
Integration of expert knowledge into radial basis
function surrogate models
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Abstract A current application in a collaboration between Chalmers Univer-
sity of Technology and Volvo Group Trucks Technology concerns the global
optimization of a complex simulation-based function describing the rolling re-
sistance coefficient of a truck tyre. This function is crucial for the optimization
of truck tyres selection considered. The need to explicitly describe and opti-
mize this function provided the main motivation for the research presented
in this article. Many optimization algorithms for simulation-based optimiza-
tion problems use sample points to create a computationally simple surrogate
model of the objective function. Typically, not all important characteristics
of the complex function (as, e.g., non-negativity)—here referred to as expert
knowledge—are automatically inherited by the surrogate model. We demon-
strate the integration of several types of expert knowledge into a radial basis
function interpolation. The methodology is first illustrated on a simple exam-
ple function and then applied to a function describing the rolling resistance
coefficient of truck tyres. Our numerical results indicate that expert knowl-
edge can be advantageously incorporated and utilized when creating global
approximations of unknown functions from sample points.
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1 Introduction

This article proposes a means to integrating certain types of expert knowl-
edge about the reality behind a simulation-based function into a radial basis
function (RBF) interpolation, based on sample points. We wish to create an
explicit model of an unknown function that realistically relates its design to
expert knowledge. The model is then used to represent and/or optimize the
function. The research is motivated by a project conducted by Volvo Group
Trucks Technology and with the purpose to find an optimal tyre configuration
for each truck combination with respect to the rolling resistance, i.e., energy
losses caused by the tyre. The function describing the rolling resistance coef-
ficient (RRC) is computationally expensive: each simulation performed by a
finite element analysis used in this article requires four hours of computing
time ([2]). Many algorithms for solving simulation-based optimization prob-
lems utilize a simple surrogate model of the unknown function, which is based
on sample points and uses a particular class of interpolating functions. In
[21,32,36] a set of sample points is generated in the variable space, the sim-
ulation is run for each element of this set, and the surrogate model is based
on the resulting values. The surrogate model is then optimized, yielding an
approximation of the optimal solution to the unknown function. In order to
improve the approximation the surrogate model can be updated with new
sample points during the optimization process.

So far, we have considered six variables influencing the RRC: the speed
of the truck, the inflation pressure, the width and diameter of the tyre, the
spindle load, and the groove depth. We consider the interpolation based on
RBF introduced by Wendland [45]. The resulting surrogate model—for which
no further sample points can be evaluated—contains inaccuracies and even
physically absurd values (e.g., negative values of the RRC, and the model being
non-smooth), leading to a poor correspondence with the experts’ expectations.
This article describes how expert knowledge can be explicitly incorporated into
the surrogate model. The surrogate model and its optimal solution are then
more easily accepted by the expert community and improved in accordance
with physical laws and/or the desired behaviour.

1.1 Previous work

Certain phenomena, such as the rolling resistance, cannot be described by ex-
plicit functions, but rather by solutions to, e.g., partial differential equations.
In [34, Ch. 2] the rolling tyre is described by so-called fundamental differen-
tial equations for a rolling body. The evaluation of the underlying functions
is typically then computationally expensive and can only be performed using
simulations; derivatives of these functions are hence seldom available. Conse-
quently, optimization problems including such simulation-based functions can
in practice not be solved by algorithms requiring many function evaluations,
such as, e.g., direct search methods (reviewed in [25]). E.g., the MADS al-
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gorithm (described in [3]) finds local optima of the function (the function is
assumed to meet certain additional criteria ([1])) which are not guaranteed to
be global optima. However, many optimization problems of practical relevance
are non-convex and exhibit multiple local optima, thus demanding the use of
global optimization techniques for their solution. Many global optimization
algorithms developed for solving simulation-based optimization problems pro-
vide a surrogate model that mimic the behaviour of the expensive function as
closely as possible, while being computationally cheap to evaluate; this surro-
gate model is then optimized (see the review in [22]). Algorithm 1 is a simple
description of a general response surface method.

Algorithm 1 General response surface optimization method
0: Create and evaluate an initial set of sample points.
1: Construct a surrogate model of the simulation-based function using the points evaluated.
2: Refine the surrogate model by selecting and evaluating a new sample point.
3: Go to step 1 unless a stopping criterion is met.
4: Compute an optimal solution to the surrogate model constructed.

