 3.22 is the equivalent of �gure 3.21
for � = 1 and � = 0:1. Herein, the gap (near ! = 1:8) in the response psd to an
excitation with !band =[0.91 1.53] is �lled by the response psd due to an excitation
with !band =[1.53 2.08]. This explains why the multiple resonance peaks are absent
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Figure 3.21: The psd of the response Sxx(!)

for two band-limited excita-

tions (� = 6 and � = 0:01).
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Figure 3.22: The psd of the response Sxx(!)

for two band-limited excita-

tions (� = 1 and � = 0:1).

for these systems parameters (and white noise excitations). Resuming, it can be
concluded that the response characteristics in the frequency domain are dominated
by the following aspects:

� stochastic harmonic solutions;

� stochastic subharmonic solutions;

� the interaction of excitation frequencies resulting in 'di�erence'-frequencies'
in the response. This is also the cause of the high amount of low-frequency
energy in the response. Moreover, this e�ect also generates a psd contribution
in other frequency areas.

The 'stochastic harmonic' and 'stochastic subharmonic' solutions occur simultane-
ously with their periodic equivalents as far as the system parameters are concerned.
Therefore, a relatively short simulation with a stochastic, band-limited excitation
can provide information on whether particular subharmonic solutions exist in case of
periodic excitations. Furthermore, the resonance frequency of the nonlinear system
can be predicted e�ciently in this manner.

Finally, it should be noted that, in this section, no linearization results were
discussed. The application of this method was omitted here, since a linear system
will not produce any output outside the frequency range of the input. Therefore,
such a linear model will not be able to predict any of the nonlinear phenomena
discussed in this section.

3.6 Response to near-periodic stochastic excitation

The discussion of near-periodic, stochastic excitation can be seen as an extension of
the discussion involving white noise excitations and band-limited, stochastic excita-
tions. The near-periodic excitation is modelled as a band-limited, stochastic process
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with a uniform psd. The bandwidth of the excitation !bw = !max � !min will be
very small. Consequently, the excitation will show a dominant periodic structure,
despite of its stochastic nature. For the simulations, we will use the system param-
eters � = 6:41 and � = 0:0142, for the piece-wise linear system, because this setting
was also used by Van de Vorst [1996]. He showed, using harmonic excitation, that
for certain excitation frequencies (4:0 � !e � 5:5) multiple stable solutions exist,
as is the case for � = 6:0 and � = 0:01, see �gure 3.3. A stable harmonic solution
coexists with a stable and an unstable 1/3 subharmonic solution.

For harmonic excitations, the initial state of the system solely determines in
which solution (or attractor) the system will settle after the transient part has died
out. The set of all initial states of orbits which approaches a speci�c attractor is
termed the basin of attraction of that attractor. The basins of attraction of this
2-dimensional state-space system are separated in the state space by 1-dimensional
basin boundaries, see Van de Vorst [1996]. A saddle solution attracts within the
boundary and repels across it. All the orbits that approach a saddle tangentially
along the stable eigenvector for increasing time are termed stable manifolds. Fur-
thermore, all the orbits that approach the saddle for decreasing time are termed
unstable manifolds. The stable and unstable manifolds are responsible for the struc-
ture of the phase space portrait. The stable manifolds form the basin boundaries,
since they do not approach an attractor, but a saddle solution.

A stroboscopic picture of the stable and unstable manifolds of this system is
shown in �gure 3.23 for the excitation frequency !e = 4:775 at t = 2�j

!e
; j = 1; 2; : : : .

Here, again the excitation is cos(!et). Note that multiple stable solutions exist. In
�gure 3.24, a part of �gure 3.23 is magni�ed in order to show the main part of the
basin of attraction of the stable harmonic solution clearly. The intersections of the
stable and unstable manifolds correspond to the saddle solution (in this case the
unstable 1/3 subharmonic solution).
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At this point, an interesting question is whether the concept of multiple solutions
remains valid (in the practical sense) when the excitation is near-periodic, though
random. Therefore, the response to a Gaussian excitation in a small band around
a central frequency !c = 4:775 will be monitored. At �rst, excitations are applied,
for which the energy is distributed uniformly in the small frequency band. Let us
consider such an excitation in the band !c� !bw

2
� !e � !c+

!bw

2
with !bw = 0:0628.

Furthermore, the initial state x0 = [0; 0]T is used. This initial condition lies in the
basin of attraction of the harmonic solution for periodic excitations, see �gure 3.24.
In order to facilitate the interpretation of the simulation results, the starting-phase
of the near-periodic excitation was chosen to correspond to that of the periodic
excitation leading to �gure 3.232. In order to set up an interpretable, numerical
experiment, the position and magnitude of the basins of attraction for the other
excitation frequencies in the excitation bandwidth should not di�er signi�cantly
from that of !c = 4:775. This matter will be addressed later on. Simulations with
stochastic excitations with such small bandwidths resulted in stochastic responses
that resemble their periodic equivalents in the phase plane. A remarkable outcome
is that besides the 'stochastic harmonic' solutions, see �gure 3.25, also 'stochastic
1/3 subharmonic' solutions occurred, see �gure 3.26.

This is remarkable, since the initial condition lies in the basin of attraction of
the harmonic solution. Apparently, the randomness of the excitation induces a
'jump-phenomenon': a jump of the harmonic solution to the stable 1/3 subhar-
monic solution. One may say that a certain solution type has a certain probabil-
ity of appearance, which depends on, amongst other aspects, the initial condition.
For !bw = 0:0628 and x0 = [0; 0]T , 300 simulations runs were performed. 61 %

'stochastic harmonic' solutions and 39% 'stochastic subharmonic' solutions occurred.
For an initial condition in the basin of attraction of the 1/3 subharmonic solution,
x0 = [�0:1; 0]T (see �gure 3.23), and the same excitation bandwidth, 90% of the
solutions appeared to be 'stochastic 1/3 subharmonic' solutions. So, merely 10%
were 'stochastic harmonic' solutions. Clearly, not only the initial condition, but also
the global stability of the stable attractors plays an important role with respect to
the 'probability of occurrence' of the di�erent solution types. The global stability
of an attractor is determined by the structure of its basin boundaries, the stable
manifolds. If those basin boundaries lie close to the attractor, a relatively small
perturbation can cause a jump to another attractor. In this case the perturbation
is a deviation from periodicity of the excitation. So, the percentage of 'stochas-
tic harmonic' solutions will drop when the magnitude of the basin of attraction of
the harmonic attractor decreases. In our example, the basin of attraction of the
harmonic attractor is relatively small.

Another factor that can in
uence the probability of the solution types is the
bandwidth of the random excitation. It is obvious that the near-periodicity assump-
tion, which means that the stochastic excitation can be seen as a combination of
a periodic excitation (with the central frequency !c) and disturbances due to the
other frequencies in the excitation, is only useful (for the purpose of interpretation
of the results) when the excitation is really very narrow-banded, as assumed until

2For an other phase of the periodic excitation, the manifolds, and thus the basins of attraction,

lie di�erently in phase space.
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now. Here, very narrow-banded can be de�ned as follows: the form and magnitude
of the basins of attraction for all the frequencies of the excitation bandwidth do
not di�er signi�cantly. For increasing bandwidth, within this criterion of narrow-
bandedness, simulations were performed ( �xed x0 = [0; 0]T and for each bandwidth
300 simulation runs). The essential result is plotted in �gure 3.27. This �gure clearly
shows that for an increasing excitation bandwidth the appearance of 'stochastic 1/3
subharmonic' solutions increases monotonically. So, the larger the deviation from
periodicity, the more jumps occur. This supports the idea of the jump-phenomenon.
To illustrate the ful�lment of the narrow-bandedness criterion, we take a bandwidth
!bw = 0:126 and look at manifold con�gurations for !e = !c � !bw

2
= 4:712 and

!e = !c +
!bw

2
= 4:838 as shown in the �gures 3.28 and 3.29, respectively. These

�gures show that the manifolds are already changing fairly. The basin of attraction
of the harmonic remains approximately the same. When the bandwidth increases

beyond !bw = 0:13, the manifold con�gurations for the frequencies (for example for
!min or !max) can become signi�cantly di�erent from that at !c. Therefore, the
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Figure 3.27: Probability of occurrence of the stochastic 1/3 subharmonic solution for in-

creasing excitation bandwidth.

tendencies with respect to the relation between the bandwidth of the excitation and
the probability of the solution types cannot be extrapolated to larger bandwidths.
This is a consequence of the fact that the global stability of the two solution types
are then di�erent for di�erent frequencies within the bandwidth. Consequently, a
speci�c initial condition may lay in the basin of attraction of the harmonic attractor
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for one excitation frequency and in the other basin of attraction for another exci-
tation frequency. When !bw is enlarged even further, the form of the stochastic
solutions in the phase space does not resemble the form of the periodic solutions
anymore. Moreover, the manifold con�gurations of the frequencies in the excita-
tion bandwidth can change dramatically when other types of solutions (for example
a stable 1/5 subharmonic solution, see Van de Vorst [1996]) coexist with the 1/3
subharmonic solution and the harmonic solution.

Not only the excitation bandwidth itself, but also the energy distribution within
it will have e�ect on the probability of appearance of the solution types. According
to the idea of the jump-phenomenon, the probability of the 'stochastic harmonic'
solution (for x0 = [0; 0]T ) should increase when !c becomes more important rela-
tively to the other frequencies in the excitation. To test this hypothesis, excitations
with a non-uniform energy distribution within a �xed frequency band are applied.
These excitations were ensured to exhibit a psd of the form shown in �gure 3.30.
Herein, Smax de�nes the value of the psd at the central frequency in the excita-
tion bandwidth and, using the factor QS, the value of the psd at the boundaries of
the excitation bandwidth is de�ned by Smax=QS. For the parameter QS = 1 (see
�gure 3.30), the energy distribution is uniform and for QS > 10 the distribution
is almost triangular. The e�ect of an increasing QS (the excitation becomes less
'white' and the central frequency becomes relatively more important) on the proba-
bility of the solution types is clari�ed in �gure 3.31. Clearly, less jumps occur when
for higher QS.
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Figure 3.30: Power spectral density of

a band-limited excitation

Sdd(!).

0 10 20 30 40 50 60 70 80 90 100
26

28

30

32

34

36

38

40

QS

S
to
ch
a
st
ic
su
b
h
a
rm
o
n
ic
so
lu
ti
o
n
s
%

Figure 3.31: Probability of occurrence of the

stochastic 1/3 subharmonic so-

lution for increasing QS.

It can be concluded that for this kind of near-periodic, random excitation, the
resulting solution type does not only depend on the initial condition of the solution,
as is the case for periodic excitation. Additionally, the resulting solution type also
depends on:

� the global stability of the attractors;
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� the bandwidth of the excitation;

� the energy distribution of the stochastic excitations within its frequency band.

3.7 Discussion

The stochastic behaviour of a piece-wise linear system has been studied extensively
in this chapter. Hereby, a wide variety of random excitations was applied. Resuming,
some important conclusions can be drawn:

� the statistical linearization technique fails to provide accurate results. This fail-
ure not only encloses the Gaussian approximation of a non-Gaussian response
process. More important are the nonlinear frequency domain characteristics
that cannot be predicted. Consequently, the 'linear' energy estimate appeared
to be rather inaccurate;

� the frequency-domain information (psd) provides essential information on the
nonlinear behaviour. This knowledge can be used to initiate ideas on the
development of better approximation methods;

� the simultaneous observation of periodic and stochastic response characteris-
tics can be very fruitful with respect to gaining understanding on the stochastic
behaviour of nonlinear systems.



4 Experimental stochastic nonlinear response

phenomena

In chapter 3, many typically nonlinear, stochastic response phenomena were studied
and discussed based on results of numerical simulation. The main purpose of this
chapter is to give the insights gained in chapter 3 experimental backup and to gen-
eralise these insights by studying a second, representative system. The behaviour
of this MDOF, strongly nonlinear beam-impact system will be investigated under
both broad-banded and small-banded, Gaussian excitations. The response of this
system will be studied numerically as well as experimentally [Van de Wouw et al.,
1998; De Kraker et al., 1998]. As in chapter 3, the emphasis lies on frequency do-
main characteristics. Furthermore, the stochastic response characteristics will again
be compared to periodic response characteristics of the same system. It should be
noted that, in this chapter, merely band-limited excitations will be applied. There-
fore, classical integration techniques can be used for all the simulations throughout
this chapter.

4.1 The nonlinear system: a base-excited beam with impact

A base-excited beam system with a nonlinear, elastic stop is investigated. Systems
with elastic stops are typical examples of local (strong) nonlinearities and represent
a wide range of practical, nonlinear, dynamic systems. Examples are gear rattle,

ships colliding against fenders, snubbers in solar panels on satellites, safety stops
in vehicle suspensions and so on. Although the nonlinearity is local, the dynamic
behaviour of the entire system is strongly in
uenced by it.

The nonlinear, dynamic system comprises a linear elastic beam, which is clamped
onto a rigid frame, and an elastic stop, see �gure 4.1. The elastic stop consists of two

half spheres. Figure 4.1 shows that the system is excited by a prescribed, stochastic
displacement y of the rigid frame. The response x is the vertical displacement of
the beam at the point of contact. Firstly, in section 4.1.1, a SDOF model for the
elastic beam will be given. Secondly, in section 4.1.2, a model for the elastic stop
will be presented. Finally, in section 4.1.3, a SDOF model for the total beam-impact
system will be given.

4.1.1 A SDOF model of the elastic beam

The elastic beam is a continuum with an in�nite number of degrees of freedom.
Only transverse vibrations of the beam will be considered. For now, the beam will
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Figure 4.1: The nonlinear, base-excited beam system.

be modelled using one degree of freedom, see �gure 4.2:

m �x+ c _x+ k x = Fc + c _y + k y; (4.1)

where x is the vertical displacement of the beam at contact, y the displacement of
the rigid frame and Fc represents the contact force between the two half spheres.
The parameters m, c and k represent the mass, damping and sti�ness of the SDOF
model, respectively. The model parameters are estimated by means of experiments1

carried out on the linear beam system. The parameters m and k are related to the
lowest eigenfrequency of the linear beam, whereas c represents the modal damping
of the �rst eigenmode of the linear beam.

x

x
y

y

Fc

Fc

l

m

k c

�b, Ab, Eb

Figure 4.2: The linear, stainless steel beam (left) with Young's modulus Eb =

1:9 1011 N/m2, mass-density �b = 8000 kg/m3, cross-section Ab = 58:3 mm2

and length l = 259:4 mm and the SDOF, discrete model (right) with model

parameters m = 37:75 10�3 kg, k = 736:3 N/m and c = 0:16 kg/s.

4.1.2 Modelling the elastic stop

The elastic stop is modelled using a Hertzian contact model [Hertz, 1895; Goldsmith,
1960]. Using this model, the following relationship holds between the contact force Fc
and the relative displacement of the two colliding spheres � = y�x, see appendix D.1:

Fc =
2

3
Er
p
Rr �

1:5 = KH �
1:5 for � � 0: (4.2)

1The experimental system will be discussed in section 4.4.
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In equation (4.2), the reduced Young's modulus Er represents the material properties
of both colliding bodies. Furthermore, the reduced radius of curvature Rr represents
the geometrical properties of the colliding bodies. These parameters are de�ned as

Er =
2

1��21
E1

+
1��22
E2

and Rr =
R1R2

R1 +R2

; (4.3)

where Rj is the principal radius of curvature of body j, Ej is the Young's modulus
of body j and �j the Poisson's ratio of body j. Since the collision phenomenon is
in general quite complex, the following assumptions have to be made to validate
equation (4.2):

� the contact area is small compared to the geometry of the colliding bodies;

� the contact areas are perfectly smooth; so, there is no friction between the
colliding bodies;

� the material is isotropic and linearly elastic; so, no plastic deformation occurs;

� the contact time is long enough to establish a quasi-static state.

Furthermore, it should be noted that equation (4.2) still holds with signi�cant de-
viation from the assumptions [Roozen-Kroon, 1992]. The parameter KH was deter-
mined experimentally (KH = 2:1 108 N/m1:5), see appendix D.3.

The contact model (4.2) can be re�ned by adding a hysteresis damping term,
see Lankarani and Nikravesh [1994], accounting for energy loss during collision. The
inclusion of hysteresis damping alters equation (4.2) to:

Fc = KH �
1:5

"
1 +

3(1� e2)

4

_�

_��

#
for � � 0; (4.4)

in which e is the coe�cient of restitution, a geometry and material dependent mea-
sure for energy dissipation. Moreover, _�� represents the velocity di�erence of the
two colliding bodies at the beginning of the collision. Equation (4.4) is derived
in appendix D.2. The coe�cient of restitution e is also estimated experimentally:
e = 0:5, see appendix D.3. The fact that e di�ers signi�cantly from 1 indicates that
restitution should be added to the model.

4.1.3 The SDOF nonlinear dynamic model

In the previous two subsections, the two components of the beam system, namely,
the beam and the elastic stop, were discussed. The assembled, nonlinear model is
visualised in �gure 4.3 and its SDOF equation of motion becomes

m �� + c _� + k � +KH �(�) �
1:5

"
1 +

3(1� e2)

4

_�

_��

#
= m �y; (4.5)

with

�(�) =

�
0 for � � 0
1 for � > 0

: (4.6)
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Figure 4.3: The SDOF model for the nonlinear beam-impact system.

This model can now be used to simulate (using classical, numerical integration tech-
niques) the nonlinear response � for di�erent excitation forms y. The fact thatKH

p
�

(for an average � level) considerably exceeds k up to a factor of 104 indicates that
the system is highly nonlinear.

