5 research outputs found

    Global Depth from Epipolar Volumes - A General Framework for Reconstructing Non-Lambertian Surfaces

    No full text
    Using Epipolar Image Analysis in the context of the correspondence finding problem in depth reconstruction has several advantages. One is the elegant incorporation of prior knowledge about the scene or the surface reflection properties into the reconstruction process. The proposed framework in conjunction with graph cut optimization is able to reconstruct also highly specular surfaces. The use of prior knowledge and multiple images opens new ways to reconstruct surfaces and scenes impossible or error prone with previous methods. Another advantage is improved occlusion handling. Pixels that are partly occluded contribute to the reconstruction results. The proposed shifting of some of the computation to graphics hardware (GPU) results in a significant speed improvement compared to pure CPUbased implementations

    Image-Based Localization Using the Plenoptic Function

    Get PDF
    In this report we study the ways to exploit the vast amount of information inherent in the plenoptic space and constraints of the plenoptic function to improve the efficiency of image retrieval, recognition and matching techniques. The specific application we are concerned with is image-based location recognition on mobile devices. The plenoptic space is formed by extending the notion of traditional two-dimensional by adding more dimensions for viewing direction, time and wavelength. Using current mobile devices' built-in cameras, one can easily capture a large sequence of pictures from a single static scene by moving the camera in one direction, which form a three dimensional plenoptic function

    Deformable shape matching

    Get PDF
    Deformable shape matching has become an important building block in academia as well as in industry. Given two three dimensional shapes A and B the deformation function f aligning A with B has to be found. The function is discretized by a set of corresponding point pairs. Unfortunately, the computation cost of a brute-force search of correspondences is exponential. Additionally, to be of any practical use the algorithm has to be able to deal with data coming directly from 3D scanner devices which suffers from acquisition problems like noise, holes as well as missing any information about topology. This dissertation presents novel solutions for solving shape matching: First, an algorithm estimating correspondences using a randomized search strategy is shown. Additionally, a planning step dramatically reducing the matching costs is incorporated. Using ideas of these both contributions, a method for matching multiple shapes at once is shown. The method facilitates the reconstruction of shape and motion from noisy data acquired with dynamic 3D scanners. Considering shape matching from another perspective a solution is shown using Markov Random Fields (MRF). Formulated as MRF, partial as well as full matches of a shape can be found. Here, belief propagation is utilized for inference computation in the MRF. Finally, an approach significantly reducing the space-time complexity of belief propagation for a wide spectrum of computer vision tasks is presented.Anpassung deformierbarer Formen ist zu einem wichtigen Baustein in der akademischen Welt sowie in der Industrie geworden. Gegeben zwei dreidimensionale Formen A und B, suchen wir nach einer Verformungsfunktion f, die die Deformation von A auf B abbildet. Die Funktion f wird durch eine Menge von korrespondierenden Punktepaaren diskretisiert. Leider sind die Berechnungskosten für eine Brute-Force-Suche dieser Korrespondenzen exponentiell. Um zusätzlich von einem praktischen Nutzen zu sein, muss der Suchalgorithmus in der Lage sein, mit Daten, die direkt aus 3D-Scanner kommen, umzugehen. Bedauerlicherweise leiden diese Daten unter Akquisitionsproblemen wie Rauschen, Löcher sowie fehlender Topologieinformation. In dieser Dissertation werden neue Lösungen für das Problem der Formanpassung präsentiert. Als erstes wird ein Algorithmus gezeigt, der die Korrespondenzen mittels einer randomisierten Suchstrategie schätzt. Zusätzlich wird anhand eines automatisch berechneten Schätzplanes die Geschwindigkeit der Suchstrategie verbessert. Danach wird ein Verfahren gezeigt, dass die Anpassung mehrerer Formen gleichzeitig bewerkstelligen kann. Diese Methode ermöglicht es, die Bewegung, sowie die eigentliche Struktur des Objektes aus verrauschten Daten, die mittels dynamischer 3D-Scanner aufgenommen wurden, zu rekonstruieren. Darauffolgend wird das Problem der Formanpassung aus einer anderen Perspektive betrachtet und als Markov-Netzwerk (MRF) reformuliert. Dieses ermöglicht es, die Formen auch stückweise aufeinander abzubilden. Die eigentliche Lösung wird mittels Belief Propagation berechnet. Schließlich wird ein Ansatz gezeigt, der die Speicher-Zeit-Komplexität von Belief Propagation für ein breites Spektrum von Computer-Vision Problemen erheblich reduziert

    Coherent multi-dimensional segmentation of multiview images using a variational framework and applications to image based rendering

    No full text
    Image Based Rendering (IBR) and in particular light field rendering has attracted a lot of attention for interpolating new viewpoints from a set of multiview images. New images of a scene are interpolated directly from nearby available ones, thus enabling a photorealistic rendering. Sampling theory for light fields has shown that exact geometric information in the scene is often unnecessary for rendering new views. Indeed, the band of the function is approximately limited and new views can be rendered using classical interpolation methods. However, IBR using undersampled light fields suffers from aliasing effects and is difficult particularly when the scene has large depth variations and occlusions. In order to deal with these cases, we study two approaches: New sampling schemes have recently emerged that are able to perfectly reconstruct certain classes of parametric signals that are not bandlimited but characterized by a finite number of parameters. In this context, we derive novel sampling schemes for piecewise sinusoidal and polynomial signals. In particular, we show that a piecewise sinusoidal signal with arbitrarily high frequencies can be exactly recovered given certain conditions. These results are applied to parametric multiview data that are not bandlimited. We also focus on the problem of extracting regions (or layers) in multiview images that can be individually rendered free of aliasing. The problem is posed in a multidimensional variational framework using region competition. In extension to previous methods, layers are considered as multi-dimensional hypervolumes. Therefore the segmentation is done jointly over all the images and coherence is imposed throughout the data. However, instead of propagating active hypersurfaces, we derive a semi-parametric methodology that takes into account the constraints imposed by the camera setup and the occlusion ordering. The resulting framework is a global multi-dimensional region competition that is consistent in all the images and efficiently handles occlusions. We show the validity of the approach with captured light fields. Other special effects such as augmented reality and disocclusion of hidden objects are also demonstrated

    Eight Biennial Report : April 2005 – March 2007

    No full text
    corecore