The initial set of sample points is created by a design of experiments tech-
nique, such as the latin hypercube ([29]). The strategy to select a point to eval-
uate in step 2 is algorithm specific; it must balance local and global searches
so that the information in the surrogate model is utilized, but also so that
no part of the feasible set is left unexplored. The stopping criterion in step 3
is problem specific (e.g., a maximum number of function evaluations being
calculated, or the attainment of a certain quality measure of the model with
respect to some model validation technique, such as the cross-validation stud-
ied in [30]). In step 4 the resulting surrogate model is optimized by a global
optimization solver; the resulting solution approximates the optimal solution
of the underlying simulation-based function. If the function simulation is com-
putationally more demanding than the expert knowledge incorporation then
the expert knowledge may be utilized in step 1 else the expert knowledge is
used in the last iteration of Algorithm 1.

The expert knowledge may also be utilized when constructing surrogate
models needed for local optimization within a trust region algorithm for si-
mulation-based optimization ([46]), or when no optimization is required, but
the primary aim is to construct a physically meaningful surrogate of the true
function.

The surrogate model can be a linear or quadratic approximation ([9]),
a general regression function ([5]), or an interpolation ([33]). Interpolations
are usually constructed as linear combinations of basis functions being, e.g.,
linear functions, thin plate splines, or multi-quadratics. A surrogate model
from sample points is typically constructed to have a closed form expression
of a number of coefficients and the unknown function’s variables; an overview
of optimization algorithms utilizing a surrogate model is found in [9]. The coef-
ficients are found as the solution either to a system of equations (e.g., a system
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of linear equations for approximation using linear regression; see [11]) or to an
optimization problem. Both the approximation by a given function and the
linear multiple regression can typically be reformulated as linear programming
problems, the objective function and the constraints of which are formed by
the approximation or regression requirements (see [11,44]).

The regression and approximation using polynomials are computationally
more demanding and the accuracy of fit decreases with an increasing number
of variables and/or sample points, as is shown in Section 2.1. Promising alter-
natives to effectively model the multivariate functions are RBF interpolation
([45]) or Kriging approximation ([26]). While the regression and polynomial
approximations usually fit the unknown function only locally, the RBF inter-
polation and Kriging approximation often yield good global representations of
the unknown function (see [7]) and are hence frequently used in algorithms for
the global optimization of simulation-based functions (e.g., [16,21,40]). The
latter treats more properly the covariance of individual variables ([10]) and
is more suitable for noisy simulations ([13]). Kriging approximations are con-
structed iteratively, thus demanding more computational effort, and the closed
form expression of the model of the unknown function is nonlinear with respect
to its coefficients; therefore, any expert knowledge will result in nonlinear con-
straints with respect to the Kriging coefficients. RBF interpolations, on the
contrary, are suitable for reformulations as optimization problems, since the
corresponding closed form expression of the function model is linear with re-
spect to (wrt.) its coefficients, see Section 3. By relaxing the interpolation
requirement—that the value of the surrogate function has to meet the simu-
lated value at each sample point—using a least squares approach a flexibility
is released which can be utilized to introduce expert knowledge in terms of lin-
ear constraints added to the optimization model. In the case that the sample
points are given with an error this relaxation will not result in a worse fit of
the surrogate model to the true function. On the other hand, the convergence
of the RBF interpolation to the unknown function, which we wish to explic-
itly approximate, is then no longer guaranteed. The expert knowledge may
also give rise to infinitely many constraints (if the surrogate function must
obey certain constraints over a whole domain); the resulting problem is then
a semi-infinite program, which calls for specialized algorithms ([37, Ch. 3]).

1.2 Motivation

The main contribution of this article is the incorporation of explicit models
of expert knowledge in an RBF interpolation. There are always two criteria
when creating the surrogate model—the wish to fit the unknown function
better over the entire design space and to obey the added expert knowledge.
We assume that a decision-maker determines the relative importance of each
of these criteria. Here, we consider the special case of the expert knowledge
being enforced through explicit constraints on the interpolation coefficients.
This case allows for the preservation of some of the properties of the origi-
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nal model (especially in domains that are separated from those affected by
the description of the expert knowledge, due to the strong locality of RBF
interpolation; [12]). If the model would be constructed to fully comply with
the expert knowledge—omitting the RBF interpolation—then the quality of
the model would be constrained by that of the available expert knowledge.
Moreover, then the framework of RBF interpolation could not be utilized to
construct the surrogate model.