4.2 Survey of periodic response characteristics of the SDOF model

In order to enlarge the ability to interpret the stochastic response phenomena, dis-
cussed later on, some periodic response phenomena of the nonlinear beam-impact
system will be presented �rst. Figure 4.4 elucidates the dependency of the maxi-
mum, absolute displacements j� jmax, occurring in the simulated periodic solutions,
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Figure 4.4: Maximum, absolute displacements j � jmax of periodic solutions of the SDOF

beam-impact system.
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on the angular excitation frequency !e of the harmonic excitation. Very important
nonlinear response characteristics can be extracted from �gure 4.4. Firstly, besides
a partly unstable harmonic resonance, subharmonic resonances exist (also with sta-
ble and unstable parts). Secondly, a remarkable feature can be found in the fact
that the maximum absolute values j � jmax of the subharmonic solutions are higher
than those of the harmonic solutions. Moreover, the 1/3 subharmonic resonance is
stronger (in terms of energy) than the 1/2 subharmonic resonance.

4.3 Simulated stochastic nonlinear response phenomena of the SDOF

model

4.3.1 Simulation approach

As mentioned before, in this chapter, Gaussian, band-limited excitations are con-
sidered. Realisations of such random processes are generated using the method

discussed in section 3.5.1.

Numerical integration techniques are used to compute realisations of the response
process � (and thus x). Due to the fact that the excitation process is band-limited,
classical integration techniques can be used to solve the di�erential equation (4.5)
numerically. These realisations are used to estimate the stochastic characteristics
of the response process as was done in chapter 3. A constant step-size integra-
tion scheme was chosen for e�ciency considerations. However, due to the major
di�erence in sti�ness between contact and non-contact situations, the minimal step-
sizes, which stem from stability and convergence considerations, di�er enormously
for these situations. It would be very ine�cient to choose one single constant step
size based on contact situations. Therefore, two di�erent step sizes are used. Con-
sequently, the time of impact has to be determined to avoid entering contact with
the large integration time step. For this purpose, the H�enon method [H�enon, 1982]
is implemented within the integration routine.

The H�enon method

Let us consider the equation of motion of the beam-impact system (4.5) in a state
space formulation (f(�; _�) = [ _� ��]T ):

f(�; _�) =

"
_�

� c

m
_� � k

m
� � KH

m
"(�)�1:5

�
1 + 3(1�e2)

4

_�
_��

�
+ �y

#
: (4.7)

Now, the H�enon method can be used to determine the time of impact. Here, the
method means rearranging equation (4.7) without the nonlinearities in such a way
that � becomes the independent variable, whereas t becomes one of the dependent
variables. The nonlinear part of the system-description then is super
uous, since the
last time interval before impact is observed. This results in the following di�erential
equation:

�
d

d�
(t)

d

d�
( _�)

�
=

"
1
_�

1
_�

�
� c

m
_� � k

m
� + �y

� # : (4.8)
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At the last time step before impact, this equation is integrated until � = 0. This
integration step results in the known variables tcontact, _�contact and the condition
�contact = 0. Then, a switch is made to a small integration step-size in order to solve
equation (4.7), continuing at tcontact.

4.3.2 Simulation results

Broad-band excitation

In this section, the results of simulations with stochastic excitations y are presented.
The target spectrum of the excitation is taken uniformly distributed within a lim-
ited frequency band !band = [!min !max], see �gure 3.15. A 0-1226.6 rad/s band
excitation is applied to the system. This excitation is broad-banded relatively to the
response characteristics depicted in �gure 4.4. In �gure 4.5, the psd of y is shown.
The relative displacement of the two spheres, � = y � x, will be used as a response
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Figure 4.5: Power spectral density of the ex-

citation for !band =[0.0 1226.6]

rad/s.
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Figure 4.6: Probability density function of

the response for !band =[0.0

1226.6] rad/s.

variable in the presentation of the results. The excitation is Gaussian by nature of its
generation. However, as was shown in chapter 3, the response of strongly nonlinear
systems to Gaussian excitations is distinctly non-Gaussian. This is clearly illustrated
by the asymmetric pdf of the response variable �, see �gure 4.6. The probability
density function f(�) demonstrates an extreme asymmetry in the response. This
asymmetry is a nonlinear characteristic of the system due to the elastic stop, see
�gures 4.7 and 4.8. Besides, the fact that the response is non-Gaussian is also in-
dicated by higher-order moments like skewness and kurtosis. The estimates for the
skewness and the kurtosis are 
̂� = �1:01 and �̂� = 3:92, respectively; these values
deviate considerably from values, that characterise a Gaussian response: 
 = 0:0
and � = 3:0. The psd of � is shown in �gure 4.9, which admits three important
observations:

1. S��(!) exhibits multiple resonance peaks;

2. the response signal contains a large amount of energy at low frequencies;
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x(t) for !band =[0.0 1226.6] rad/s.
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Figure 4.8: Part of a realisation of �(t) for

!band =[0.0 1226.6] rad/s.

3. the level of the psd only drops with two decades at ! = 1226:6, where the psd
of the excitation drops with seven decades at the same frequency. So, clearly
a large amount of energy in the response for ! > 1226:6 is caused by energy
in the excitation for ! < 1226:6.

The �rst two response phenomena were also observed in the stochastic response of
the piece-wise linear system investigated in chapter 3. Apparently, these phenomena
have more general value than mere application to one system suggests.
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Figure 4.9: Power spectral density of the response � for !band =[0.0 1226.6] rad/s.

Narrow-band excitation

In analogy with the research presented in section 3.5, three excitations with smaller
bandwidths are applied:
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1. a band-limited excitation with !band = [144:5 270:2] rad/s, that covers the
major part of the harmonic resonance peak in �gure 4.4;

2. a band-limited excitation, with !band = [351:9 477:5] rad/s, that covers the
major part of the 1/2 subharmonic resonance peak in �gure 4.4;

3. a band-limited excitation, with !band = [559:2 684:9] rad/s, that covers the
major part of the 1/3 subharmonic resonance peak in �gure 4.4.

For these excitations the results with respect to S��(!) are depicted in �gure 4.10,
�gure 4.11 and �gure 4.12, respectively. Clearly, a 'stochastic harmonic' response
is illustrated by �gure 4.10. The �gures 4.11 and 4.12 illustrate a 'stochastic 1/2
subharmonic' and a 'stochastic 1/3 subharmonic' e�ect, respectively. Again, the
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Figure 4.10: Power spectral density of the

response for !band = [144.5

270.2] rad/s.
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Figure 4.11: Power spectral density of the

response for !band = [351.9

477.5] rad/s.
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Figure 4.12: Power spectral density of the response for !band = [559:2 684:9] rad/s.
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!band [rad/s] 144:5� 270:2 351:9� 477:5 559:2� 684:9

�̂2
�

[mm2] 0.36 0.88 1.80

Table 4.1: Variance estimates of the response � for di�erent excitations.

similarity between stochastic and periodic response characteristics is evident. We
can distinguish another interesting, nonlinear response characteristic by investigating
the variance estimates �̂2

�
of the response signals, see table 4.1. It should be noted

that the variances of the previously de�ned, narrow-banded excitations are equal.
From table 4.1 it is clear that the stochastic subharmonic resonances are stronger (in
terms of energy) than the stochastic harmonic resonance. Furthermore, the variance
estimate of the stochastic 1/3 subharmonic solution is signi�cantly higher than the
variance estimate of the stochastic 1/2 subharmonic solution. These characteristics
perfectly match with their periodic equivalents, see �gure 4.4.

4.4 The experimental set-up

A wide variety of simulated, nonlinear, stochastic response phenomena was encoun-
tered in chapter 3 and in section 4.3. In section 4.5, experimental results will be
discussed. The experimental set-up, used in these experiments, is presented sche-
matically in �gure 4.13. A uniformly distributed, Gaussian, band-limited excitation
signal is generated numerically using Shinozuka's method [Shinozuka, 1972]. This
signal is sent to a controller, which controls a servovalve using feedback information
from an internal displacement transducer. The servovalve provides the input for
the hydraulic actuator by controlling the oil 
ow of the hydraulic power supply. A
hydraulic service manifold connects the hydraulic power supply and the servovalve.
This service manifold reduces 
uctuations and snapping in the hydraulic lines during
dynamic programs. All measurements are monitored using the data acquisition soft-
ware package DIFA [1992]. Figure 4.14 shows the measurement equipment mounted

3. Servovalve
4. Hydraulic 
5. Hydraulic service
6. Hydraulic actuator

2. Controller

MTS
Controller

1. PC-486/Labview

7. Beam-impact system

3

54
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82

8. DIFA measurement system

    power supply
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�����
�����
�����
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Figure 4.13: The experimental set-up of the beam-impact system.
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Figure 4.14: The measurement equipment mounted on the beam-impact system.

on the beam-impact system. A Linear Variable Di�erential Transformer (LVDT)
measures the displacement of the rigid frame. The displacement and velocity of the
beam, at the point of contact, are measured by a laser interferometer. Furthermore,
the acceleration of the beam is measured by an accelerometer. In addition, a force
transducer is used to measure the force acting on the rigid frame. The rigid frame
displacement measurements are used as input for the simulations described in the
following sections. Consequently, we can compare the results of these simulations to
the experimental results. The speci�cations of the components of the experimental
set-up are discussed in appendix E.

4.5 Experimental results

Several experiments were performed in order to investigate the response phenomena,
observed in the former simulation results. Again, a 0-1256.6 rad/s (broad) band
excitation was applied. The realised excitation spectrum is depicted in �gure 4.15.
In contrast with the signal o�ered to the controller, the power spectral density
of the actual rigid frame displacement is clearly not uniformly distributed within
the speci�ed frequency range. This is due to the fact that the hydraulic actuator
behaves like a �rst-order, low-pass �lter. Therefore, it is indeed necessary to perform
simulations with these rigid frame excitation spectra in order to be able to make
appropriate comparisons between simulations and experiments.

Both the simulated and measured power spectral densities of the response �(t)
are shown in �gure 4.16. The most important response phenomena, such as mul-
tiple resonance peaks and the presence of a large amount of low-frequency energy,
are clearly visible in both the experimental and the simulation results. However,
the non-uniformity of Syy(!) obstructs the observation of the second characteristic.
Figure 4.16 shows that the experimental and numerical results correspond to a large

extent. The experimental resonance peak around 780 rad/s is the second harmonic
resonance of the beam system, which relates to the second eigenmode of the lin-
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Figure 4.15: Power spectral density of the excitation for !band = [0:0 1256:6] rad/s.

ear beam. Of course, this resonance peak is missing in the simulation results as a
consequence of the SDOF modelling approach.

In the experiments two narrow-band excitations were applied:

1. a band-limited excitation, with !band = [144:5 270:2] rad/s, that covers the
major part of the harmonic resonance peak, see �gure 4.17;
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Figure 4.16: Power spectral density of the response for !band = [0:0 1256:6] rad/s.
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2. a band-limited excitation, between !band = [351:9 477:5] rad/s, that covers the
major part of the 1/2 subharmonic resonance peak, see �gure 4.19.

The purpose of the application of these excitations is to �nd out whether the phe-
nomena discussed in section 4.3 also appear in the experiments. The spectra of the
response signals �(t) are depicted in the �gures 4.18 and 4.20. Apart from the
absence of the second harmonic resonance in the simulations, the simulation results
match the experimental results very well. Figure 4.18 clearly con�rms the multiple
frequency property of the nonlinear response experimentally and displays an experi-
mental ,'stochastic harmonic' response. Furthermore, a 'stochastic 1/2 subharmonic'
e�ect is also found in the experiments, see �gure 4.20.

The estimate of the probability density function of the 144.5-270.2 rad/s band
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Figure 4.17: Power spectral density of the

excitation for !band = [144.5

270.2] rad/s.
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Figure 4.18: Power spectral density of the

response for !band = [144.5

270.2] rad/s.
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Figure 4.19: Power spectral density of the

excitation for !band = [351.9

477.5] rad/s.
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Figure 4.21: Probability density function of

the excitation for !band =

[144:5 270:2] rad/s.
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Figure 4.22: Probability density function of

the response for !band =

[144:5 270:2] rad/s.

excitation is depicted in 4.21. Application of a Shapiro-Wilk test on normality on
these excitation data con�rms that these data stem from a Gaussian distribution
with 99 % probability. The probability density function of the response �(t) to
this excitation is shown in the �gure 4.22. In this �gure, the experimental results
are compared to the simulation results. Again these results match very well. This
experimental result clearly displays the fact that the response is non-Gaussian.

4.6 Response phenomena of a MDOF model

In this section, the response of a MDOF model of the beam-impact system will
be investigated. The reason for this extension in modelling is twofold. Firstly, in
section 4.5, it was shown that the response of the experimental system exhibits sig-
ni�cant contributions of higher harmonic resonances. Secondly, in previous research
by Van de Vorst [1996], it was shown that the extension of the model to MDOF can
have a signi�cant e�ect on the periodic response of the system. This e�ect does not
limit itself to the addition of higher harmonics to the response, but also involves the
fact that these higher harmonics have e�ect on the �rst harmonic resonance and its
subharmonics.

4.6.1 A 2DOF model of the beam-impact system

Approximate, spatially discretized models for continuous systems can be derived us-
ing the method of Rayleigh-Ritz [Meirovitch, 1997]. The application of this method
to the elastic beam is discussed in appendix F. In this way, a 4DOF model of the
elastic beam is constructed. However, we are mainly interested in the in
uence of
the second eigenmode of the elastic beam on the response of the MDOF nonlinear
model. Therefore, and for e�ciency reasons, the 4DOF model is reduced to a 2DOF
model using a dynamic reduction method based on the lowest two eigenmodes of
the beam. After adding the elastic stop to this model, the total, nonlinear, 2DOF
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model can be represented by the following di�erential equation:
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�y: (4.9)

Herein, nr are natural coordinates and Mr, Cr, Kr, KHr
and m0r

are de�ned in
appendix F. Furthermore, �1 is the relative displacement of the beam, with respect
to the rigid frame, at the point of contact and _�1 represents the relative velocity at
the same point.

4.6.2 Survey of periodic response of the 2DOF model

Here, the periodic response characteristics of the 2DOFmodel will be discussed. This
is done in order to, �rstly, compare the periodic behaviour of the 2DOF model with
that of the SDOF model and, secondly, to compare it with the stochastic behaviour
of the 2DOF model.

In �gure 4.23, the maximum, absolute displacements j �1 jmax (of the periodic
solutions) are plotted against the angular frequency of the periodic (harmonic) base-
excitation y. These data were obtained using a path-following procedure [Fey, 1992].
It should be noted that this �gure can be compared with �gure 4.4 qualitatively as
well as quantitatively, because the amplitude of the inputs y are identical for both
�gures.

Clearly, harmonic and subharmonic solutions are present. As was the case for
the SDOF model, again, the subharmonic solutions are stronger, in terms of the
'nonlinear amplitude' j�1 jmax, than the harmonic solutions. A striking characteristic
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Figure 4.23: Maximum, absolute displacements j �1 jmax of periodic solutions of the 2DOF

beam-impact system.
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is the fact that both the harmonic and the 1/2 subharmonic resonance peak exhibit
large dents near their resonance frequencies. Since this e�ect is clearly absent in
�gure 4.4, it is most likely caused by the presence of the second degree of freedom
in the model. Note in this respect that the second harmonic resonance frequency
(780 rad/s) lies at four times the frequency at which the �rst harmonic resonance
shows a dent (195 rad/s). Clearly, the inclusion of extra 'modes' in the model does
not merely a�ect the response in the neighbourhood of the resonance frequency
of this 'mode', but also in
uences the response characteristics at lower frequencies
dramatically.

Furthermore, �gure 4.23 is not claimed to be exhausting with respect to ex-
tremely detailed, periodic response characteristics. However, it serves its purpose
within the scope of this research.

4.6.3 Simulated stochastic nonlinear response phenomena of the 2DOF model

Here, stochastic, band-limited, Gaussian excitations will be applied to the 2DOF
model. These excitations correspond to the excitations applied to both the SDOF
model and the experimental system in the sections 4.3.2 and 4.5.

The main goal of the following brief discussion is threefold. Firstly, the modelling
extension to two degrees of freedom is evaluated through comparison of the results of
the 2DOF model to those of the SDOF model. Secondly, common characteristics of

the stochastic and periodic response of the 2DOF model are discussed. Finally, the
simulated stochastic response of the 2DOF model is compared to the experimental
results.

In �gure 4.24 the psd of the response variable �1 of the 2DOF model, in case of a
0-1226.6 rad/s band excitation (as in �gure 4.5), is shown. The contribution of the
second mode of the linear beam to �1 is now apparent around ! = 780 rad/s. This
contribution of the second degree of freedom becomes even more evident when one
observes the psd of the response variable �3 for the same excitation, see �gure 4.25.
Herein, �3 is the displacement of the beam relative to the rigid frame at a horizontal
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Figure 4.24: Power spectral density of �1 for

!band = [0:0 1226:6] rad/s.

0 200 400 600 800 1000 1200 1400 1600 1800
10

−14

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

! [rad/s]

P
o
w
er
sp
ec
tr
a
l
d
en
si
ty
S
�
3
�
3
(!
)
[m
2
s]

Figure 4.25: Power spectral density of �3 for

!band = [0:0 1226:6] rad/s.
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position l=2 on the beam (middle of the beam). The contribution of the second
mode of the linear beam to the response of the nonlinear system appears in a more
dominant way in �gure 4.25, since the second mode of the linear beam contributes
relatively more for the middle of the beam than for the end of the beam.

In the �gures 4.26 and 4.27 estimates for the probability density functions of �1
and �3 are shown for the 0-1226.6 rad/s band excitation, mentioned above. Clearly,
�3 tends towards a Gaussian distribution. From a physical point of view, it is clear
that �3 should not exhibit such an extreme asymmetry as �1, since the beam does
not encounter a contact at the horizontal position l=2. Therefore, �3 can become
positive more easily than �1. From a more general point of view, it is known [Roberts
and Spanos, 1990], that the output (in this case �3) of a linear system (the beam),
in case of a non-Gaussian input (�1), will be closer to Gaussian than the input.
This tendency towards a Gaussian distribution becomes stronger for lightly damped
systems.
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Figure 4.26: Probability density function of

�1 for !band = [0:0 1226:6]
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Figure 4.27: Probability density function of

�3 for !band = [0:0 1226:6]

rad/s.

