14 research outputs found

    MATSuMoTo: The MATLAB Surrogate Model Toolbox For Computationally Expensive Black-Box Global Optimization Problems

    Full text link
    MATSuMoTo is the MATLAB Surrogate Model Toolbox for computationally expensive, black-box, global optimization problems that may have continuous, mixed-integer, or pure integer variables. Due to the black-box nature of the objective function, derivatives are not available. Hence, surrogate models are used as computationally cheap approximations of the expensive objective function in order to guide the search for improved solutions. Due to the computational expense of doing a single function evaluation, the goal is to find optimal solutions within very few expensive evaluations. The multimodality of the expensive black-box function requires an algorithm that is able to search locally as well as globally. MATSuMoTo is able to address these challenges. MATSuMoTo offers various choices for surrogate models and surrogate model mixtures, initial experimental design strategies, and sampling strategies. MATSuMoTo is able to do several function evaluations in parallel by exploiting MATLAB's Parallel Computing Toolbox.Comment: 13 pages, 7 figure

    Metamaterial filter design via surrogate optimization

    Get PDF
    Recently, an increasing research effort has been dedicated to analyse transmission and dispersion properties of periodic metamaterials containing resonators, and to optimize the amplitude of selected acoustic band gaps between consecutive dispersion curves in the Floquet-Bloch spectrum. Potential novel applications of this research are in the design of passive mechanical filters/diodes. The present work proposes a way to interpolate the objective functions in such band gap optimization problems, using Radial Basis Functions. The study is motivated by the high computational effort often needed for an exact evaluation of the original objective functions, when using iterative optimization algorithms. By replacing such functions with surrogate objective functions, well-performing suboptimal solutions can be obtained with a small computational effort. Numerical results demonstrate the feasibility of the approach

    Integration of expert knowledge into radial basis function surrogate models

    Get PDF
    A current application in a collaboration between Chalmers University of Technology and Volvo Group Trucks Technology concerns the global optimization of a complex simulation-based function describing the rolling resistance coefficient of a truck tyre. This function is crucial for the optimization of truck tyres selection considered. The need to explicitly describe and optimize this function provided the main motivation for the research presented in this article. Many optimization algorithms for simulation-based optimization problems use sample points to create a computationally simple surrogate model of the objective function. Typically, not all important characteristics of the complex function (as, e.g., non-negativity)—here referred to as expert knowledge—are automatically inherited by the surrogate model. We demonstrate the integration of several types of expert knowledge into a radial basis function interpolation. The methodology is first illustrated on a simple example function and then applied to a function describing the rolling resistance coefficient of truck tyres. Our numerical results indicate that expert knowledge can be advantageously incorporated and utilized when creating global approximations of unknown functions from sample points

    Surrogate Optimization of Deep Neural Networks for Groundwater Predictions

    Full text link
    Sustainable management of groundwater resources under changing climatic conditions require an application of reliable and accurate predictions of groundwater levels. Mechanistic multi-scale, multi-physics simulation models are often too hard to use for this purpose, especially for groundwater managers who do not have access to the complex compute resources and data. Therefore, we analyzed the applicability and performance of four modern deep learning computational models for predictions of groundwater levels. We compare three methods for optimizing the models' hyperparameters, including two surrogate model-based algorithms and a random sampling method. The models were tested using predictions of the groundwater level in Butte County, California, USA, taking into account the temporal variability of streamflow, precipitation, and ambient temperature. Our numerical study shows that the optimization of the hyperparameters can lead to reasonably accurate performance of all models (root mean squared errors of groundwater predictions of 2 meters or less), but the ''simplest'' network, namely a multilayer perceptron (MLP) performs overall better for learning and predicting groundwater data than the more advanced long short-term memory or convolutional neural networks in terms of prediction accuracy and time-to-solution, making the MLP a suitable candidate for groundwater prediction.Comment: submitted to Journal of Global Optimization; main paper: 25 pages, 19 figures, 1 table; online supplement: 11 pages, 18 figures, 3 table
    corecore