To the authors’ knowledge, there are hitherto no approaches available in the
open literature connecting RBF interpolation with expert knowledge aiming
at producing surrogate models of unknown simulation-based functions.

1.3 Outline

This article is organized as follows. The components used to construct the
surrogate model of the simulation-based function are introduced in Section 2;
the RBF interpolation is described and a sample of expert knowledge is listed.
In Section 3 we reformulate the RBF interpolation as an unconstrained opti-
mization problem and incorporate expert knowledge into it. Section 4 describes
the implementation of each of the types of expert knowledge considered. The
methodology is applied to a one-dimensional test function (Section 5), as well
as to the RRC function (Section 6). Finally, Section 7 provides conclusions
and topics for future research and development.

2 Components of the surrogate model

A number of sample points with corresponding function values are to be inter-
polated. This can be achieved through the utilization of an RBF interpolation,
as described in Section 2.1. To guarantee the convergence of the RBF interpo-
lation to the unknown function, the latter has to be smooth which is a natural
assumption for the RRC function. The interpolating function possesses theo-
retical properties, of which we list those being relevant for this study.

– As the set of data points grows dense, the surrogate models converge locally
uniformly to the unknown function on a bounded domain (see [20]).

– The interpolation function is the simplest possible (in terms of its norm)
function that interpolates data using the chosen RBF (see [21]).

We wish to include properties of the true function stemming from expert
knowledge, which can contribute to reducing the distance between the un-
known function and the surrogate model. Our surrogate model is constructed
by standard RBF methods ([45, Sec. 8.5]). The theory of RBF interpolation
and the corresponding error estimates are described in [45, Ch.11 and 13], and
are briefly summarized next.
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2.1 RBF interpolation

The interpolation is the task of determining a continuous function Sα : RD 7→
R, where α ∈ RN is a vector of interpolation coefficients, such that at each
point in the set XN := {x̄1, . . . , x̄N} ⊂ RD of sample points, the unknown
function f : RD 7→ R satisfies

Sα(x̄n) = f(x̄n), n = 1, . . . , N, (1)

where f(x̄n) is the value of the unknown function computed by a simulation at
the sample point x̄n. Multivariate functions can be interpolated by introducing
RBF, as described below.

Definition 1 (radial basis function, RBF). Let ‖ · ‖ denote the Euclidean
norm. A function g : RD → R is called a radial basis function if there exists
a univariate function φ : [0,∞)→ R such that

g(x) = φ(‖x‖), x ∈ RD.

The interpolation of multivariate functions using the RBF g(·) = φ(‖ · ‖)
and a space πs−1 of (s − 1)-degree polynomials on RD, with dimension Q :=

dimπs−1(RD) and basis {pq}Qq=1, is defined as follows ([45]). Assume that the

set XN of points and the corresponding vector f := (f(x̄1), . . . , f(x̄N ))T ∈ RN

of function values are given. Let x = (x1, . . . , xD)T ∈ RD denote the vector of
variables, and define the surrogate function Sα as

Sα(x) :=

N∑
n=1

αnφ(‖x− x̄n‖) +

Q∑
q=1

αN+q pq(x). (2)

The interpolation problem is then defined as that to find a vector α ∈ RN+Q

such that the equations

N∑
n=1

αnφ(‖x̄i − x̄n‖) +

Q∑
q=1

αN+q pq(x̄i) = f(x̄i), i = 1, . . . , N, (3a)

N∑
n=1

αnpq(x̄n) = 0, q = 1, . . . , Q, (3b)

hold. Since pq, q = 1, . . . , Q, is the basis for πs−1, the equations (3b) are
equivalent to the requirement that the vector (α1, . . . , αN ) belongs to the
space πs−1.

To include only the most common RBFs, such as linear or cubic, we re-
quire that not all points in the set XN belong to a common hyperplane and
choose to use the 1st degree polynomials space, π1. Then, the system (3) of lin-
ear equations is non-singular (see [21, p. 33]), and hence possessing a unique
solution.