In �gure 4.28, the power spectral densities of the responses of the experimen-
tal system and the 2DOF model for an 'experimental' 0-1226.6 excitation (see �g-
ure 4.15) are compared. Clearly, the response of the 2DOF model exhibits the
second harmonic resonance at ! = 780 rad/s, which coincides with the experimental
data. This represent an important modelling improvement in comparison to the
SDOF model. In �gure 4.29, the power spectral densities of the responses of the
SDOF model an the 2DOF model for an 'experimental' 144.5-270.2 excitation (see
�gure 4.17) are compared. This �gure shows that the addition of the extra degree of
freedom has a signi�cant e�ect on the stochastic response of the system: this e�ect
does not merely express itself through the second (stochastic) harmonic resonance
peak near 780 rad/s, but also a�ects the response characteristics in lower frequency
ranges. Figure 4.30 shows that particularly this e�ect of the second degree of free-

dom makes the simulation results of the 2DOF model �t the experimental results
better than the SDOF model (see �gure 4.18). The fact that the extension towards
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Figure 4.28: Comparison of the power spectral densities of �1 of the experiment and the

2DOF model for !band = [0.0 1226.6] rad/s.

a 2DOF model a�ects also the response at lower frequencies corresponds to tenden-
cies seen in the periodic response of the 2DOF model, see �gure 4.23. However, for
stochastic excitations the e�ect of the addition of the second degree of freedom does
not seem to have such a dramatic e�ect on the response (at lower frequencies) as for
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Figure 4.29: S�1�1(!) for the SDOF model

and the 2DOF model for

!band = [144:5 270:2] rad/s.
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Figure 4.30: S�1�1(!) for the experiment
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!band = [144:5 270:2] rad/s.
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periodic excitation. Apparently, local e�ects (in terms of frequency) are somehow
averaged for stochastic excitations.

4.7 Discussion

In this chapter the stochastic behaviour of the beam-impact system has been studied
both numerically and experimentally. Summarising, some important conclusions can
be drawn:

� the particularly nonlinear, stochastic response phenomena (speci�cally in the
frequency domain) observed in the piece-wise linear system (chapter 3), were
also observed in the response of the beam-impact system. So, phenomena,
such as 'stochastic harmonic', 'stochastic subharmonic' responses and high-
energy, low-frequency response, have more general value than application to
one system suggested. Moreover, these phenomena were also observed in the
experiments;

� as in chapter 3, it once more proved very fruitful to observe the deterministic
(periodic) and stochastic behaviour of a system simultaneously. For many
stochastic response phenomena periodic counterparts can be found. In this
way, the understanding of the root of these stochastic characteristics is greatly
enhanced;

� another important observation is that the addition of degrees of freedom to
a model can dramatically in
uence the behaviour of the nonlinear system.
This in
uence does not limit itself to the addition of extra harmonic (and
subharmonic) resonances, but also in
uences the behaviour of the system in
the lower frequency ranges. This e�ect has been observed in both the periodic
and the stochastic behaviour of the 2DOF beam-impact model;

� it can be concluded that the extension of the model to two degrees of free-
dom is a signi�cant improvement in modelling. This improvement is twofold.
Firstly, the second harmonic resonance, present in the experiments, is mod-
elled. Secondly, the inclusion of this extra mode in the linear model also a�ects
the behaviour of the nonlinear system for lower frequencies. Consequently, the
results of the 2DOF model are in better agreement with the experiments than
the results of the SDOF model for this lower frequency range.



5 Higher-dimensional linear approximation

5.1 Problem motivation

In the previous two chapters, an extensive study of nonlinear, stochastic response
phenomena has been performed. For that purpose, two di�erent techniques to ap-
proximate nonlinear, stochastic response characteristics were used. Both techniques
- Monte Carlo simulation and statistical linearization - have serious shortcomings.
Firstly, Monte Carlo simulation, using numerical integration techniques, can provide
response information to any desired level of accuracy. However, it is computation-
ally rather ine�cient when reliable estimates of stochastic response statistics are
desired. This becomes even more evident when MDOF systems or a wide variety of
excitations or system parameter settings are to be studied. Secondly, the statistical
linearization technique is computationally very e�cient, since the response statistics
of the linear model can be determined analytically. However, as seen in chapter 3,
the results of this method are generally very inaccurate when strongly nonlinear
system are investigated.

The challenge, in this chapter, is to develop a response approximation method
that can provide more accurate results than the statistical linearization technique,
while exhibiting the e�ciency features of a method using linear models. Such a
linear model should, in contrast to that of the statistical linearization approach,
model the most important, nonlinear, stochastic response phenomena, such as mul-

tiple resonance peaks and high-energy, low-frequency spectral content. Only then,
the model will be able to provide estimates for the variance of the response more
accurately. The extra resonance peaks, that appear in the spectrum of the output
of the nonlinear system, could be modelled as 'modes' in a linear model. To do so,
a suitable, linear model should be of a higher dimension than the original, nonlinear
system.

The method consists of the two essential steps. The �rst step involves a one-o�
simulation, which should be performed on the nonlinear system with a reference
excitation. Herein, the word one-o� refers to the fact that the response has to be
simulated only for this reference excitation. This provides information with respect
to the power spectral density of the response of the nonlinear system for this reference
excitation. The second step involves the construction of a higher-dimensional, linear
model. This model should approximate the power spectral density of the output of
the nonlinear system to the reference excitation accurately.

Now, such a model can be used to approximate the response statistics of the
nonlinear system, when other excitations are used. Here, a white noise process will
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be used as the reference excitation. Consequently, the applicability of the method
is limited to su�ciently broad-banded, non-white excitations: non-white excitations
are excitations with a non-uniform power spectral density. The approximation of
the response statistics of the nonlinear system, now, merely involves the analytical
evaluation of the response statistics of the higher-dimensional, linear model for the
non-white excitations. So, no simulations are needed for the computation of the
response statistics in case of the non-white excitations. The e�ciency of the method
enlarges when a wide variety of non-white excitations need to be studied. Namely,
no computationally expensive simulations have to be performed for the non-white
excited cases and the computational e�ort spent on the white noise excited case
becomes relatively less important. In practice, such a situation may, for example,
be encountered in the design of nonlinear truck suspensions, since these suspensions
are expected to deal with a wide variety of road surfaces, which can be modelled as
(broad-banded) random processes.

The actual construction of the higher-dimensional, linear model consist of two
approximation steps:

� the �rst step is a non-parametric one using the method of spectral factorization
[Papoulis, 1977; Overdijk et al., 1998], which will be described in the next
section. Figure 5.1 expresses that this method can be used to construct a
linear model with frequency response function Hsf (i!) according to

j Hsf (i!) j2=
Sxx(!)

S��(!)
= 2�Sxx(!); (5.1)

where Sxx(!) and S��(!) =
1
2�

are the power spectral densities of the response
of the nonlinear system x and the white noise excitation �, respectively. The
essence of the method of spectral factorization is that it uniquely constructs
the phase of Hsf (i!) under the condition that Hsf (i!) represents a causal,
stable, minimum-phase system;

Spectral

factorization
j Hsf (i!) j2 Hsf (s); s 2 C

Figure 5.1: Schematic representation spectral factorization procedure.

� the second step involves the construction of a parametric model. A higher-
dimensional frequency response function Hhd(i!) can be written in the follow-
ing form:

Hhd(i!) =
b1 + b2 i! + b3(i!)

2 + : : :+ bnb+1(i!)
nb

a1 + a2 i! + a3(i!)2 + : : :+ ana+1(i!)
na
; (5.2)
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with nb � na due to causality. The components of the parameter vector 
 =
[a1; a2; : : : ; ana+1; b1; b2; : : : ; bnb+1]

T are estimated in an optimisation routine
that minimises the di�erence between Hhd(i!) and the data Hsf (i!), acquired
through application of the spectral factorization method, in some sense.

In section 5.2, the method of spectral factorization is described. Herein, two al-
ternative methods for the construction of Hsf (i!) are developed. The method is
applied to construct a model that exhibits approximately the same spectral output
(for a white noise excitation) as the piece-wise linear system (chapter 3) for a spe-
ci�c parameter setting. In section 5.3, the data with respect to Hsf (i!) are used to
estimate the parameters in 
 of the higher-dimensional, linear frequency response
function Hhd(i!): the parametric modelling step. Next, in section 5.4, this model
will be used to approximate the response statistics of the piece-wise linear system
for a wide variety of non-white excitations. Doing so, the quality of both the model
and the method are evaluated. It should be noted that, due to the linear nature
of the model, the asymmetry and non-normality of the response of the piece-wise
linear system can never be predicted. Here, the main goal is to construct a model
that approximates the spectral information and, thus, the variance of the response
accurately. Another restriction of the method is that the constructed model will, in
general, only provide sensible results for one set of system parameters of the origi-
nal, nonlinear system. Therefore, an analytical method to predict the variance of
the response for di�erent parameter settings, based on the knowledge of the vari-
ance for one parameter setting, is proposed in section 5.5. Finally, in section 5.6,
the advantages and disadvantages of the higher-dimensional, linear approximation
approach are discussed.

5.2 Non-parametric modelling: spectral factorization

Spectral factorization is a practical and e�cient tool in non-parametric linear system
identi�cation. The idea of spectral factorization as described in Papoulis [1977] can
be formulated as follows. One can construct the transfer function of a linear, causal,
stable, minimum phase system, given merely its amplitude information.

Two di�erent approaches are presented, resulting in two consistent expressions
for the transfer function. Firstly, an approach using Fourier theory is followed.
Secondly, a new approach using potential theory is presented.

The actual solution to this problem is applicable in several ways. Firstly, one
can use the spectral factorization method as a modelling tool for linear systems. It
can, for example, provide the complex transfer function of a practical, linear system
given some measurement data. Other well-known methods in transfer function esti-
mation are often based on input or output error minimisation (in the least squares
sense). These methods make use of cross-spectra between input and output. The
application of such methods requires simultaneous time series of input and output.
However, situations, in which such data are not available, can easily be encoun-
tered. Fortunately, spectral factorization provides a solution that merely requires

information on the autospectral density functions of input and output. Secondly,
spectral factorization can be used as a design tool to create a linear, stable, causal,
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minimum-phase system, given merely a set of target autospectral density functions
concerning input and output. This idea gives a whole new perspective to the possi-
ble applications of the spectral factorization method. It provides, for example, the
means to design a linear, stable, causal, minimum-phase system that exhibits ap-
proximately the same amplitude of the transfer function as a given linear, non-causal
system. A completely di�erent application, which will be discussed extensively here,
is designing a linear system that provides approximately the same output spectrum
for white noise inputs as a given nonlinear system.

In the next section, the underlying theory of the spectral factorization method is
described. Two di�erent approaches to construct the complex transfer function are
derived and presented. Firstly, an approach based on Fourier theory is presented,
see also Papoulis [1977] and Priestley [1981]. Secondly, a new approach is presented
based on results from potential theory [Overdijk et al., 1998]. In section 5.4, the
method is applied to construct a linear, stable, causal, minimum-phase model for
the piece-wise linear system (3.2), see chapter 3.

5.2.1 Alternative methods for the construction of the transfer function

Let H(s)1, s �C, be the Laplace transform of the impulse response h(t), t �R, of a

causal and stable, (5.3)

linear, time-invariant system. Furthermore, the system satis�es the

minimum phase (5.4)

property, i.e. the inverse system is causal and stable as well. So, a negative real
number � exists such that H(s) is analytic and has no zeros in the domain

G = fs �C j Re(s) > �g : (5.5)

Let us introduce the function

A(!) := H(i!)H�(i!) =j H(i!) j2; ! �R; (5.6)

where H� is the complex conjugate of H . In the following sections we show that the
transfer function H(s) of a system satisfying conditions (5.3) and (5.4) is uniquely
determined by the value of arg(H(0)) and the function A(!) in (5.6) provided that
A(!) satis�es the Paley-Wiener condition

1Z
�1

j lnA(!) j
1 + !2

d! 6=1: (5.7)

We discuss two alternative constructions of H(s), given the function A(!) and
arg(H(0)). Firstly, we describe a construction using Fourier theory and, secondly, a
construction based on two-dimensional potential theory is presented.

1The subscript 'sf' will be omitted here.
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Construction of H(s) using Fourier theory

Consider the function

W (s) = H
0

(s)=H(s); s � G; (5.8)

which is analytic on the domain G, see (5.5), and wherein 0 = d=ds. So for s �G the

integral

V (s) =

sZ
0

W (�) d� (5.9)

is independent of the contour of integration within G from zero to s�G. The function
V (s) is analytic on G and

V
0

(s) =W (s); s � G: (5.10)

It can be easily veri�ed that for the function

Ĥ(s) = H(0)
eV (s)

H(s)
(5.11)

we obtain

Ĥ(0) = 1; Ĥ
0

(s) = 0; s � G: (5.12)

Hence, Ĥ(s) = 1 for s � G and, therefore,

H(s) = eV (s)+lnjH(0)j+i arg(H(0)); s � G: (5.13)

So, an analytic function c(s) on G exists such that

H(s) = ec(s); s � G: (5.14)

The function c(s) is unique modulo 2�i. Furthermore,

A(!) = H(i!)H�(i!) = ec(i!)+c
�(i!) = e2Re(c(i!)); ! �R: (5.15)

Hence,

Re(c(i!)) =
1

2
ln(A(!)); ! �R: (5.16)

In view of (5.14) the problem to be solved can be formulated as follows: Construct
an analytic function c(s) on G satisfying (5.16) and, additionally,

Im(c(0)) = arg(H(0)): (5.17)

We show that c(s) on G is uniquely determined by (5.16) and (5.17) modulo 2�i.
As stated in the introduction, this is done in the present section using Fourier theory.
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Let us transform the complex s-plane into the complex z-plane using the M�obius
transformation

z =
1� s

1 + s
; s =

1� z

1 + z
: (5.18)

The imaginary axis in the s-plane corresponds to the unit circle in the z-plane such
that

s = i! $ z = e�2i arctan(!); ! �R;

z = ei� $ s = �i tan �
2
; �� < � < �: (5.19)

Furthermore, the half plane Re(s) > 0 corresponds to the interior domain j z j< 1
of the unit circle.

We translate the problem described in (5.16) and (5.17) from the s-plane to the
z-plane as follows. Construct a function C(z) of the complex variable z, which is
analytic for j z j< 1, such that

r(�) := Re(C(ei�)) =
1

2
ln

�
A

�
tan

�

2

��
; �� < � < �;

arg(H(0)) = Im(C(1)); (5.20)

see (5.16) and (5.17). The relation between c(s) and C(z) follows from (5.18)
and (5.19):

c(s) = C

�
1� s

1 + s

�
; Re(s) > 0;

C(z) = c

�
1� z

1 + z

�
; j z j< 1;

c(i!) = C
�
e�2i arctan(!)

�
; ! �R; (5.21)

C(ei�) = c

�
�i tan �

2

�
; �� < � < �:

It follows from the Paley-Wiener condition (5.7) that

�Z
��

j r(�) j d� =
1Z

�1

j lnA(!) j
1 + !2

d! 6=1: (5.22)

So, we can write r(�) as a Fourier series:

r(�) =

1X
n=�1

rn e
in�; �� < � < �; (5.23)
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where the Fourier coe�cients rn; n = 0;�1;�2; : : : ; are given by

rn =
1

2�

�Z
��

r(�)e�ni�d� =
1

�

�Z
0

r(�) cos(n�) d�; (5.24)

since r(�) is real and even. Hence,

rn = r�n �R; n = 0;�1;�2; : : : : (5.25)

The function

C(z) = r0 + 2

1X
n=1

rn z
n + i arg(H(0)); j z j< 1; (5.26)

is analytic for j z j< 1 and

Re(C(ei�)) =
1

2

�
C(ei�) + C�(ei�)

�
=

1

2

"
r0 + 2

1X
n=1

rn e
in� + r0 + 2

1X
n=1

r�n e
�in�

#
(5.27)

=

1X
n=�1

rn e
in� = r(�);

Im(C(1)) = arg(H(0)):

So, the function C(z) in (5.26) satis�es (5.20) and, therefore, C(z) is the unique
solution of the problem described in (5.20).

We now summarise the result of this section. Using (5.14), (5.21) and (5.26), we
conclude that

H(s) = exp

 "
r0 + 2

1X
n=1

rn

�
1� s

1 + s

�n
+ i arg(H(0))

#!
; Re(s) > 0: (5.28)

Using (5.19) and (5.28), we obtain

H(i!) = exp

 "
r0 + 2

1X
n=1

rne
�2in arctan(!) + i arg(H(0))

#!
; ! �R: (5.29)

Finally, from (5.20) and (5.24) we get, for n = 0; 1; 2; : : : ,

rn =
1

2�

�Z
0

ln

�
A

�
tan

�

2

��
cos(n�) d�: (5.30)

The numerical calculation of the coe�cients rn can be performed e�ciently using
the Fast-Fourier-Transform (FFT) algorithm.

Resuming, the steps to do are summarised below:
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� �rstly, compute the coe�cients rn using the information on A(!) , relation
(5.30) and the FFT-algorithm;

� secondly, use the information on rn to compute H(i!) through (5.29).

In the following section, a new approach to construct the transfer function is pre-
sented. In this approach, results from potential theory are used in a straightforward
manner. Consequently, the approach will appear to be much more transparent than
the approach using Fourier theory.