Considering the 1st degree polynomials space π1 with dimension Q = D+1
and basis (1, x1, . . . , xD), the interpolation problem can be reformulated as
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follows (see also [21]). Consider a set XN of N ≥ D + 1 points with a cor-
responding vector f ∈ RN of function values. A unique interpolation can be
found for an arbitrary f if at most N − 1 of the points in XN belong to a
common hyperplane. The vector α ∈ RN+1+D determining the interpolation
function Sα (2) is defined by the following system(

A P
PT 0

)
α =

(
f
0

)
(4)

of linear equations, where Aij := φ(‖x̄i − x̄j‖) and Pi· := (1, (x̄i)T), i, j =
1, . . . , N . Due to the use of a polynomial space, the matrix of coefficients in
(4) is non-singular (see [21]); therefore the system (4) (which is equivalent to
the system (3) for our choice of the polynomial space) has a unique solution.
Defining, for the sake of simplicity,

Ã :=

(
A P
PT 0

)
and f̃ :=

(
f
0

)
,

the system (4) of N + 1 +D equations is equivalently expressed as

Ãα = f̃ . (5)

Hence, the assignment (2) defines the unique RBF interpolation Sα of the
unknown function f on the set XN of sample points, where the vector α
of interpolation coefficients is uniquely determined by the system (5) of lin-
ear equations. Such models are called RBF interpolations, since Sα(x) −∑Q

q=1 αN+q pq(x) is a linear combination of the function φ(‖ · ‖) values, which

are constant on spheres in RD ([46]). When deciding which RBF to use in the
surrogate model a strategy for measuring the error (e.g., cross-validation; see
[23]) must also be chosen.

2.2 RBF approximation

Constructing an approximation of the unknown function f corresponds to
finding a continuous function Sα such that, for the given points x̄1,. . ., x̄N⊂RD

and the vector of function values f := (f(x̄1), . . . , f(x̄N ))T, it holds that

Sα(x̄n) = f(x̄n) + en, n = 1, . . . , N, (6)

where e := (e1, . . . , eN )T denotes possible perturbations of the vector f and
α ∈ RN+1+D denotes the vector of approximation coefficients. The approx-
imation Sα should be as simple as possible in terms of its L2 norm (since
physical relations are often simple), and hence the values of e should be cho-
sen accordingly.

Solving a perturbed (with a vector e) version of the approximation prob-
lem (6) is equivalent to solving the system

Ãα :=

(
A P
PT 0

)
α =

(
f + e

0

)
(7)
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of linear equations. In order to find the surrogate model with the least L2

norm using the chosen RBF, Jakobsson et al. ([21]) derive a convex quadratic
program for determining the perturbation vector e. This program involves a
parameter η ∈ (0, 1) controlling the balance between reducing the interpolation
error and decreasing the norm of Sα; its optimality conditions (see [4, Ch. 4])
are given by (

ηIN − IN − ηBTAB
)
e = ηBTABf , (8)

where Bij := (Ã−1)ij for i, j = 1, . . . , N . A value of η close to 1 (respectively,
0) means that decreasing the norm of the surrogate model is prioritized much
higher (respectively, lower) than minimizing the interpolation error. An appro-
priate value of η (based on expert knowledge) yields a balance such that some
error is allowed, but the characteristics of the sample points are still present.

The assignment (7) then defines the RBF approximation Sα of the un-
known function f on the set XN of sample points where the vector e fulfills (8).

2.3 Expert knowledge

We assume that—in addition to the sample points—expert knowledge about
additional properties of the unknown function is available. The information
obtained from experts is modeled by requirements on the unknown function
and often comes with some uncertainty which has to be considered and pro-
cessed (e.g., [43]). We next classify—in a mathematical context—the types of
specifications of the expert knowledge considered in this article.

Property 1 (types of expert knowledge) Expert knowledge is classified
as specifications of

a) function values at certain points or in subdomains,
b) derivative values at certain points or in subdomains, and
c) functions wrt. variables x (e.g., linear) on subdomains.

The requirements on function values may stem from physical laws (e.g.,
non-negativity) or mathematical relations (e.g., the value at a specific point
should be close to a convex combination of the closest sample points’ values).
The values of the function and/or its derivatives may be required to lie in
specific ranges (e.g., limit the oscillations of the function).