Construction of H(s) using methods from potential theory

In this section, we discuss an alternative construction of the transfer function H(s)
starting with the problem formulated in (5.16) and (5.17). To this end, we write

c(s) = c(x + iy) = u(x; y) + iv(x; y); (x; y) �R2; (5.31)

where

u(x; y) = Re(c(s)); v(x; y) = Im(c(s)): (5.32)

So, according to (5.16) and (5.17) we have

u(0; y) =
1

2
ln(A(y)); y �R

v(0; 0) = arg(H(0)):
(5.33)

Since c(s) is analytic for Re(s) > 0, the function u(x; y) is harmonic in the domain

D =
�
(x; y) �R2 j x > 0

	
; (5.34)

i.e. u satis�es the two-dimensional potential (Laplace) equation on D [Schwartz
et al., 1960]. The harmonic function u is given on the boundary of D, i.e. on the
y-axis; see (5.33). Using Green's function, we can solve the Dirichlet problem to
calculate the harmonic function u on D from its values on the boundary of D. From
standard calculations we obtain

u(x; y) = �
1Z

�1

u(0; �)
@Gr

@�
(0; �;x; y) d�; (5.35)

for (x; y) �D. Here, Green's function Gr(�; �;x; y) in the point (�; �), corresponding
to the source point (x; y) � D and vanishing on the boundary of D, is given by

Gr(�; �;x; y) =
1

4�
ln

�
(� � x)2 + (� � y)2

(� + x)2 + (� � y)2

�
; (x; y) � D: (5.36)

From (5.33), (5.35) and (5.36) we get

u(x; y) =
1

2�

1Z
�1

x ln(A(�))

x2 + (� � y)2
d�; (x; y) � D: (5.37)
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It follows from the Paley-Wiener condition (5.7) that the integral in (5.37) converges
for all (x; y) � D. Using the Cauchy-Riemann di�erential equations

@u

@x
=
@v

@y
;
@u

@y
= �@v

@x
(5.38)

to calculate v(x; y) = Im(c(s)) from u(x; y) = Re(c(s)), we obtain

v(x; y) =
1

2�

1Z
�1

(� � y) ln(A(�))

x2 + (� � y)2
d� + �; (x; y) � D; (5.39)

where the value of the constant � follows from (5.33), i.e.

� = arg(H(0)): (5.40)

So, we conclude that c(s) can be expressed as

c(s) = c(x + iy) =
1

2�

1Z
�1

(x+ i(� � y)) ln(A(�))

x2 + (� � y)2
d� + i arg(H(0)): (5.41)

By elementary calculations the above expression can be put in the form:

c(s) = c(x + iy) =
1

2�

1Z
�1

ln(A(x� + y))

1 + �2
d� +

+
i

2�

1Z
�1

�

x2 + �2
ln

�
A(y + �)

A(y � �)

�
d�

+ i arg(H(0)); (x; y) � D:

(5.42)

From (5.14) and (5.42) we conclude

H(i!) = ec(i!) =

=
p
A(!) exp

0
@ i

2�

1Z
0

1

�
ln

�
A(! + �)

A(! � �)

�
d� + i arg(H(0))

1
A ;

(5.43)

where ! �R.
When this approach is used, the information on A(!) has to be used in rela-

tion (5.43) in order to compute data concerning frequency response function H(i!).

Numerical aspects of the alternative methods in spectral factorization

The fact that, in practice, the relations (5.29) and (5.43) will be evaluated for dis-
crete values of ! is a common characteristic of the two approaches discussed above.
The application of the methods requires information on A(!) in (5.30) and (5.43).
Clearly, for each discrete value of !, information on A(!) is needed for ! 2 [01>.
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It appears that the information on A(!) for large values of ! is important. How-
ever, in practice, only amplitude information up to a certain �nite frequency will be
available. Consequently, if information on A(!) for higher frequencies is needed for
the accurate evaluation of the relations (5.30) and (5.43), one could 'create' extra
data for A(!) by extending these data with a certain order. This order should be
determined from the data for the highest frequencies available.

For the approach based on Fourier theory, the integral in (5.30) is evaluated
through application of the Fast Fourier Transform algorithm. In the approach based
on potential theory, the integral in (5.43) also has to evaluated numerically. Some
aspects concerning the e�cient, numerical evaluation of this integral are discussed
in appendix G. Both approaches were applied to data on A(!) descending from
known, linear systems. In such a way, the accuracy and e�ciency of the alternative
spectral factorization methods could be compared. These tests showed that, in
general, the approach based on potential theory was computationally more e�cient
when comparing equally accurate results of the method based on Fourier theory.
Due to its computational advantages and its theoretical transparency the approach
based on potential theory deserves preference.

5.2.2 Application to the piece-wise linear system

In this section, the spectral factorization method is applied to construct a linear,
causal, stable, minimum-phase model for the the piece-wise linear system (3.2),
for � = 6:41 and � = 0:0142. Therefore, a one-o� simulation is performed with
a white noise process � with S��(!) = 1

2�
. This results in data concerning the

power spectral density of the response Sxx(!). This simulation is performed using

the numerical integration techniques for stochastic di�erential equations, discussed
in chapter 2. The quotient Sxx(!)=S��(!) = 2�Sxx(!), see �gure 5.2, represents
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Figure 5.2: Simulated input data for the spectral factorization routine.
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the input data for the spectral factorization routine. Namely, this quotient equals
j Hsf (i!) j2. Note that the multiple resonance peaks are indicated by Pj ; j =
1; 2; 3; 4, whereas P0 indicates the high-energy, low-frequency spectral component.
It should be noted that the alternative methods in spectral factorization, resulting
in expressions (5.29) and (5.43), provide the same results. Here, (5.43) is used,
because it is computationally more e�cient than (5.29) (in the numerical sense).
Application of relation (5.43) results in data concerning Hsf (i!) ensuring that it is
causal, stable and minimum-phase, see �gure 5.3. Herein, arg(H(0)) = 0 is used,
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Figure 5.3: Nyquist plot of Hsf (i!).
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Figure 5.4: Zoomed view of the Nyquist plot

of Hsf (i!).

since a real model is desired. The integral in (5.43) is evaluated numerically for
discrete values of !: ! = [!1; : : : ; !m]

T . In �gure 5.3, the low-frequency component
P0 and the loops representing the �rst and second resonance peak P1 and P2 are
clearly visible. Figure 5.4 shows a zoomed view of �gure 5.3 in order to display
the re
ection the higher resonances P2 and P3 in Sxx(!) on Hsf (i!). Note that
the identi�ers Pj ; j = 0; 1; 2; 3 in the �gures 5.3 and 5.4 correspond with those in
�gure 5.2. It should be noted that the amplitude data of this frequency response
function exactly matches the data in �gure 5.2, see equation (5.43).

Now, we have complex data concerning concerning the frequency response func-
tion of a linear, stable, causal, minimum-phase model, that exhibits approximately
the same spectral output for white noise excitation as the piece-wise linear system
(for � = 6:41 and � = 0:0142). The accuracy of Hsf (i!) is only limited by, �rstly,

the statistical accuracy of the simulated power spectral density Sxx(!) and, sec-
ondly, the accuracy of the numerical evaluation of the integral in (5.43). Here, the
statistical accuracy of the one-o� simulation is dominating the accuracy of Hsf (i!).
The 95 % con�dence intervals of Sxx(!) lie at 2.5 % from the power spectral density
estimate.

5.3 Building a parametric model

The next step towards the construction of an analytical, higher-dimensional, linear
model is the estimation of the parameters aj and bk (j = 1; 2; : : : ; na + 1, k =
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1; 2; : : : ; nb + 1) in a parametric model Hhd(s) of the form:

Hhd(s) =
b1 + b2 s+ b3s

2 + : : :+ bnb+1s
nb

a1 + a2 s+ a3s2 + : : :+ ana+1s
na
; s 2 C: (5.44)

Hereto, a target function O(
), which measures the quality of a parameter estimate

 = [a1; : : : ; ana+1; b1; : : : ; bnb+1]

T , has to be de�ned. Here, a least squares estimate
form for O(
) is chosen:

O(
) =
1

2

"
mX
l=1

q1;l (j Hhd(i!l)�Hsf (i!l) j)2

+q2 2�

1Z
�1

�
j Hhd(i!) j2 � j Hhd(i!) j2

�
d!

3
5 :

(5.45)

Herein, besides the di�erence between Hhd(i!) and Hsf (i!), the di�erence in out-
put variance for a white noise input is incorporated in the weighted target function
(with weighting factors q1;l and q2). Note that also a weighting over the frequency
is incorporated in order to ensure accurate modelling of the higher resonance peaks,
which occur at a signi�cantly lower energy level. In order to give the model Hhd(i!)
any validity, m, the number of data points, should be much greater than na+nb+1,
the number of parameters to be estimated. A Gauss-Newton method [Gill et al.,
1981] is used to �nd an optimum for the parameters 
 of Hhd(s). Before we apply
these optimisation tools to �nd optimal parameters aj and bk (j = 1; 2; : : : ; ana+1
and k = 1; 2; : : : bnb+1), which �t Hhd(i!) to Hsf (i!), certain restrictions have to be
imposed on these parameters. These restrictions are related to the fact that Hhd(s)
should be a stable and minimum-phase transfer function, as is Hsf (s). Firstly,
the stability condition implies that the poles of Hhd(s) lie in the left half of the
complex plane (Im(s) < 0), which imposes a restriction on the parameters aj ,
j = 1; 2; : : : ; na + 1. Secondly, the minimum-phase condition implies that the zeros
of Hhd(s) lie in the left half of the complex plane, which imposes a restriction on
the parameters bk, k = 1; 2; : : : ; nb + 1. The optimisation procedure was executed
for di�erent orders na and nb (under the restriction that nb � na) of the numer-
ator polynomial and the denominator polynomial, respectively. In choosing values
for na and nb it was regarded that the linear model should approximate four reso-
nance peaks (P1 to P4) and and the low-frequency component (P0), see �gure 5.2.
Hereto, na should be at least 9. Of course, the maximum values for na and nb are
taken limited to 20, because very high values for na and nb cause a unacceptable
increase in optimisation complexity and cannot be expected to necessarily improve
the resulting model. From the limited set of values for na and nb, the best opti-
mum was selected, which was attained using na = 11 and nb = 9. Clearly, Hhd(s)
represents a system of a rather high dimension. The fact that 21 parameters have
to be estimated makes the actual optimisation quite complex. The corresponding
Hhd(i!) is compared to Hsf (i!) in the �gures 5.5 and 5.6. These �gures show that

Hhd(i!) describes Hsf (i!) very well. Even the higher resonances are modelled accu-
rately. Consequently, Hhd(i!) represents a linear, causal, stable, higher-dimensional,
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minimum-phase system, whose autospectral density approximates that of the piece-
wise linear system (� = 6:41 and � = 0:0142) for the white noise input. In the next
section, this model will be used to approximate the stochastic response characteris-
tics of the piece-wise linear system for a wide variety of non-white excitations.

5.4 Application to the piece-wise linear system

Consider non-white excitations d, that can be de�ned as �ltered white noise pro-
cesses. Here, a second-order �lter will be used. Consequently, the �lter output
spectrum Sdd(!) can be written as

Sdd(!) =
S��(!)

(!2
f
� !2)2 + (2�f!f!)2

; (5.46)

where !f and �f are parameters of the second-order �lter and S��(!) is the white
noise input spectrum. By varying !f and �f , di�erent non-white excitations can be
created. Note that the �lter represents a linear system; so, the non-white excita-
tion still is a zero-mean, Gaussian process. Note that in practice these non-white
excitations are known and do not have to be modelled as a �ltered white noise
processes.

For the piece-wise linear system the magnitude of the excitation in
uences its
response in a purely linear fashion [Shaw and Holmes, 1983]. Therefore, one and
the same higher-dimensional, linear model can be applied to excitations with signif-
icantly di�ering energy levels.

For !f = 2!nl and �f = 0:5, the the power spectral density of the non-white
excitation and the estimate for the psd of the response are shown in the �gures 5.7
and 5.8, respectively. It can be concluded that the higher-dimensional model de-
scribes the nonlinear phenomena in the frequency domain more accurately than
the statistical linearization technique. In �gure 5.9, the absolute value of the rel-
ative error of the estimate of the variance of the response (relative to the simula-
tion results) is depicted for varying !f . Parameter �f is �xed at 0.5 and !nl =
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2
p
1 + �=(1 +

p
1 + � is the harmonic resonance frequency of the piece-wise linear

system, where � = 6:41 is the sti�ness of the one-sided spring. Herein, the results
of the higher-dimensional model are also compared to those obtained through appli-
cation of the statistical linearization technique. Furthermore, the 95 % con�dence
interval of the simulations is incorporated in this �gure. It should be noted these
simulations are performed using the integration techniques discussed in chapter 2.
Clearly, the higher-dimensional model provides better results than the statistical lin-
earization technique. Moreover, the accuracy of the results of the higher-dimensional
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model lies for the greater part within the con�dence limits of the simulations. In
the �gures 5.10, 5.11 and 5.12, some results for �f = 0:25 are depicted. Note that
a lower value for �f indicates a more narrow-banded excitation (for the same !f ).
For these excitations the higher-dimensional model again provides more accurate

results than the statistical linearization technique. For �f = 0:1 some results are
displayed in the �gures 5.13, 5.14 and 5.15. Note that for �f = 0:1 the assumption
of broad-bandedness of the excitation is clearly violated. Consequently, the results
of the higher-dimensional model will be less accurate than for higher values of �f .
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However, �gure 5.14 shows that the higher-dimensional model still provides quite
accurate information with respect to the spectral energy distribution of the response.

For all the values of �f , the error on the variance estimates of the higher-
dimensional model (and the statistical linearization procedure) are, in general, mark-
edly higher for !f = !nl and !f = 2!nl than for other values of !f . This can be
explained by the fact that for !f = !nl and !f = 2!nl the non-white excitations
are concentrated exactly in the frequency area of the harmonic and subharmonic
resonances of the piece-wise linear system, respectively. Typically, nonlinear en-
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ergy shifts (in the frequency domain) occur in these resonances. The e�ect of this
nonlinear phenomenon on the variance of the response is di�cult to model linearly.

Furthermore, it should be noted that the statistical linearization provides esti-
mates for the variance that are generally too low, as was the case in chapter 3.

5.5 System parameter variation

For general, nonlinear, dynamic systems the higher-dimensional linear model is only
valid for the system parameter setting for which is was designed. As mentioned be-
fore, the magnitude of the excitation in
uences the response of the piece-wise linear
system in a purely linear fashion [Shaw and Holmes, 1983]. Therefore, one and the
same higher-dimensional, linear model can be applied for excitations with signi�-
cantly di�ering energy levels. However, in general this can lead to very inaccurate
results.

In this section, a method is proposed that can predict the variance of the response
for a range of parameter settings of a nonlinear system given an accurate estimate of
the variance of the response for one speci�c parameter setting. So, as was the case
for the construction of the higher-dimensional linear model, a one-o� simulation will
be the starting point.

Here, the method will be illustrated through application to the Du�ng sys-
tem (3.19). As in the statistical linearization approach, a replacing linear system
can be de�ned:

�x+ 2� _x+ �1 x = �: (5.47)

As a consequence of the fact that the nonlinearity of the Du�ng system is a sym-
metric one, the mean of the response will be zero. We can de�ne an error, that
re
ects the di�erence between the Du�ng system and the linear model (5.47):

"lin = (x+ �D x3)� �1x: (5.48)

Minimising Ef"2
lin
g with respect to �1 gives

�1 �
�
1 + 3�DEfx2g

�
= 0: (5.49)

A second equation can be derived from energy considerations:

Efx2g � 1

4��1
= 0: (5.50)

The equations (5.49) and (5.50) determine the statistical linearization result for the
Du�ng system and can be written as

g
�
Efx2g; �1; �D

�
=

�
�1 �

�
1 + 3�DEfx2g

�
Efx2g � 1

4��1

�
= 0; (5.51)

in which 0 is a column with zeros. Assume that the one-o� simulation and the statis-
tical linearization procedure are performed for �D = �s

D
and that, thus, Efx2g j�s

D
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and �1 j�s
D
are known. Then, estimates for Efx2g and �1 for other values of �D can

be estimated using

Efx2g j�new
D

= Efx2g j
�old
D

+
@Efx2g
@�D

j
�old
D

��D

�1 j�new
D

= �1 j�old
D

+
@�1

@�D
j�old

D

��D ; (5.52)

in which estimates for @Efx
2
g

@�D
j�old

D

and @�1

@�D
j�old

D

are determined from the, in this
case linear, algebraic equations

dg

d�D
(
@Efx2g
@�D

j�old
D

;
@�1

@�D
j�old

D

; Efx2g j�old
D

; �1 j�old
D

; �oldD ) =

=

2
664

@�1

@�D
j�old

D

�3Efx2g j�old
D

�3�old
D

@Efx
2
g

@�D
j�old

D

@Efx
2
g

@�D
j�old

D

+ @�1

@�D
j�old

D

1
4�(�1j

�old

D

)2

3
775 = 0:

(5.53)

In order to follow the path of the true solution with respect to the variance of
the response as accurate as possible, the steps ��D should be taken small: here
��d = 0:01 was used.

This procedure (termed path-followed statistical linearization) was applied to the
Du�ng system with a starting value �D = 4. The results are shown in �gure 5.16.
This �gure shows that the procedure, described above, provides very accurate results.
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Figure 5.16: Estimates of the variance of the response for varying �D and � = 0:003.
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5.6 Discussion

In section 5.2.2, it was shown that the higher-dimensional approximation approach
can provide more accurate results than statistical linearization. This is speci�cally
a direct consequence of the fact that nonlinear frequency domain phenomena, such
as multiple resonances and high-energy, low-frequency spectral content, are approx-
imated in the higher-dimensional approach. Of course, this results in enhanced
variance estimates.

It should be noted, however, that these phenomena are approximated using a
linear model. Such a linear model cannot model energy-shifts in the frequency
domain, which are characteristic for a nonlinear system and cause the nonlinear
phenomena mentioned above. Examples of such energy-shifting can be found in
harmonic and subharmonic solutions and the high-energy, low-frequency spectral
content. Thus, these phenomena are approximated in a rather arti�cial way; namely
by building a higher-order model which approximates the above phenomena by linear
resonances (modes).

Furthermore, it should be stated once more that application of the higher-
dimensional approximation approach should be justi�ed (in terms of computational
e�ciency) by the fact that a wide range of excitations are to be studied. Only then
the computational e�ort spent on the one-o� simulation, needed for the construction
of the model, can become insigni�cant in comparison with the situation, in which
the responses to all the excitations are evaluated through simulation.

In order to overcome some of the disadvantages of this higher-dimensional ap-
proximation approach, in the next chapter the leap towards nonlinear approximation
is taken.





6 Nonlinear approximation using �nite-order

Volterra systems

6.1 Introduction

In chapter 5, a linear, higher-dimensional approximation technique was developed.
In this technique, the stochastic, nonlinear response phenomena in the frequency
domain are approximated in a linear and, thus, rather arti�cial way. These response
phenomena can be approximated in a more natural way using nonlinear approxi-
mation. Moreover, the linear, higher-dimensional approximation technique exhibits
another disadvantage; a simulation with a reference excitation is needed to construct
the linear model. This model can be used to approximate the response statistics of
the original, nonlinear system for other stochastic excitations. The computational
e�ciency of the method is, therefore, merely guaranteed when the response to many
of such excitations is to be investigated. So, it is desirable to develop a method that,
�rstly, incorporates truly nonlinear approximation and, secondly, is also computa-
tional e�cient when the application of only a few excitations need to be studied.

In order to tackle these problems, in this chapter, a technique based on nonlin-
ear approximation is developed and applied to the piece-wise linear system. Herein,
speci�c, nonlinear models will be used to approximate the response statistics of the
original, nonlinear system. Of course, the computation of the response statistics

for such a nonlinear model should be far more e�cient than that for the original,
nonlinear system. Therefore, �nite-order Volterra systems will be used as model
form. Finite-order Volterra systems are systems with polynomial nonlinearities. A
nonlinear approximation technique using polynomial nonlinearities can be seen as
a natural extension of linearization. Besides the fact that the replacement of the
original system by a �nite-order Volterra model gives us the advantage of computa-
tional e�ciency, the gradual extension of the replacing models from linear towards
polynomial will enhance our understanding of the nonlinear response phenomena of
the original system.

A brief description of the basic ideas behind Volterra theory is described in sec-
tion 6.2. In section 6.3, a technique called bilinearization (or Carleman linearization)
is used to construct a �nite-order Volterra model. In section 6.4, a statistical bilin-
earization technique is proposed and applied to the piece-wise linear system (3.2).
Herein, the parameters of the Volterra model are determined in such a way that the
model approximates the original, nonlinear system optimally in a statistical sense. In
section 6.5, some results of the application of the statistical bilinearization technique
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to the piece-wise linear system are discussed.

6.2 Volterra systems

In Volterra [1959] the following relation between the input u(�); � 2 [�1;1] and
the output y(t) of a (time-invariant) Volterra system was �rst considered:

y(t) =

1Z
�1

h1(�1) u(t� �1) d�1 +

+

1Z
�1

1Z
�1

h2(�1; �2) u(t� �1) u(t� �2) d�1 d�2

+

1Z
�1

: : :

1Z
�1

hk(�1; : : : ; �k) u(t� �1) : : : u(t� �k) d�1 : : : d�k + : : : ;

(6.1)

where k = 1; 2; : : : and u(�1) = 0. Herein, hk(�1; �2; : : : ; �k); k = 1; 2; : : : is called
the kth order Volterra kernel with hk(�1;�1; : : : ;�1) = 0; k = 1; 2; : : : . Notice
that an expression, such as u(�1) = 0, means that the input u(�) is zero for �
su�ciently small. The �rst term in (6.1) corresponds to the well-known convolution
representation of linear systems. The subsequent terms in (6.1), for k = 2; 3; : : : ,
represent natural extensions of the linear system using polynomial, nonlinear terms.
In this chapter, a polynomial system (or truncated Volterra system) of order p will
be used as nonlinear model form:

y(t) =

pX
k=1

1Z
�1

hk(�1; : : : ; �k) u(t� �1) : : : u(t� �k) d�1 : : : d�k; (6.2)

where p is the order of the polynomial system. Note that the polynomial nature of
this representation enters through the input. The main issue in the characterisation
of such system is the determination of hk(�1; �2; : : : ; �k); k = 1; 2; : : : ; p.

6.3 Bilinearization

In this section, a method called bilinearization or Carleman linearization [Rugh,
1981] is described. The idea is that an a�ne, nonlinear system with analytic non-
linearities can be approximated by a system with bilinear state equation of the form
[Lesiak and Krener, 1978]:

_x(t) = A(t) x(t) +D(t) x(t) u(t) + e(t) u(t)

y(t) = C(t) x(t); t � 0; x(0) = 0;
(6.3)

where x(t) is an Nb-dimensional column-vector with state variables, while u(t) and
y(t) are scalar inputs and outputs, respectively. Furthermore, A(t) is an Nb � Nb
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matrix, D(t) is an Nb-dimensional column-vector, e(t) is an Nb-dimensional column-
vector and C(t) is anNb-dimensional row-vector. This is called an a�ne system since
the input appears linearly in the state equations. Here, it is assumed that x(0) = 0.
Moreover, it is important to note that analytical expressions for the Volterra kernels
of such a bilinear system are available [Bruni et al., 1971]. One can truncate the
resulting Volterra system at a speci�c order to obtain a �nite-order Volterra system
description as in (6.2). This system description can then be used to approximate
the response statistics of the bilinear system and, thus, to approximate the response
statistics of the original, nonlinear system.

6.3.1 The bilinearization technique

Here, the bilinearization technique will be described brie
y. Consider an a�ne,
nonlinear system with the following state equations:

_x(t) = a(t; x(t)) + b(t; x(t)) u(t)

y(t) = c(t) x(t); t � 0; x(0) = 0; a(t; 0) = 0 8 t;
(6.4)

where again x(t) is anN -dimensional state column-vector, while u(t) is a scalar input
and y(t) a scalar output. Furthermore, a(t; x(t)) and b(t; x(t)) are time-dependent
vector�elds on RN and c(t) is an N -dimensional row-vector. It is assumed that a, b
and c are analytic functions of x and continuous in t.

In Rugh [1981], it is stated that, when a solution of the state equation (6.4) exists
for u(t) = 0 (t 2 [0; T ]) and initial condition x(0) = x0, there is a Volterra system
representation for the state equation that converges on [0; T ] when j u(t) j< � for
some su�ciently small � > 0. So, this means that the convergence of the Volterra
representation is only guaranteed on a limited time interval and for an input signal
which is su�ciently small. We, now, aim to determine a polynomial input-output
expression for (6.4) up to order p, as in (6.2), which approximates (6.4) su�ciently
close. To do so, �rst, bilinear state equations are constructed, which have the same
Volterra kernels (up to order p) as the system in (6.4). Next, the input-output
relation for that bilinear system can be determined. Then, an approximation for
the input-output relation of (6.4) is available and can be used to approximate the
response statistics of this system.

The right-hand side of (6.4) can be replaced by a power series representation:

a(t; x(t)) = A1(t) x(t) +A2(t) x
(2)(t) + : : :+A

p
(t) x(p)(t) + : : :

b(t; x(t)) = B0(t) +B1(t) x(t) + : : :+Bp�1(t) x
(p�1)(t) + : : : ;

(6.5)

where the Kronecker product notation is used:

x(2)(t) = x(t)
 x(t): (6.6)

For matrices P and Q with dimensions np � mp and nq � mq , respectively, the
Kronecker product is de�ned as

P 
Q =

2
64
P11Q : : : P1mp

Q
...

...
...

Pnp1Q : : : Pnpmp
Q

3
75 : (6.7)
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Note that x(p)(t) is anNp-dimensional column-vector and A
p
(t) is anN�Np matrix.

Using (6.5), (6.4) can be rewritten as

_x(t) =

pX
k=1

A
k
(t) x(k)(t) +B

k
(t) x(k)(t) u(t) + : : :

y(t) = c(t) x(t); x(k)(0) = 0; t � 0:

(6.8)

In order to determine the �rst p kernels corresponding to (6.8), di�erential equations
are developed for x(j)(t) [Rugh, 1981]:

d

dt
[x(j)(t)] =

p�j+1X
k=1

A
j;k
(t) x(k+j�1)(t) +

p�jX
k=0

B
j;k
(t) x(k+j�1)(t) + : : : ; (6.9)

with x(j)(0) = 0 (for j = 1; : : : ; p), A1;k = A
k
and, for j > 1,

A
j;k
(t) =A

k
(t)
 I

N

 � � � 
 I

N
+ I

N

A

k
(t)
 : : :
 I

N
+

: : :+ I
N

 : : :
 I

N

A

k
(t):

(6.10)

It should be noted that there are j � 1 Kronecker products in each term and j

terms. The notation for Bj;k(t) is likewise. Note that IN represents an N � N

identity matrix. Now, by setting

x
(t) =

2
6664
x(1)(t)

x(2)(t)
...

x(p)(t)

3
7775 ; (6.11)

(6.9) can be written as a bilinear state equation (plus higher-order terms):

d

dt
x
(t) =

2
666664

A11 A12 : : : A1p

0 A21 : : : A2;p�1

0 0 : : : A3;p�1

...
...

...
...

0 0 : : : A
p1

3
777775x


(t)

+

2
666664

B11 B12 : : : B1;p�1 0

B20 B21 : : : B2;p�2 0

0 B30 : : : B3;p�3 0
...

...
...

...
0 0 : : : B

p0 0

3
777775x


(t)u(t) +

2
666664

B10

0
0
...
0

3
777775 u(t) + : : : ;

y(t) =
�
c(t) 0 : : : 0

�
x
(t) + : : : ; x
(0) = 0;

(6.12)
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where x
(t) is an Nb-dimensional column-vector of state variables (Nb =
P
p

l=1N
l).

This equation is called a Carleman linearization or the bilinearization of the linear-
analytic state equation (6.4).

6.3.2 Input-output relation for bilinear state equations

Here, the Volterra representation of (6.12) will be described. Since the Volterra
representation of (6.12) coincides with that of (6.4) up to order p, we can now
use (6.12) to evaluate the input-output behaviour of (6.4). Note that (6.12) is a
bilinear system as in (6.3).

It can be derived that the input-output relation of the bilinear state equa-
tions (6.3) can be written as [Rugh, 1981]:

y(t) =

1X
k=1

tZ
0

�1Z
0

: : :

�k�1Z
0

C(t) �(t; �1) D(�1) �(�1; �2) D(�2)

: : : D(�k�1) �(�k�1; �k) e(�k) u(�1) : : : u(�k) d�k : : : d�1;

(6.13)

where �(t; �) is the transition matrix of A(t) de�ned by the Peano-Baker series:

�(t; �) = I +

tZ
�

A(�1) d�1 +

tZ
�

A(�1)

�1Z
�

A(�2) d�2 d�1

+ : : :+

tZ
�

A(�1)

�1Z
�

A(�2) : : :

�k�1Z
�

A(�k) d�k : : : d�1 + : : : :

(6.14)

Note that in (6.13) causality is implied through the integration limits of the multiple
integrals: for each t, y(t) merely depends on fu(�); � 2 [�1; t]g. We once more
assume that x(0) = 0 in equation (6.13). As a consequence, the contribution with
respect to the initial condition x(0) can be omitted in (6.13). For a stationary system
A(t) is a constant matrix. Consequently, it can be shown that in that case

�(t1; t2) := �(t1 � t2) = eA(t1�t2): (6.15)

Combining (6.13), (6.12), (6.3) and (6.2) gives the Volterra kernels of the bilinear
system (6.12). The kernels up to order p also represent the kernels of (6.4).

6.4 Statistical bilinearization: application to the piece-wise linear sys-

tem

In this section, the bilinearization technique will be used within a technique that
will be termed statistical bilinearization. The statistical bilinearization technique
will be applied to the piece-wise linear system (3.2). Hereto, this system will be
approximated using polynomial nonlinearities. Here, only terms up to order two
(p = 2) will be used. The replacing system can, therefore, be written as

�x+ 2� _x+ �1 xE + �2 x
2
E � �2 Efx2Eg = d; (6.16)
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where xE = x � Efxg and �xE = �x, _xE = _x due to stationarity. Equivalent to
the procedure followed in statistical linearization, see section 3.3, an error has to
be de�ned. This error embodies the di�erence between the piece-wise linear system
and the quadratic system (6.16):

"bilin = (x + � �(x) x)� �1 xE � �2 x
2
E + �2 Efx2Eg; (6.17)

for given �1 and �2. Subsequently, our goal is to minimise Ef"2biling with respect to
�1 and �2. This results in the following equations:

�1 =
EfxE(x+ � �(x) x)g

�2x
; (6.18)

�2 =
Efx2

E
(x+ � �(x) x)g �Efx+ � �(x) xg�2

x

Efx4
E
g � �4

x

: (6.19)

At this point we have four unknown quantities (�x, �x, �1 and �2) and two equations.
A third equation can be found through the averaging of equation (3.1):

Efx+ � �(x) xg = 0: (6.20)

In order to �nd a necessary fourth equation to solve for the unknowns the biline-
arization procedure will be applied. This will yield an expression for �2x for given
values of �1 and �2.

By choosing a replacing Volterra system as in (6.16), the power series repre-
sentation of the original nonlinear system as required in (6.5) is readily de�ned.
Consequently, the matrices in equation (6.12) can be determined. Since this equa-
tion is a bilinear state equation of the form of (6.3), the matrices of (6.3) are also
known:

A =

2
6666664

0 1 0 0 0 0
��1 �2� ��2 0 0 0

0 0 0 1 1 0
0 0 ��1 �2� 0 1
0 0 ��1 0 �2� 1
0 0 0 ��1 ��1 �4�

3
7777775
; (6.21)

D =

2
6666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 2 0 0 0 0

3
7777775
; e =

2
6666664

0
1
0
0
0
0

3
7777775
; C =

2
6666664

1
0
0
0
0
0

3
7777775

T

: (6.22)

Next, (6.13) can be used to compute the kernels of this bilinear system. However,
�rst �(t� �) = eA(t��) is computed. This can be done using the relation

eAt = L�1
n
(sIN �A)

�1
o
; (6.23)
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where L is the Laplace operator and s 2 C. This expression is very lengthy due to
the fact that it is a function of the parameters �, �1 and �2. Therefore, it is not given
here and the elements of �(t; �) will be denoted by �jk(t� �); j; k = 1; : : : ; 6. Now,
the Volterra kernels of the bilinear system can be evaluated. Firstly, the �rst-order
(linear) kernel can be determined from (6.13):

h1(t; �1) = c �(t; �1)e = �12(t; �1): (6.24)

Due to the stationarity of A(t), h1(t; �1) can be written as h1(t� �1) = �12(t� �1).
Secondly, the observation of (6.13) admits the determination of the second-order
kernel:

h2tri(t; �1; �2) = [�12(�1 � �2) (�14(t� �1) + �15(t� �1))

+2 �16(t� �1) �22(�1 � �2)] �(t� �1) �(�1 � �2);
(6.25)

where

�(t) =

�
1 if t � 0
0 if t < 0

: (6.26)

The presence of the � terms in (6.25) implies that t > �1 > �2, which means that
h2tri is a triangular kernel, indicated by the subscript tri. The fact that h2tri is a
triangular kernel follows from the integration limits in (6.13). Since h2tri(t; �1; �2) =
h2tri(t +�t; �1 +�t; �2 + �t), h2tri is a stationary kernel. In case of stationarity,
the kernel h2tri can be written as

h2tri(�1; �2) :=h2tri(0;��1;��2) = [�12(�2 � �1) (�14(�1) + �15(�1))

+2�16(�1) �22(�2 � �1)] �(�1) �(�2 � �1):
(6.27)

At this point, we have information on the �rst-order and second-order Volterra
kernels of the bilinear system. It should be noted that a second-order Volterra

system is entirely determined through its �rst-order and second-order kernels.

This information can be used to compute the variance of the output of the bilinear
system �2

y
(= �2

x
when c = [1 0]) using

�2
y
=

1Z
�1

Syy(!) d!: (6.28)

For a second-order Volterra system, such as (6.16), the power spectral density Syy(!)
obeys

Syy(!) = j H1(i!) j2 Sdd(!)

+ 2

1Z
�1

H2symm(i(! � 
); i
) H2symm(i(�! + 
);�i
)

Sdd(
)Sdd(! � 
)d
;

(6.29)
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where H1(s); s 2 C is the �rst-order transfer function, which can be determined by
taking the one-dimensional Laplace transform of h1(t). Moreover, H2(s1; s2), with
s1 2 C and s2 2 C, is the second-order, symmetric transfer function, which can be
found by, �rstly, performing a two-dimensional Laplace transform on h2tri(�1; �2)
and, secondly, performing a symmetrizing operation on the result. This procedure
is described in appendix H. It should be noted that a term with a Dirac delta
pulse at ! = 0 is omitted in expression (6.29) for Syy(!), since that term does not
contribute to �2y but relates to �2y. Now, using (6.29), the power spectral density
of the output can be computed. Consequently, the variance of the output can be
evaluated through (6.28) for speci�c values of �1 and �2 and, thus, we have de�ned
the fourth equation needed in the statistical bilinearization technique.

Since �2
y
= �2

x
is now known, a new estimate for the mean of the response of the

piece-wise linear system can be determined using (6.20). New values for �1 and �2
can be computed by solving the equations (6.18) and (6.19). In order to be able to
evaluate the expected values in these equations, a functional form for the probability
density function of the response has to be chosen. Here, for the sake of e�ciency, a
Gaussian pdf is used, see equation (3.13). The expressions for Efx+ � �(x) xg and
Efx0(x + � �(x) x)g can be found in appendix C. The expressions for Efx40g and
Efx20(x+ � �(x) x)g can be found in appendix I.

The procedure, described before, has to be applied recursively in an optimisation
loop, which consists of the following steps:

1. choose initial values for �1 and �2;

2. use equations (6.20), (6.28) and (6.29) to compute estimates for �x and �x,
given �1 and �2;

3. compute new values for �1 and �2 using the information gained in step 2 and
the equations (6.18) and (6.19);

4. go back to step 2 until both �1 and �2 have converged.