3 Integration of expert knowledge into RBF interpolation

We wish to take into account the expert knowledge when the interpolation
coefficients α of the RBF interpolation are computed. As described in Sec-
tion 2.1, the RBF interpolation of the sample points is uniquely determined.
Therefore we have to introduce a certain degree of freedom—utilizing an appro-
priate reformulation—in order to allow the surrogate model to take the given
expert knowledge into account. The strict interpolation condition (5) then has
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to be relaxed. We base this relaxation on least squares, i.e., we search for a
model that fits the sample points as good as possible wrt. the sum of squared
residuals criterion; see [38, Ch.2] for details. While the least squares approach
utilizes the l2 norm, the l1 and l∞ norms also yield tractable optimization
problems.

Since the system (5) comprises N + 1 +D equations as well as unknowns,
additional equations stemming from the expert knowledge lead to an overde-
termined system of equations. The vector f̃ contains the observed function
values while the surrogate model predicted values are determined by Ãα, in
the terminology of least squares. Since the RBF interpolation given by the so-
lution to the system (5) does not necessarily conform to the expert knowledge,
we solve instead the optimization problem to minimize the squared Euclidean
distance between the surrogate model and the sample points, according to

minimize
α∈RN+1+D

∥∥∥Ãα− f̃
∥∥∥2 . (9a)

According to Property 1, the expert knowledge can be expressed by inequality
and/or equality constraints, as

gt(α) ≥ 0, t ∈ T , (9b)

hr(α) = 0, r ∈ R. (9c)

The objective function in (9a) is quadratic with a positive definite Hessian
(see [6]). Hence, if the functions gt and hr are linear and the sets T and
R are finite, then the optimization problem (9) can be solved in polynomial
time (see [24]). Note that each type of expert knowledge listed in Property 1
results in linear constraints wrt. α (i.e., gt, t ∈ T , and hr, r ∈ R, are linear
functions). The surrogate model given by the solution to the optimization
problem (9)—approximating the original RBF interpolation—will typically
not coincide exactly with the evaluated values of the function f at the sample
points. However, the values will be as close as possible into the sense of least
squares, taking in account the additional constraints (9b)–(9c).

3.1 On the differences between the interpolation and its approximation

The original RBF interpolation is approximated as a result of the incorporation
of the expert knowledge into the model. We next investigate how and to what
extent the expert knowledge influences the magnitude of the difference between
the original interpolation and its approximation.

The constraints (9b)–(9c) shift the values of the original interpolation Sα

at the sample points. Due to the uniqueness of the RBF interpolation for the
given sample points, adding the expert knowledge to the interpolation problem
corresponds to a perturbation of the vector f in (3a) to f +e, according to (6).
At each sample point x̄n, the value of en is proportional to how much the
surrogate model is enforced—by the expert knowledge—to behave differently
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(i.e., if fα(x̄n) < 0, then the requirement that Sα(x̄n) ≥ 1 yields a larger value
of en than does Sα(x̄n) ≥ 0). For each specific type of expert knowledge the
value of e is found by solving the corresponding optimization problem (9). Its
solution yields an approximation with a minimal residual wrt. the difference
between the original and the perturbed vector of function values at the sample
points, i.e., between f and f + e.

Let α = α1 denote the solution to the system (5). Further, let α = α2

denote the solution to the system (7) of linear equations which is found by
solving (9). Defining ẽT :=

(
eT,0T

)
yields the equivalence expression

α2 = α1 + Ã−1ẽ, (10)

implying that

Sα2(x)−Sα1(x)=

N∑
n=1

(Ã−1ẽ)nφ(‖x−x̄n‖)+(Ã−1ẽ)N+1+

D∑
d=1

(Ã−1ẽ)N+1+d xd

= ẽT(Ã−1)T
(
φ(‖x−x̄1‖), . . . , φ(‖x−x̄N‖), 1,xT

)T
. (11)

Hence, the difference between the interpolation and its approximation depends
linearly on the elements of ẽ, i.e, on the perturbations of the function values at
the sample points. The expert knowledge corresponds to such a perturbation.

In Section 4 we describe how different specifications of the expert knowl-
edge lead to different types of optimization problems, accordingly motivating
designated optimization algorithms. As demonstrated in (11), the inclusions
of constraints representing expert knowledge will result in adjustments of the
approximation that vary linearly with the enforced difference between the in-
terpolation and its approximation.

4 Implementation of expert knowledge

The specifications listed in Property 1 do not guide towards a specific RBF,
or a specific polynomial space. Each specification has to be appropriately mo-
deled, resulting in optimization models with different characteristics. We next
develop optimization models for incorporating each of the specifications into
the RBF interpolation. We demonstrate that even complex expert knowledge
can be modeled using linear constraints. We start with the non-negativity
requirement, which motivated this work and is a special case of Property 1.a).

4.1 Non-negativity requirement

Assume that the expert knowledge expresses that the unknown function must
be non-negative everywhere. This is a special case of Property 1.a) described
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in Section 4.2 with εm = 0, m = 1, . . . ,M which results in minimizing the
function (9a) subject to the non-negativity constraints according to

minimize
α

‖Ãα− f̃‖2, (12a)

subject to Sα(x) ≥ 0, x ∈ X, (12b)

where the surrogate function Sα is defined by (2), and the set X ⊆ RD is
a box, in which the surrogate model Sα is assumed to be valid. To enforce
non-negativity, the function values f(x̄n) at the sample points are assumed to
be non-negative. Since the objective function is quadratic and the constraints
linear wrt. α, the main complexity of the problem (12) stems from the pres-
ence of infinitely many constraints: the problem forms a quadratic semi-infinite
program. General semi-infinite optimization problems cannot be solved with-
out a discretization, such that the feasible set is defined by a finite number of
constraints. Algorithms for solving semi-infinite programs are found in [15,37],
covering also theoretical analysis of the algorithms, and in [18], focusing on
implementation. We propose Algorithm 2 for solving the optimization prob-
lem (12). The algorithm is based on a discretization of the feasible region,
which utilizes the minimization of Sα over X in order to generate new candi-
date points in which the non-negativity is required.

Algorithm 2 Calculate αP defining SαP (x) ≥ 0 for all x ∈ X
1: Choose the RBF φ to be used and the maximum allowed number, Z, of iterations, set
P := 0, and compute α0 = Ã−1 f̃ .

2: Assemble the surrogate model SαP , as defined in (2). Compute

xP
opt ∈ argmin

x∈X
SαP (x). (13)

3: If SαP (xP
opt) ≥ 0, then terminate: the vector αP defines the required surrogate model.

4: Compute αP+1 as solution to the problem to

minimize
α

‖Ãα− f̃‖2,

subject to Sα(xp
opt) ≥ 0, p = 0, . . . , P.

(14)

If P > Z, then terminate. Otherwise, let P := P + 1, and go to step 2.

Summarizing Algorithm 2, in the 1st step the RBF interpolation of the
unknown function is computed. In the 2nd step the surrogate model is assem-
bled and minimized. The point corresponding to the most negative function
value defines a constraint to be added to the optimization problem, which is
solved in the 4th step. The algorithm is terminated if the required surrogate
model is found or if the maximum allowed number Z of iterations is attained.
The latter termination criteria implies that an additional simulation of the
computationally expensive function should be performed and can be replaced
by prescribing the minimum allowed difference ε between the optimal values
of two consecutive surrogate models, |SαP−1(xP−1

opt )− SαP (xP
opt)| ≤ ε.
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The optimization problem (14) is a convex quadratic program with finitely
many linear constraints and can be solved, e.g., by a modification of the sim-
plex method ([14]) or an interior point method ([28]). The problem (13) is
generally a non-convex optimization problem with box constraints. An exter-
nal global solver (e.g., BARON [41] based on a branch-and-cut approach; see
[42]) can be used to find its global minimum. Alternatively, explicit formula-
tions of the first and second partial derivatives of the surrogate function SαP

can be used to find its global minimum using an interval analysis and convex
underestimates (see [17]). Convergence of the algorithm used in BARON to
a global minimum is guaranteed for the problem (13), because the variables
are both upper and lower bounded ([41]).

Algorithm 2, which is a special case of the modified Remez algorithm ([39]),
converges to an optimal solution to the original optimization problem (12),
provided that the global minimum is computed in the 3rd step of each iteration;
this holds since X is a compact set and since Sα is continuous on X by the
definition (2). However, Algorithm 2 becomes numerically inefficient for higher
dimensional problems, if either the number of iterations P grows very large, or
if the simulation-based function f possesses a zero value at some of the sample
points. Numerical tests using Algorithm 2 are presented in Section 5.1.

4.2 Prescribed function values

A typical representative of Property 1.a) is the requirement that the surrogate
function meets (with a proper tolerance) a specific value at each of a number
of specified points. Three approaches to meet this goal are discussed next.