6.5 Results

The statistical bilinearization technique is applied to the piece-wise linear system.
Hereby, we investigate the white-noise excited case with Sdd(!) = S��(!) =

1
2�
.

In �gure 6.1, the estimates for the standard deviation of the response of the
piece-wise linear system, obtained by application of the statistical bilinearization
technique, are displayed. In this �gure, these results are compared to the results
of the statistical linearization technique and simulation (using the numerical inte-
gration techniques discussed in chapter 2) for varying � and � = 0:01. Clearly, the
statistical bilinearization technique estimates the standard deviation of the response
very accurately, in contradiction to the statistical linearization technique. The source
of this accurate approximation can be found by observing the frequency domain in-
formation, see �gure 6.2. This �gure shows that two important nonlinear frequency
domain phenomena, namely, the multiple resonance peaks (two in this case) and
the high-energy, low-frequency spectral content, are modelled very well by the bi-
linearization procedure. These phenomena represent important contributions to the
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Figure 6.1: Estimation of the standard deviation �x for � = 0:01.
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Figure 6.2: Estimation of the power spectral density Sxx(!) for � = 6 and � = 0:01.
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energy in the response. As a consequence, the variance of the response can only be
estimated accurately when these phenomena are modelled. Clearly, only the second
resonance frequency appears, whereas higher resonances are absent in the output
of the Volterra model. This is a consequence of the fact that we only incorporated
a second-order polynomial nonlinearity in our nonlinear model. Higher resonances
could be approximated by including higher-order polynomial terms in our Volterra
model.

In this form, the statistical bilinearization technique is computationally very ef-
�cient (in the same order as the statistical linearization technique). Moreover, the
bilinearization approach provides much more accurate results than the statistical
linearization technique (in the application to the piece-wise linear system). This is
a consequence of the fact that in the statistical bilinearization technique the most
important, nonlinear, frequency-domain response phenomena are modelled. The
statistical bilinearization procedure is so e�cient because it can provide very accu-
rate results using only a second-order Volterra system. In this respect it distincts
itself from the bilinearization procedure as proposed in Lesiak and Krener [1978].
Namely, in the bilinearization procedure a bilinear system is pursued, whose output
yb(t) converges to the output of the original, nonlinear system y(t). The system
parameters of the bilinear system are determined by minimising the error on the
output through j yb(t)� y(t) j for all t in the time interval of interest. In the statis-
tical bilinearization procedure the parameters of the bilinear system are determined
by minimising an error that represents a weighted closeness of the original, nonlinear
system and bilinear system; namely, the parameters are determined by minimising
Ef"2

bilin
g with "bilin given in (6.17). As a consequence, accurate results can be

obtained using a low-order Volterra model.

The third resonance peak could be predicted by extending the polynomial model
(6.16) with a third-order nonlinearity (in this case a cubic sti�ness nonlinearity).
However, this would result in an expression for the power spectral density of the

output (see (6.29) for the second-order system), which includes double integrals.
The computation of the variance would then include the numerical evaluation of
triple integrals and would, therefore, be very laborious. Consequently, the compu-
tational e�ciency of the method would be seriously compromised. Furthermore,
due to the fact that the second-order model already provides highly accurate vari-
ance estimates, these variance estimates can hardly be improved by this extension.
Moreover, an extension of the model with one order does not automatically lead to
an improvement of the prediction of all response characteristics. This is due to the
fact that one has little insight into the rate of convergence of the Volterra series of
the bilinear system [Rugh, 1981; Schetzen, 1980]. Furthermore, when the statistical
bilinearization procedure would be applied to the piece-wise linear system using a
third-order polynomial model, the resulting parameter estimates �1 and �2 will most
likely di�er from those of the second-order model. Predictions on accuracy improve-
ments of response characteristics related to model extensions to higher orders are,
therefore, di�cult to make.

In this context, it should also be remarked that the piece-wise linear system is
not analytic everywhere. Therefore, the Volterra series (up to order p) of the bilinear
system will not exactly represent that of the piece-wise linear system. However, it
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will represent the best �nite-order, polynomial model in some statistical sense (as
de�ned before).

Another extension of the method concerns the choice of another form of the
probability density function of the response. In Spanos and Donley [1991], a method
called quadratization is proposed. This method is in essence the same as the statis-
tical bilinearization technique, when a second-order polynomial model is used in the
bilinearization procedure. In Spanos and Donley [1991], a non-Gaussian, truncated
Gram-Charlier expansion is used for the probability density function of the response.
In such a model, higher-order statistical moments play a role. Non-Gaussian charac-
teristics of the response, such as the skewness, can then be approximated. In Spanos
and Donley [1991], systems with relatively small asymmetry are investigated. In such
cases, the skewness can be predicted accurately. In the application to the piece-wise
linear system, the statistical bilinearization technique was also extended using such
a non-Gaussian form for the probability density function. However, due to the fact
that the piece-wise linear system is signi�cantly asymmetric, the skewness was not
estimated accurately. Moreover, the variance estimates were not improved due to
this extension. Another drawback of this extension is the fact that the estimation of
the third-order moment of the output of the bilinear system involves the numerical
evaluation of triple integrals. Once more, this dramatically reduces the computa-
tional e�ciency of the method.

6.6 Discussion

In this chapter, a method called statistical bilinearization was developed. The
strength of the method can be recognised in the combination of two features. Firstly,
the response statistics of the bilinear model can be computed very e�ciently (as long
as the order of the polynomial model is low). Secondly, a truly nonlinear approxima-
tion approach is followed, which makes it possible to model some typically nonlinear
phenomena in the original, nonlinear system in accordance to (the nonlinear) reality.

The statistical bilinearization technique was applied successfully to the piece-wise
linear system. This application resulted in very accurate variance estimates for the
response. Furthermore, typically nonlinear, frequency-domain response phenomena,
such as multiple resonance peaks and high-energy, low-frequency spectral content,
are modelled correctly. Furthermore, it should be noted that the method is numer-
ically far more e�cient than simulation and can even compete with the statistical
linearization technique in this respect, as long as the polynomial model used in the
bilinearization technique is of a low order.





7 Conclusions, discussion and recommendations

In this chapter, the conclusions with respect to the main lines of research of this
thesis will be presented. Moreover, some recommendations for future research will
be given.

7.1 Conclusions and discussion

In this thesis, stochastically excited nonlinear dynamic systems were investigated.
Within the scope of this research theme, the work can be characterised by two main
lines of research. The �rst line of research focuses on the study, development and
quali�cation of response approximation methods. Herein, characteristics of these
methods, such as e�ciency, accuracy and applicability, jointly determine the quality
of the method. Once such response approximation methods are available, attention
can be given to the second line of research. Herein, the focus lies on gaining thorough
understanding of speci�cally nonlinear, stochastic response phenomena.

The main conclusions are summarised below:

� classical integration schemes should not be used to compute (approximate)
time-discrete solutions of stochastic di�erential equations. For this purpose,
so-called Ito-Taylor schemes are developed;

� frequency-domain response information is essential for the thorough under-
standing of the behaviour of stochastically excited, nonlinear, dynamic sys-
tems;

� the simultaneous study of periodic and stochastic behaviour of nonlinear, dy-
namic systems has proven to be very fruitful with respect to gaining insight
into nonlinear system behaviour;

� statistical bilinearization can be used as an e�cient tool to accurately approx-
imate the stochastic, nonlinear response characteristics of the piece-wise linear
system;

� spectral factorization is a very e�ective tool for constructing linear models for
both linear and nonlinear systems based on merely data for the autopower
spectra of input and output.

Next, a discussion of the most important observations with respect to the main
lines of research are presented.
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As far as the investigation and development of the response computation methods
are concerned, the following conclusions can be drawn:

� in the literature a wide variety of successful methods were proposed, such as
closure techniques and stochastic averaging. However, an important, common
shortcoming of these methods is re
ected by the fact that these methods only
provide information on the probability distribution of the response. Note that
this information represents only partly the information on the response statis-
tics; frequency domain information is not provided by the methods mentioned
above. Furthermore, the applicability of these methods, in terms of the variety
of systems and stochastic excitations that can be investigated by application
of these methods, is rather limited (chapter 1);

� existing methods that do provide information on both the probability density
function and frequency domain response statistics are, �rstly, Monte Carlo
simulation and, secondly, statistical linearization. Moreover, these methods
can tackle a wide variety of problems (chapter 1);

� using Monte Carlo simulation principally any system and any excitation form
can be handled. As a consequence, the method is widely applicable. In Monte
Carlo simulation the response statistics are estimated from a �nite number of
samples of the response, which can be computed using numerical integration.
Consequently, any desired level of accuracy can be attained. High levels of ac-
curacy can, however, only be obtained at the cost of computational e�ciency.
It can be concluded that Monte Carlo simulation can provide very accurate
results for a wide variety of problems, though is computationally rather inef-
�cient (chapters 1, 3 and 4);

� when nonlinear, dynamic systems are excited by broad-banded stochastic pro-
cesses, these processes are generally modelled as white noise processes. Con-
sequently, these systems can be described by stochastic di�erential equations.
Due to the speci�c properties of the white noise process, these stochastic dif-
ferential equations cannot be solved numerically using classical, numerical in-
tegration techniques. In such cases, other numerical integration techniques
should be used. Suitable numerical integration techniques are based on Itô
stochastic calculus and di�er essentially from the classical integration schemes
(chapter 2);

� the statistical linearization technique can also tackle a wide variety of problems
and also provides approximate information on the frequency domain charac-
teristics of the stochastic response. In this technique, a linear model, which
optimally �ts the original, nonlinear system (in some statistical sense), is con-
structed. Due to the fact that response statistics of such a model can, in
general, be evaluated analytically, statistical linearization is computationally
very e�cient. However, it only provides accurate approximation of the res-
ponse statistics for weakly nonlinear systems. In chapter 3, it is shown that
the statistical linearization technique structurally underestimates the variance
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of the response of the piece-wise linear system (even for a moderate nonline-
arity). This is dangerous when these estimates are used in failure criteria for
practical systems. The cause for this underestimation of the variance can be
found by comparing accurate, simulated frequency domain characteristics with
those determined using the linear model;

� due to the e�ciency-related shortcomings of Monte Carlo simulation and the
accuracy-related shortcomings of statistical linearization, other response com-
putation methods are needed. Therefore, in this thesis, two methods are pro-
posed: a method using higher-dimensional, linear approximation (chapter 5)
and a method based on nonlinear approximation, termed statistical biline-
arization (chapter 6). These methods are developed for handling problems
with broad-banded excitations. When narrow-banded, stochastic excitations
or near-periodic stochastic excitations are applied, Monte Carlo simulation
should be preferred to obtain accurate results;

� the method based on higher-dimensional, linear approximation makes use of
a one-o� simulation concerning the original, nonlinear system excited by a
stochastic reference excitation. Based on the information obtained through
this simulation, a higher-dimensional linear model is constructed. This model
can then be used to approximate the response statistics of the original, non-
linear system for other stochastic excitations. In contrast to the statistical
linearization method, in this method, a linear model is constructed, which
has a higher dimension than the original, nonlinear system. This is done in
order to model some speci�cally nonlinear response phenomena (in the fre-
quency domain) in a linear fashion. The method is shown to provide more
accurate results than the statistical linearization technique in the application
to the piece-wise linear system. The e�ciency of the method is greatly en-
hanced when the response statistics to a wide variety of stochastic excitations
are approximated. A shortcoming of the method is re
ected by the fact that,
in general, the higher-dimensional, linear model can only be used to approx-
imate the response statistics of the original, nonlinear system accurately for
stochastic excitations, which are similar to the reference excitation, in terms of
energy. However, for the piece-wise linear system this shortcoming is vanish-
ing, since the energy level of the excitation merely represents a scaling factor
on the response [Shaw and Holmes, 1983; Fey, 1992]. The energy levels of the
excitation and the response of the piece-wise linear system are, therefore, lin-
early coupled. Consequently, once a higher-dimensional model for this system
is constructed, it can be used to approximate the response statistics of the
piece-wise linear system for stochastic excitations with di�erent spectra and
energy levels (chapter 5);

� the spectral factorization method has been shown to be an e�ective tool to con-
struct a causal, stable, minimum-phase transfer function using only 'measure-
ment' data on the autospectral densities of the input and output of a speci�c
system. In this thesis, the method is applied successfully to construct a linear
model for a nonlinear system. However, the method is pre-eminently suit-
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able to construct linear models using measurement data of linear systems. In
this respect, it can certainly compete with the commonly used modal analysis
tools. Moreover, it has the advantage that no information on the cross-spectral
density between the input and output is needed (chapter 5);

� in order to attain higher levels of accuracy than provided by higher-dimension-
al, linear approximation, a method based on nonlinear approximation was
developed in chapter 6. The method, termed statistical bilinearization, is
shown to provide very accurate results for the piece-wise linear system. The
accuracy is that high because the response phenomena of the original, nonlinear
system can be approximated in a truly nonlinear manner. Furthermore, it is
computationally very e�cient due to the use of Volterra models of a low order.
Such high accuracy could be obtained using low-order Volterra models, due
to the statistical nature of the criterion according to which the parameters of
the model are estimated. In general, higher-order Volterra systems might be
necessary to obtain such levels accuracy;

� in �gure 7.1, the accuracy and e�ciency of the response computation methods,
discussed in this thesis, are compared qualitatively by application to the piece-
wise linear system. It can be concluded that the statistical bilinearization
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Figure 7.1: Qualitative comparison of the accuracy and e�ciency of response ap-

proximation methods.

technique should be preferred based on e�ciency and accuracy considerations,
when the response statistics of a nonlinear system for broad-banded excitations
are pursued.

As far as the investigation of nonlinear, stochastic phenomena is concerned, the
following conclusions can be drawn:
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� in general, the response of a strongly nonlinear system to a Gaussian excitation
is essentially non-Gaussian (chapters 3 and 4);

� when investigating the stochastic response of a nonlinear system, it is extremely
important to incorporate the frequency domain statistics of the response, such
as its power spectral density, in this investigation. Namely, several speci�cally
nonlinear response phenomena can be recognised by looking at the power spec-
tral density of the response. Firstly, multiple resonance peaks can appear in a
nonlinear, SDOF system, where in a linear, SDOF system only one resonance
peak will appear in the power spectral density of the response. This nonlinear
phenomenon was observed in the response of the piece-wise linear system, the
beam-impact system and the Du�ng system. Furthermore, this phenomenon
was observed in both simulation and experiment. For systems with an asym-
metric sti�ness nonlinearity, such as in the piece-wise linear system and the
beam-impact system, another speci�cally nonlinear, stochastic, frequency do-
main phenomenon can be observed: the power spectral density of the response
exhibits a large amount of energy at low frequencies. This phenomenon is
due to the asymmetry of the nonlinearity and can be seen as an interaction
phenomenon between di�erent frequencies in the stochastic excitation. It was
observed in the response of the piece-wise linear system and the beam-impact
system and in both simulation and experiment.

Both phenomena (multiple resonance frequencies and high-energy, low-
frequency response) cannot be predicted by the statistical linearization tech-
nique. This is the cause for the fact that this technique underestimates the
variance of the response. Namely, these phenomena represent 'extra' energy
in the nonlinear response. It can, thus, be concluded that the observation
of frequency domain phenomena is very important for two reasons. Firstly,
the peculiarities of the energy distribution of the response over the frequency
range are illuminated. Secondly, insight can be gained on the e�ect that these
phenomena have on the variance of the response (chapters 3, 4, 5 and 6);

� in order to gain thorough understanding of nonlinear stochastic system be-
haviour, it is very fruitful to investigate the deterministic (in this case periodic)
and stochastic system behaviour simultaneously.

While investigating the periodic response of the piece-wise linear system and
the beam-impact system, harmonic and subharmonic resonances were encoun-
tered. When exciting these systems with band-limited, stochastic excitations,
stochastic equivalents of harmonic and subharmonic solutions were found.
These stochastic resonances appear at the same frequencies as their periodic
equivalents. Furthermore, 'stochastic, subharmonic' resonances appear and
disappear for the same system parameter settings as for periodic excitations.
Consequently, a relatively short simulation with a stochastic excitation can
provide information on the existence (and place in the frequency domain) of
harmonic and subharmonic resonances. It should be noted that these 'stochas-
tic equivalents' of harmonic and subharmonic solutions were found in both
simulation and experiment. In the periodic response of the piece-wise lin-
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ear system and the beam-impact system many interesting, nonlinear, local
(in terms of excitation frequency) phenomena, such as superharmonic reso-
nances, occur. The variety of such detailed phenomena increases dramatically
when a MDOF system is studied. When relatively broad-banded, stochastic
excitations are applied, these phenomena seem to be averaged out somehow.
However, when relatively small-banded, stochastic excitations are applied some
periodic phenomena, such as multiple, stable solutions, appear to have stochas-
tic equivalents too. Another observation, which is made for both periodically
and stochastically excited systems, is that the extension of a model from SDOF
to MDOF has the following e�ect: �rstly, extra resonances appear for higher
frequencies, related to the higher 'modes', and, secondly, the addition of ex-
tra degrees of freedom also has a dramatic e�ect on the response in the lower
frequency range of the �rst 'mode'.

Summarising, it can be concluded that many similarities can be found while
observing the periodic and stochastic response of a nonlinear, dynamic system
simultaneously. The recognition of mutual phenomena greatly enhances the
understanding of nonlinear, stochastic behaviour (chapters 3 and 4).

The two main lines of research, as described above, are intertwined to a great extent.
For example, the notion that frequency domain information is essential to under-
stand nonlinear, stochastic behaviour led to, �rstly, understanding of the inaccuracy
of the variance estimates of the statistical linearization method and, secondly, to the
idea of the development of the higher-dimensional, linear approximation method in
chapter 5. The other way around, the development and application of the statistical
bilinearization method led to more understanding on the origin of the multiple reso-
nance peaks in the power spectral density of the response of the systems investigated
in this thesis when excited by broad-banded inputs.

7.2 Recommendations

The scope of the research in this thesis should be extended in di�erent directions.
Firstly, non-Gaussian excitations could be considered. Non-Gaussian excitations
can be encountered in many �elds of engineering [Grigoriu, 1995a]. It is, therefore,
important to study the behaviour of both linear and nonlinear systems for such
excitations. Secondly, the non-stationarity of either the excitation or the system
can add an extra dimension of complexity, which is interesting for future work.
Monte Carlo simulation becomes computationally even less e�cient in such cases (in
comparison with stationary problems), since ergodicity can not be assumed anymore.
The need for the development of alternative response approximation methods, then,
becomes even more important.

In this thesis, the combination of stochasticity and nonlinearity has given rise
to many interesting and challenging problems. However, a wide variety of inter-
esting, practical problems can already be encountered when the level of complexity
concerning the nonlinearity of the system is released. In the practice of mechani-

cal engineering many examples of continuous structures exhibiting linear relations
between force and displacement and force and velocity exist. For deterministic forc-
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ings, such problems are often tackled using the well-known �nite element method.
Of course, such structures can be excited by forces that vary randomly in time or
space (or both). Then, a �nite element method for stochastic di�erential equations
[Sun, 1979] could be used to tackle such problems numerically. Further research in
this direction seems to be very important since structures are loaded by such random
forces in many �elds of engineering, such as acoustics, o�-shore engineering etc.

Another interesting topic for future work would be to consider such systems (as
above) with deterministic loading, but with random system parameters or random
boundary conditions, where the system parameters are random variables (not ran-
dom processes). In many practical systems a level of uncertainty in the system
parameters or boundary conditions is quite common due to, for example, produc-
tion imperfections. Within this topic, then again, the leap towards nonlinear systems
could be taken. Another level of complexity is imposed onto these kind of problems
when an optimised design is pursued. Then, the problem at hand is twofold; �rstly,
the response statistics of these systems (with random system parameters) need to
be determined accurately and e�ciently and, secondly, the optimisation procedure
should be able to e�ectively cope with the randomness in the design variables and
response characteristics.

A �nal recommendation concerns the application of the spectral factorization
method, as described in chapter 5. In this thesis, this method is merely used to
construct a linear model with which the stochastic response of a nonlinear system
can be approximated. However, the method of spectral factorization is pre-eminently
suitable to be applied as a non-parametric modelling tool for linear systems. An
advantage over commonly used modal analysis methods is that it can also be used to
tackle problems, in which the input and output can not be measured simultaneously.
Namely, in the commonly used modal analysis methods often the cross-spectral
density between input and output, which can only be estimated using simultaneous
information on input and output, is needed.





A The moment equations

The Itô formula can be used to derive the appropriate moment equations belonging
to a response process obeying a certain SDE. Therefore, the Itô formula (2.60) can
be applied to a function  (x) = (xq11 x
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 xx(x) =
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A di�culty in using the moment equations (A.4), when dealing with non-linear
systems, is that the moments are generally governed by an in�nite hierarchy of
coupled equations. Thus, in order to obtain a solution it is necessary to introduce
a `closure approximation', which can provide a soluble set of equations. Closure
techniques are discussed in section 1.2.6.



B Remainder of the second-order Ito-Taylor

expansion

The remainder �Q3 of the Itô-Taylor expansion (2.74) can be expressed as
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C Evaluation of the expected values of

nonlinear functions for statistical linearization

The expected values in the equations (3.7) and (3.8), concerning the nonlinearity
of the piece-wise linear system, need to be evaluated in terms of �x and �x. For
this purpose, we use the fact that the response of a linear system to a Gaussian
excitation is also Gaussian. Consequently, the expected values
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(with f(x) given by equation (3.13)) can be transformed to
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Straightforward calculations concerning these integrals yield the following expres-
sions:
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in which erf represents the error function.
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D Hertzian contact and hysteresis damping

D.1 The Hertzian contact force law

The Hertzian contact model [Hertz, 1895] can be used to describe the collision be-
tween two bodies. When two spherical bodies collide, with their centres of gravity
moving in opposite directions, the contact area can generally be modelled as circu-
lar. A relation between the force on the contacting bodies and a measure for the
deformation in the contact area (the indentation of the contacting bodies) will be
derived. This relation is called the contact force law of Hertz. It is assumed that
the surfaces of both bodies can be approximated by paraboloids. In case of the
beam-impact system, described in chapter 4, the contacting bodies are half spheres,
which validates the latter assumption. Consequently, planes, in which the axes of
rotation of the colliding bodies lie, can be de�ned (see �gure D.1). The radius of

Body 1

Body 2

x

y

y

z z

R1

R2

Figure D.1: Two contact bodies represented as paraboloids.

the circle, that approximates the paraboloid in such a plane, is termed the radius of
curvature Rj for body j. Both bodies have a maximum and a minimum radius of
curvature: the main radii of curvature. In case of a circle-contact (as in the contact
between the two half spheres) the two main radii of curvature are equal.

In order to construct the contact force law of Hertz for a circle-contact a few
assumptions have to be made. The most important ones are:
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� the radius of the contact area is small compared with the geometry of the
colliding bodies;

� there are no shear-stresses on the contact area;

� the deformation is purely linearly elastic;

� the period of time, in which the bodies are in contact, is long enough to
establish a quasi-static state.

The approach h(r) of two opposite points P1 and P2 on the surface of the con-
tacting bodies (see �gure D.2) can be described by

h(r) = � � 1

2
kr2; with k =

1

R1

+
1

R2

; (D.1)

where k is the reciprocal of the reduced radius of curvature, � is a measure for the
deformation of the spheres (see �gure D.2) and R1 and R2 represent the radii of
curvature of the two spheres. Note that r is de�ned in �gure D.2 as the horizontal
distance between the axis of rotation of the body and the observed point on the
surface of the body. When the approach h(r) is positive, the two bodies are in contact

�h(r)
�h1

�h2

F

F

R1

R2

P1

P2

2a

r

�

Figure D.2: Geometry of the contact area.

for points P1 and P2 at r. The distance h(r) between two points consists of two parts:

the indentation � and minus the distance between two opposite points P1 and P2
on the surfaces of the spheres in case of point-contact between the two bodies. The
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indentation � does not merely lead to deformation of the two bodies in the contact
area, but also results in deformation outside the contact area. The total deformed
area is called the zone of in
uence. It should be noted that relation (D.1) for h(r)
only holds outside the the zone of in
uence. The second part of the expression for

h(r) (hp(r) =
kr

2

2
) can be found using geometrical considerations:
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pj
; j = 1; 2: (D.2)

Near the contact area (Rj � hj), hp(r) can be given by
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Three integral equations (D.4), (D.6) and (D.7) form the basis of the contact force
law of Hertz:
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The second integral is the so-called `Abel'-integral:
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and its inverse represents the last integral:
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These equations express the connection between the approach h(r) and the pressure
p(r). The integral equations can be derived from mechanical equilibria [Hills et al.,
1993].

Substituting h(r) from equation (D.1) in the �rst part of equation (D.4) results
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Equating this result with the second part of equation (D.4) gives
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Substituting this result in equation (D.7) results in
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Straightforward calculations transform expression (D.11) to
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Using the boundary condition at r = a : p(a) = 0, � can be expressed through

� = ka2: (D.13)

This result di�ers from the result that can be obtained using equation (D.1),
which was derived using geometrical considerations. For this reason, (D.1) only

holds outside the zone of in
uence.
Substituting (D.13) in (D.12) yields the following expressions for the pressure:
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In a static situation, the pressure p(r) and the contact force Fc are in balance

according to
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Rewriting (D.14) results in an equation that contains an expression for the maximum
pressure p0:
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Combining the former expression for p0 with (D.15) yields

p0 =
3 Fc

2� a2
: (D.17)

One of the assumptions was that of linear elasticity. As a boundary between
elasticity and plasticity the stress �0:2, at which 0.2 % irreversible deformation oc-
curs, can be used. Thus, the maximum force that can be applied can be computed
using (D.17):

Fcmax =
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3
�0:2: (D.18)

The combination of (D.15), (D.13) and (D.5) results in the contact force law of
Hertz:

Fc =
2Er

3
p
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D.2 Hysteresis damping

Hysteresis damping is an extension to the contact model of Hertz [Lankarani and
Nikravesh, 1994]. Hysteresis damping accounts for the loss of energy as a result of
the collision. This energy is dissipated by means of sound and heat.

In case of hysteresis damping, equation (D.19) transforms to

Fc = KH �
1:5 + � �1:5 _�; (D.20)

with � the hysteresis damping factor, a measure for energy dissipation. This model
is valid for low impact velocities; i.e. those impact situations for which impact veloc-
ities are negligible compared to the propagation speed of deformation waves across
the solids. Equation (D.20) looks like a Kelvin-Voigt model (a spring, parallel to
a damper), with the di�erence that the speed dependent part also is indentation

dependent.
The velocities of the two colliding bodies before and after the collision, Vbefore =

V � and Vafter respectively, are related through the coe�cient of restitution e:

Vafter = e Vbefore: (D.21)

The kinetic energy of the two colliding bodies before and after the collision can,
therefore, be written as
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and, thus,

Tafter = e2 Tbefore: (D.23)
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Herein, m1 and m2 are the masses of the colliding bodies and V �1 and V �2 are the
relative initial approach velocities, which are de�ned by

V �1 =
m2

m1 +m2

Va and V �2 = � m1

m1 +m2

Va; (D.24)

where the approach velocity Va is the di�erence between the absolute velocities
V1 and V2 of the bodies. Consequently, the expression for the kinetic energy loss
�T = Tbefore � Tafter is:
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The initial relative impact velocity, _��, can be de�ned by

_�� � V �1 � V �2 : (D.26)

Consequently, equation (D.25) can be rewritten to
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The momentum balance equation can be written as
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Substitution of equation (D.29) in equation (D.27) yields

�T =
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During the collision, two phases can be distinguished: a phase of compression and a
phase of restitution. During both phases the kinetic energy of the colliding bodies
is dissipated in the form of heat and sound. In the (�; Fc) curve (see �gure D.3),
the dissipated energy equals the surface within the hysteresis-loop. The upper curve
represents the compression phase, whereas the lower curve represents the restitution
phase.

In order to obtain an estimate for the energy dissipated during the collision, we
assume that the amount of energy dissipated during the compression phase equals
the amount of energy dissipated during the restitution phase. Using this assumption,
�T can be computed as follows:

�T =

I
� �1:5 _� d� � 2

�mZ
�=0

� �1:5 _� d�; (D.31)
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Figure D.3: Example of a hysteretic (�; Fc)-curve of one collision.

where, �m is the maximum indentation. Through geometrical equivalence, a collision
between two sphere halves can be reduced to a collision between a half sphere with
radius

1

R
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; (D.32)

and a semi-in�nite surface. Analogous, the e�ective mass me� of the half sphere can
be written as
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The mass me� represents the mass of the half sphere with radius R. The semi
in�nite surface has in�nite mass. When the indentation � attains its maximum �m,
the indentation velocity _� equals zero. Therefore, damping is absent at that moment
and the hysteresis model equals to the contact force model of Hertz. For the contact
force it then holds that

Fc = KH�
1:5 = �me�

��: (D.34)

This equation can be integrated with respect to time to obtain the variation of the
indentation velocity during the compression phase:
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using the boundary condition _� = _�� for � = 0. Rewriting (D.35) results in

_� =

s
( _��)2 � 2 KH�2:5

2:5 me�

: (D.36)



136 Appendix D

At maximum indentation (� = �m; _� = 0), this equation transforms to
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Substituting equation (D.36) in equation (D.31) results in
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Then, substituting equation (D.37) in equation (D.38) results in
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Equating this equation to (D.30) gives an expression for the dissipation coe�cient
�:
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Substituting this equation in (D.20) results in the �nal expression for the contact
force Fc, the modi�ed contact force law of Hertz with hysteresis damping:
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The determination of the Hertzian sti�ness parameter KH and the coe�cient of
restitution e is discussed in section D.3.

D.3 Estimation of the Hertzian contact parameter KH and the coe�-

cient of restitution e

Both KH and e were estimated by means of a single experiment. In this experi-
ment several collisions were observed in order to accumulate information regarding
the indentation �, the indentation velocity _� and the contact force Fc during these
collisions. The dependency of Fc on � is visualised in �gure D.4 for a few collisions.
The parameter KH can be estimated by comparing the contact force Fc and the

indentation � at maximum indentation, assuming that the static contact force is
proportional to �1:5, see equation (D.19). This resulted in KH = 2:1 108 N/m1:5.
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Figure D.4: Measured contact force vs. indentation for several collisions.

The coe�cient of restitution e can be estimated by considering the amount of energy
loss �T during a collision. �T is equal to the surface within the hysteresis loop:

�T =

I
� �1:5 _� d�: (D.42)

Therefore, � can be estimated from

� =
�TH
�1:5 _� d�

: (D.43)

The coe�cient of restitution can now be obtained from

e =

s
1� 4 � _��

3 KH

; (D.44)

see equation (D.40). This resulted in e = 0:5. Both KH and e are least-squares
estimates in which the information obtained from several collisions is accounted for.
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E Speci�cations of the components of the

experimental set-up

In this appendix, the components of the experimental set-up are discussed brie
y.
This includes the measuring equipment, which is discussed in section E.2.

E.1 Components of the experimental set-up

Signal generator

The input signals for the controller are generated through application of the method
of Shinozuka (see section 3.5.1). For this purpose, the method is implemented in
the numeric computation software package MATLAB [1992]. The software package
LabVIEW [1992] is used to provide for the transfer of the signal to the controller.
This signal is a staircase signal. It is, therefore, constant during a time interval, that
equals the reciprocal of the sample frequency. Due to the �ltering characteristics of
the controller-servovalve-actuator part of the experimental set-up (see �gure 4.13),
the signal, that represents the actual excitation on the beam-impact system (i.e. the
displacement of the rigid frame), is delayed with respect to the signal, that is sent
to the controller. Consequently, an extreme high sample frequency is of no use. A
sample frequency of 800 Hz (5026.5 rad/s) appeared to be a good compromise.

Controller

The controller receives an input signal from the signal generator and subsequently
sends it to the servovalve. The controller is a MTS model 406.11. It controls the
servovalve using a feedback from a Linear Variable Di�erential Transformer (LVDT),
that measures the actual position of the hydraulic actuator. The system controller-
servovalve-actuator behaves like a �rst-order system (see �gure E.1) up to a fre-
quency of approximately 75 Hz (470 rad/s). This �rst-order system is determined
by its ampli�cation factor and its time constant. The ampli�cation factor can be
modi�ed manually by the controller. However, the time constant is dictated by the
experimental set-up. Experiments have shown that this time constant equals 0.833
s�1. A signal with frequency 2�

0:833
= 7:54 rad/s as input, thus, results in a signal

with a 3 dB amplitude loss and a 45 degrees phase di�erential on the output of the
�rst-order system. For more information on the controller see MTS [1975b].
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Figure E.1: Amplitude and phase of the frequency response function Hcsa of the controller-

servovalve-actuator system.

Servovalve

The servovalve receives a signal from the controller to regulate the oil 
ow in the
hydraulic actuator in such manner that the desired displacement is generated by the
hydraulic actuator. The servovalve is a MTS model 252.23. For more information
on the servovalve see MTS [1975c].

Hydraulic actuator

The rigid frame of the beam-impact system is coupled to the hydraulic actuator.

Consequently, the actuator dictates the displacement of the rigid frame and, thus,
provides the excitation. The hydraulic actuator is a MTS model 244.12. It can
deliver a maximum force of 25 kN and has a dynamic stroke of 254 mm. The
actuator is powered by a hydraulic service manifold. For more information on the
hydraulic actuator see MTS [1975e].

Hydraulic service manifold

The hydraulic service manifold is connected to the hydraulic lines between the hy-
draulic power supply and the servovalve. The hydraulic service manifold is a MTS
model 288.15. Accumulators in both the pressure and the return line of the mani-
folds supply the surges of the hydraulic 
uid demanded by the servovalve and reduce

uctuations and snapping in the hydraulic lines during dynamic programs. A ad-
ditional function of the manifold is to accumulate energy for peak supplies. The
manifold also holds a 5-micron �lter to collect contaminants in the 
uid to help
prevent servovalve wear. For more information on the hydraulic actuator see MTS
[1975d].
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Hydraulic power supply

The hydraulic power supply supplies the pressure needed by the hydraulic actuator
to move. The hydraulic power supply is a MTS model 507.01. It can supply a
pressure of 21 MPa at a 
owrate of 12.3 l/min.. It requires 380 V 3-phase AC
electric power supply. For more information on the hydraulic power supply see MTS
[1975a].

Data acquisition

All the measuring instruments, mounted on the the beam system, produce electrical
potential inputs for the DIFA Dynamic Signal Analyser (DSA) [DIFA, 1992]. The
DIFA DSA is a high performance, 12 channel, PC-based measuring system. The data
acquisition hardware is from DIFA's DSA series, model DSA 230. The software is
of DIFA's Transfer, Analysis and Control software D-TAC 200, which controls all
acquisition functions.

E.2 Measuring equipment

Here, the measuring equipment, mounted on the beam-impact system, see �g-
ure 4.14, is discussed.

Linear variable di�erential transformer (LVDT)

A LVDT is a contactless measuring instrument. An iron core which is attached to
a moving object in
uences a magnetic �eld in a spool. This results in a change of
potential, which is a measure for the displacement of the core. The LVDT, mounted
on the beam, is a Lucas Control Systems model DC-E 500. It has a measuring range
of � 12.5 mm, a sensitivity of 0.787 V/mm and a linearity of less than 0.25% of the
full range.

Accelerometer

The mounted accelerometer produces an electric charge, which is transformed to a
potential by a charge ampli�er. This potential is a measure for the acceleration of
the accelerometer. The accelerometer is a Br�uel & Kj�r model 4367. It can measure

a maximum continuous sinusoidal acceleration of 30 km/s2 (100 km/s2 maximum
shock acceleration). It has a charge sensitivity of 2.41 pC/ms�2 and a maximum
transverse sensitivity of 1.5% at 30 Hz.