Utilizing expert knowledge as constraints of the optimization problem

The optimization problem corresponding to the requirement to (approximately)
meet prescribed function values is to

minimize
α

‖Ãα− f̃‖2, (15a)

subject to
∣∣∣Sα(x̂N+m)− f̂N+m

∣∣∣ ≤ εm, m = 1, ...,M, (15b)

where f̂N+m denotes the function value at the point x̂N+m, as given by an ex-
pert, and εm > 0 denotes the tolerance. The triples (x̂N+m, f̂N+m, εm) might
stem from a one-dimensional approximation of the D-dimensional function f ,
or represent points of the unknown function with well-known values.

The quadratic program, obtained when each of the M constraints in (15b)
is expressed by two affine inequalities, can be solved with a standard quadratic
programming solver (see [14,28]); its optimal solution αopt determines a new
surrogate model Sαopt complying with the expert knowledge.

The resulting system of 2M affine constraints in (15b) may be inconsistent,
indicating that a human error is involved, or that the model is not properly
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constructed. In such cases, the model needs to be adjusted to resolve the
inconsistency. Lagrange multiplier values (see [4, Section 6.1]) for the 2M
affine constraints indicate which of them should be weakened. The Lagrange
function for the problem (15) is defined as

L(α,µ1,µ2) :=‖Ãα−f̃‖2+
M∑

m=1

[
(µ1

m− µ2
m)
(
Sα(x̂N+m)−f̂N+m

)
−(µ1

m + µ2
m)εm

]
and the corresponding Lagrangian dual problem is given by

(µ1∗,µ2∗) ∈ argmaxµ1,µ2∈RM
+
{minimumα∈RN+1+DL(α,µ1,µ2)}.

A large value of any of the Lagrange multipliers, µi∗
m, i = 1, 2, indicates

that the corresponding expert knowledge is not well represented by the triple
(x̂N+m, f̂N+m, εm), m = 1, . . . ,M . If no feasible solution to the constraints
(15b) exists, then the tolerances εm corresponding to large Lagrange multi-
plier values, µ1∗

m or µ2∗
m , should be increased or an alternative surrogate model

Sα should be chosen. Hence, the values of the tolerances εm, required for the
system of constraints (15b) to be consistent, reflect the goodness of the chosen
RBF for the problem at hand; see Section 5.2 for a specific example.

Utilizing expert knowledge directly

The expert knowledge can be used directly, i.e., the pairs (x̂N+m, f̂N+m) can
be included in the set of sample points. Then the updated set of sample
points X̂N+M := {x̄1, . . . , x̄N , x̂N+1, . . . , x̂N+M} and the corresponding vector

f̂ := (f(x̄1), . . . , f(x̄N ), f̂N+1, . . . , f̂N+M )T of function and expert knowledge
values are used in (2)–(3), yielding an updated interpolation, Sαupd , of the
unknown function. The function Sαupd uses more points than the original in-
terpolation Sα. Therefore, Sαupd is expected to be a more accurate model of
the unknown function, provided that the values given by the expert possesses
the same level of accuracy as do the values of the original sample points.

Interpolating sample points and approximating expert points

Even if the values provided by experts are less accurate than the values of the
original sample points, they may still be utilized; rather than being interpo-
lated, these points are approximated (see Section 2.2).

Assume that the set X̂N+M of sample and expert points is given, with the
corresponding vector f̂ of function values. The corresponding RBF model of
the unknown function is expressed as

Sα(x):=

N∑
n=1

αnφ(‖x−x̄n‖)+

M∑
m=1

αN+mφ(‖x−x̂N+m‖)+αN+M+1+

D∑
d=1

αN+M+1+dxd,

where the vector α ∈ RN+M+1+D of coefficients is found by solving a system of
N +M +1+D linear equations analogical to (7), which contains the unknown
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perturbation vector e. We assume here that the perturbations at the original
sample points (x̄n, f(x̄n)) are zero, so we require that

Sα(x̄n) = f(x̄n), n = 1, . . . , N,

hold, i.e., en = 0 for n = 1, . . . , N , while some perturbations are possible for
the expert points, which is expressed as

Sα(x̂N+m) = f̂N+m + eN+m, m = 1, . . . ,M.