Force transducer

The force transducer produces an electric charge, which is transformed to a potential
by a charge ampli�er. This potential is a measure for the force applied to the force
transducer. The force transducer is a Kistler model 9321A. It has a measuring range
of � 10 kN, a sensitivity of -3.94 pC/N and 3.90 pC/N in the negative and in the
positive direction, respectively, and a linearity of less than 0.3% of the full range.

Laser interferometer

A laser interferometer is used to measure the displacement and the velocity of the

right side of the beam. This laser interferometer is a Polytec series 3000 vibrometer
system. The main components of the system are a laser interferometer, model
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OFV-302 and a controller processor, model OFV-3000. The measuring range of the
displacement is set to�5.2 mm and the sensitivity is, therefore, set to 320 �m/V. The
calibration accuracy of the displacement measurement of the laser interferometer is
� 1% of reading � 1 step, due to the digital nature of the output. The linearity of
the displacement measurement is � 1 step. The step is set to 1.3 �m as a result of the
measuring range setting. The measuring range of the velocity is set to �500 mm/s
and the sensitivity is therefore set to 25 (mm/s)/V. The calibration accuracy of the
velocity measurement of the laser interferometer is �1% of rms (root mean square)
reading. The laser interferometer is used instead of a LVDT, since the varying angle
at the end of the beam obstructs the use of an LVDT. This introduces, in this case,
too much friction between the LVDT and its core.

Charge ampli�er

A charge ampli�er is used to transform the electric charge from the force transducer
and the accelerometer to an electrical potential. The charge ampli�er is a Kistler
model 5007. It has a linearity of less than 0.5% of its full range. The range and
sensitivity can be set manually to meet the needs of the speci�c experiment.



F MDOF model of the beam-impact system

The beam-impact system is depicted in �gure F.1. The beam is made of stainless
steel, with the following material properties: modulus of elasticityEb=1:9 1011N/m

2

and mass-density �b = 8000 kg/m
3
. Other characteristics of the system are the mass

of the ptfe half sphere, which is attached to the beam, ms = 12:4 10�3 kg and the
mass of the accelerometer ma = 13 10�3 kg. The part of the system, for which a
MDOF model is to be constructed, can be speci�ed by the following components:
the elastic beam, the half sphere and the mounted accelerometer. The accelerometer
is a cylindrical body with radius Ra. The half sphere and the accelerometer intro-
duce a dramatic increase in sti�ness in the region of their attachment to the beam.
Therefore, for modelling purposes, the elastic beam is split into an elastic part (of
length le) and a rigid part (of length l � le), see �gure F.1. It should be noted that
the point of contact between the two half spheres is assumed to lie at a horizontal
position z = l+le

2
.

x

y

z

l
wb

le Rs

hbha

Rigid frame

Beam

Figure F.1: The nonlinear base-excited beam system, where l = 259:9 mm, le = 229 mm,

wb = 29:9 mm, hb = 1:95 mm, Rs = 15:15 mm and ha = 17:75 mm.

F.1 Application of the method of Rayleigh-Ritz

The elastic beam (including rigid part) is a continuum with an in�nite number of
degrees of freedom. The method of Rayleigh-Ritz [Meirovitch, 1997] will be used

to construct a model for the beam with a �nite number of degrees of freedom. It
should be noted that only transverse vibrations of the beam will be considered.
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The rigid attachment of the elastic beam to the rigid frame imposes two boundary
conditions. Furthermore, extra boundary conditions are necessary due to the division
of the beam into an elastic part and a rigid part. These boundary conditions are
found through the compatibility of these parts of the beam.

For the elastic beam including the rigid part, which encloses the rigid part of the
beam, the half sphere attached to the beam and the accelerometer, the expression
for the kinetic energy is given by

T =
1

2

leZ
z=0

�bAb ( _x(z))
2
dz +

1

2
mtot

�
_x

�
z =

l + le

2

��2

+
1

2
Jtot

�
@ _x

@z

�
z =

l + le

2

��2

;

(F.1)

where is the cross-sectional area of the beam Ab = wbhb = 59:8 mm2, _x = @x

@t
.

Furthermore, in (F.1),

mtot = �bAb (l � le) +ma +ms;

Jtot = Jr + Ja + Js

=
1

12
�bAb (l � le)

3 + �b Ab (l � le)

�
1

2
hb � hm

�2

+
1

12
ma

�
3R2

a
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�
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�
1

2
ha + hb � hm

�2

+ms

 
83

320
R2
s +

�
hm +

3

8
Rs

�2
!
:

(F.2)

Herein, Jr, Ja and Js are the moments of inertia of the rigid part of the beam, the
accelerometer and the half sphere, respectively. Moreover, hm is the vertical position
of the centre of gravity of the rigid part of the beam system (including rigid part of
the beam, the accelerometer and the half sphere) relative to the bottom-side of the
beam (hm is positive in upward direction):

hm =
ma(

1
2
ha + hb)� 3

8
msRs +

1
2
�bAb(l � le)hb

ma +ms + �bAb(l � le)
: (F.3)

De�ne �(z) = x(z) � y as the vertical displacement of the beam relative to the
rigid frame, which has vertical displacement y. Consequently, the potential energy
of the beam V can be expressed as

V =

leZ
z=0

Eb Ib

�
@2�

@z2

�2

(z) dz; (F.4)

in which the second moment of area for the cross-section of the beam is determined
by Ib =

1
12
wbhb

3.
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The relative displacement of the beam �(z) obeys the following two boundary
conditions:�

�(z = 0) = 0
@�

@z
(z = 0) = 0:

(F.5)

Using the method of Rayleigh-Ritz, �(z) will be expressed as a polynomial function
of z. Substitution of the boundary conditions (F.5) in a �fth-order polynomial1 gives

�(z; t) = r2z
2 + r3z

3 + r4z
4 + r5z

5 =
�
r2 r3 r4 r5

�
2
664
z2

z3

z4

z5

3
775 = rT z:

(F.6)

This description can be used to construct a 4DOF model for the elastic part of the
beam (0 � z � le). For the rigid part,

�(z; t) = �(le; t) +
@�

@z
(le; t)(z � le) for le � z � l: (F.7)

The coe�cients in r are considered to be degrees of freedom of the Rayleigh-
Ritz model. Consider a description in terms of physical degrees of freedom �T =
[�1 �2 �3 �4] as de�ned by

�1 = ��
�
z =

l+ le

2

�
= ��(z = le)�

�
l � le

2

�
@�

@z
(z = le);

�2 = ��(z =
3l

4
);

�3 = ��(z =
l

2
);

�4 = ��(z =
l

4
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(F.8)

The relation between � and r is, consequently, governed by a transformation matrix
P :

r = P � ) � = rT z = �TP T z; (F.9)

with

P�1 = �
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: (F.10)

1The validation for the choice for a �fth-order polynomial will be given later.
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Recall that for the absolute displacement of the beam it holds that x = � + y with

�
� = �TP T z for 0 � z � le;

� = �TP T z(z = le) + (z � le)�
TP @z

@z
(z = le) for le � z � l:

(F.11)

Substituting this in relation (F.1) for the kinetic energy yields
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where
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Using (F.11), (F.4) yields

V =
1

2
�TK �; (F.14)

with

K = Eb Ib P
T

leZ
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�
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@z2

� �
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@z2

�T
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The expressions for the kinetic and potential energies can be used in Lagrange's
equations [Meirovitch, 1997]:

d

dt

@T

@ _qs
� @T

@qs
+
@V

@qs
= 0; (F.16)

where qs are the generalised coordinates. Applying this to the beam-impact system
yields

M
tot

�� +K � = �m0 �y; (F.17)
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where M
tot

=M + J +m1.

At this point, we have a 4DOF model at our disposal. However, we are merely
interested in the in
uence of the inclusion of the second eigenmode in the model.
Therefore, the �rst two eigenfrequencies of the Rayleigh-Ritz model should be accu-
rate. In order to check the latter, Rayleigh-Ritz models with one, two, three, four
and �nally �ve degrees of freedom were constructed. It could be observed that the
lowest two eigenfrequencies of the model did not change signi�cantly by the exten-
sion of the model from 4DOF to 5DOF. Therefore, the 4DOF was accepted as being
accurate enough.

In order to check the quality of this 4DOF model, its lowest two eigenfrequencies
are compared to the eigenfrequencies of the experimental system in table F.1.

Eigenfrequencies [Hz]

Experimental Model

16.16 17.36
124.40 125.84

Table F.1: Lowest two eigenfrequencies of the 4DOF model vs. experimental eigenfrequen-

cies.

F.2 Modelling of the damping of the elastic beam

The linear damping of the elastic beam will be modelled using proportional damping.
Firstly, the equations of motion (F.17) are transformed to equations of motion in
terms of natural coordinates n:

UTM
tot
U �n+ UTK U _n = �UTm0�y; (F.18)

where � = U n and U is a matrix, whose columns represent the eigenvectors of the
4DOF model. It should be noted that UTM totU and UTK U are diagonal matrices.
When proportional damping is assumed, the damping matrix UTC U is also a
diagonal matrix with diagonal terms 2�j

p
kj mtotj ; j = 1; 2; 3; 4. Herein, mtotj

and kj are the jj-th elements of M tot and K, respectively. Furthermore, �j are
the dimensionless damping parameters related to mode j. Simulations con�rmed
that this form of damping can be e�ectively used to model the damping in the
experimental system (�1 = 0:015 and �2 = 0:005). The inclusion of this type of
damping transforms (F.18) to

UTM
tot
U �n+ UTC U �n+ UTK U _n = �UTm0�y: (F.19)

F.3 A 2DOF model of the beam-impact system

When the nonlinearity of the beam-impact system (see section 4.1.2 and appendix D
for a description of the nonlinearity) is incorporated in the model (F.19) and the
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transformation to physical coordinates � is e�ectuated, the nonlinear equations of
motion are

M tot
�� + C _� +K � +KH�(�1)�1

1:5

 
1 +

3(1� e2)

4

_�1
_��1

!
= �m0�y; (F.20)

in which _��1 = �[1] is the relative velocity of the beam at the point of contact at the
beginning of a collision and

KH =
�
KH 0 0 0

�T
;

�(�1) =

�
1 for �1 > 0
0 for �1 � 0

:
(F.21)

A nonlinear 4DOF model is now available. However, as stated before, our interest
focusses on the lowest two eigenfrequencies of the model. Moreover, simulations
using a 4DOF model are unnecessarily ine�cient (due to the relatively high third
and fourth eigenfrequency) when merely the information with respect to the lowest
two eigenfrequencies is needed. Therefore, the 4DOF model is reduced to a 2DOF
model, without any loss of modelling accuracy as far as the �rst two eigenmodes are
concerned. The reduced 2DOF model can be written in terms of natural coordinates:

Mr�nr + Cr _nr +Krnr +KHr
�(�1)�1

1:5
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in which
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G Some numerical aspects of the spectral

factorization approach based on potential

theory

Let us consider the approach using potential theory in spectral factorization. This

resulted in expression (5.43) for the frequency response function. Herein, an integral
of the following form is encountered:

1Z
0

f(�) d� =

1Z
0

1

�
ln

�
A(! + �)

A(! � �)

�
d�: (G.1)

Note that the integrand f(�) of the integral (G.1) is apparently singular at � = 0.
Namely, the limit

lim
�#0

1

�
ln

�
A(! + �)

A(! � �)

�
=

2A0(!)

A(!)
+O(�2) (G.2)

does exist. However, in practice A0(!) is not known, since the data concerning A(!)
are discrete data resulting from data concerning autospectral density functions of
input and output. However, using the fact that f(�) is an even function and the
fact that f 0(0) exists it can be concluded that f 0(0) = 0. Therefore, f(0) can be
accurately estimated by f(�), in which � is small.

Now, we consider the numerical evaluation of the integral in (G.1). We suppose
that there exists an integer n and a positive real number C such that

A(!) = C !n
�
1 +O( 1

!
)

�
; for ! !1: (G.3)

Substitute this into f(�) to obtain

lim
�!1

1

�
ln

�
A(! + �)

A(! � �)

�
= lim
�!1

1

�
ln

�
1 +O(1

�
)

�
= O( 1

�2
): (G.4)

Hence, the integral in (G.1) converges for � ! 1. However, equation (G.4) shows
that this integral converges rather slowly. This would lead to a numerically rather
ine�cient integration routine. Therefore, it is desirable to estimate the tail of the
integral. Let h be a continuous real function on [0;1> such that

h(�) = O( 1
�2
); for � !1: (G.5)
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We would like to evaluate the tail on the integral (G.1) numerically through

I =

1Z
0

h(�) d�: (G.6)

Choose S > 0 and de�ne

In =

nSZ
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h(�) d�; n = 1; 2; 3; : : : : (G.7)

Now, we have
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for some constant C. Hence,

In�1 +
C

S(n� 1)
= In +

C

Sn
(G.9)

and, therefore,

C

S
= n(n� 1) [In � In�1] : (G.10)

So, an improved estimate of the integral can be evaluated through

În = In + (n� 1) [In � In�1] : (G.11)

Numerical studies also con�rm that În converges much faster than In.



H Determination of the second-order symmetric

transfer function

In this appendix, the second-order, symmetric transfer function H2sym(s1; s2) for
the Volterra system (6.16) is determined from the second-order, triangular kernel
h2tri(�1; �2). The expression for this kernel is very lengthy and, therefore, not given
here. However, all contributions h2

j

tri
(�1; �2), j = 1; : : : ;m, to h2tri(�1; �2) according

to

h2tri(�1; �2) =

mX
j=1

h2
j
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(�1; �2); j = 1; : : : ;m; (H.1)

obey the form:
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for j = 1; : : : ;m and with �(t) de�ned in (6.26). It should be noted that Zj1 and Zj2
are functions of the system parameters of the second-order Volterra system (6.16)
and Z

j

1 2 C and Z
j

2 2 C. The 2-dimensional Laplace transformations of these
contributions are de�ned by
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j

tri
(�1; �2) exp (�(�1s1 + �2s2)) d�1 d�2; (H.3)

with s1 2 C and s2 2 C. Due to linearity of (H.3),

H2tri(s1; s2) =
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j=1
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(s1; s2); j = 1; : : : ;m: (H.4)
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Evaluation of expression (H.3) yields
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j

2(�2 � �1)
�
�(�1)

�(�2 � �1) exp (�(�1s1 + �2s2)) d�2 d�1

=

1Z
�1=0

exp
�
��1(s1 + Z

j

2 � Z
j

1)
�

8<
:

1Z
�2=�1

exp
�
��2(s2 � Z

j

2)
�
d�2

9=
; d�1;

(H.5)

where

1Z
�2=�1

exp
�
��2(s2 � Z

j

2)
�
d�2 =

1

Z
j

2 � s2

h
exp

�
��2(s2 � Z

j

2)
�
j1
�2=�1

i

=
1

s2 � Z
j

2

exp
�
��1(s2 � Z

j

2)
�
:

(H.6)

Using (H.6), one should realise that H2
j

tri
(s1; s2) will be used with Re(s1) = 0

and Re(s2) = 0, see equation (6.29). Equation (H.6) will then only hold for
Re(Zj2) < Re(s2) = 0 (for j = 1; : : : ;m), since only then the imaginary plane
Re(s1) = Re(s2) = 0 will lie in the convergence region of the two-dimensional La-
Place transformation. For all contributions h2

j

tri
(�1; �2) and corresponding Zj2 this

condition is satis�ed here. Inserting (H.6) in (H.5) leads to

H2
j

tri
(s1; s2) =

1

s2 � Z
j

2

1Z
0

exp
�
�1(Z

j

1 � s1 � s2)
�
d�1

=
1

(Zj2 � s2)(Z
j

1 � s1 � s2)
:

(H.7)

This equation only holds for Re(Zj1) < 0, for j = 1; : : : ;m, (for the same reason as

Re(Z
j

2) < 0). This condition is also satis�ed for all contributions h2
j

tri
(�1; �2) and

corresponding Zj1 .

Next, the symmetric, second-order transfer function will be determined. In gen-
eral, for a symmetric (second-order) transfer function it holds that

H2sym(s1; s2) = H2sym(s2; s1): (H.8)

From equation (H.7) it is clear that all contributions to H2tri(s1; s2) are asym-

metric. The contributions to the second-order, symmetric transfer function can be
determined from the contributions to the second-order, triangular transfer function
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using

H2
j

sym(s1; s2) =
1

2

h
H2

j

tri
(s1; s2) +H2

j

tri
(s2; s1)

i

=
1

2(Zj1 � s1 � s2)

 
1

(Zj2 � s2)
+

1

(Zj2 � s1)

!
:

(H.9)
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I Evaluation of the expected values of nonlinear

functions for statistical bilinearization

The expected values Efx4
E
g and Efx2

E
(x + � �(x) x)g in the equation (6.19), con-

cerning the nonlinearity of the piece-wise linear system, need to be evaluated in terms
of �x and �x. Here, we assume that the response x is Gaussian. Consequently, the
expected values

Efx4Eg =
1Z

�1

x4E f(x) dx;

Efx2
E
(x + ��(x)x)g =

1Z
�1

(x2
E
(x+ ��(x)x)) f(x) dx;

(I.1)

(with f(x) given by equation (3.13)) can be transformed to

Efx4Eg =
1p
2��x

1Z
�1

x4E exp

�
� (x� �x)

2

2�2x

�
dx;

Efx2
E
(x + ��(x)x)g = 1p

2��x

1Z
�1

(x2
E
(x+ ��(x)x)) exp

�
� (x� �x)

2

2�2
x

�
dx:

(I.2)

Straightforward calculations concerning the integrals in (I.2) yield the following ex-
pressions:

Efx4
E
g = 3 �4

x
;

Efx2E(x + ��(x)x)g = ��x�
2
x

2

�
1� erf

�
�xp
2�x

��
�

�

r
2

�
�3
x
exp

�
� �2x
2�2

x

�
;

(I.3)

in which erf represents the error function.
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