The corresponding expression of the equations (8), for computing the pertur-
bation vector e, is given by[(

(η1−1)η−11 IN 0N×M

0M×N (η2−1)η−12 IM

)
−BTAB

]
e = BTABf , (16)

where the value of η1 ∈ (0, 1) is chosen to be close to 0 in order to near-
interpolate the real function at the N sample points, while η2 ∈ (0, 1) is
assigned an appropriate value to approximate the M points given by the expert
knowledge; a value of η2 near 0 (respectively, 1) designates a high (respectively,
low) level of confidence of the expert knowledge. The roles of η1 and η2 can
be interchanged if, e.g., the expert sample points are entirely trusted and the
original sample points are assumed to be less accurate. The expression in the
left-hand side of (16) can be extended to more than two levels of accuracy
among the given points.

The perturbation vector e computed in (16) is then used in the analogy
of (7) with N + M + 1 + D equations to find αapprox and the correspond-
ing surrogate function Sαapprox , which interpolates the N sample points and
approximates the M expert points.

Numerical tests of the three approaches described in this subsection, i.e.,
[i] utilizing the expert knowledge as constraints of the optimization problem,
[ii] interpolating the points given by the expert knowledge, and [iii] interpo-
lating the sample points while approximating the expert points, are presented
in Section 5.2.

4.3 Boundedness requirement on function derivatives

Expert knowledge may imply that the derivatives of the surrogate function Sα

are bounded [Property 1.b)]. The partial derivatives wrt. xd, d = 1, . . . , D, of
the function Sα defined in (2) are given by

∂

∂xd
Sα(x) =

N∑
n=1

αn
∂φ (‖x− x̄n‖)

∂xd
+ αN+1+d, d = 1, . . . , D. (17)

Note that, for any choice of an explicit radial basis function, there exists an
explicit expression of the derivative of the univariate function φ.
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From (17) we conclude that the gradient (wrt. x) of the function Sα is
linear wrt. the interpolation coefficients α. Hence, the optimization problem
including requirements on the derivatives of the surrogate model can be for-
mulated as to

minimize
α

‖Ãα− f̃‖2,

subject to

∣∣∣∣ ∂∂xdSα(x̂m)− b̂m
∣∣∣∣ ≤ εmd, m = 1, ...,M, d = 1, . . . , D,

(18)

where b̂m is the desired value of the derivative at the point x̂m and εmd > 0
represent the tolerance levels. Note that the optimization problem (18) pos-
sesses the same mathematical properties as (15); it may thus be solved by
a standard quadratic programming solver. The optimal solution αopt to (18)
determines a new surrogate model Sαopt fulfilling the expert knowledge.

The expert knowledge may imply that also higher-order derivatives should
be constrained. E.g., obtaining a smooth enough surrogate function requires
upper and lower bounds on its second derivatives, which are linear wrt. the
coefficients α [cf. (17)]. Numerical tests on the constrained second derivative
are presented in Section 5.3.

4.4 Specific functions prescribed on subdomains

The type of expert knowledge listed as Property 1.c) concerns prescribed val-
ues of the unknown function on lower-dimensional subdomains. Such function
values may stem from an accurate lower-dimensional approximation of the
unknown function or from other physical models.

The search for a surrogate function that matches a given function on a given
subdomain leads to the optimization problem to

minimize
α

‖Ãα− f̃‖2,

subject to Sα(x) = hr(x), x ∈ Xr, r = 1, ..., R,
(19)

where hr : RD 7→ R is a given function with which the surrogate model must
coincide on the subdomain Xr ⊆ X. The program (19) is semi-infinite with
a quadratic objective function and an infinite number of linear constraints.

A finite-dimensional approximation of (19) is created by discretizations of
the sets Xr, r = 1, . . . , R. The finite optimization problem then is to

minimize
α

‖Ãα− f̃‖2,

subject to Sα(x̂rn) = hr(x̂rn), n = 1, . . . , Nr, r = 1, . . . , R,
(20)

where {x̂r1, . . . , x̂rNr} ⊂ Xr represents the discretization of Xr. The opti-
mal solution αopt of (20) tends to the optimal solution of (19) as the set
{x̂r1, . . . , x̂rNr} grows dense in Xr (i.e., as Nr →∞); see [39].
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Alternatively, an algorithm for solving semi-infinite programs can be ap-
plied. Such algorithms include interior point methods ([35]), in which the con-
vergence properties are dependent on the properties of the matrix Ã, and
global optimization algorithms ([31]). A simple example (with an affine func-
tion hr) of this kind of expert knowledge is presented in Section 5.4.

4.5 Other kinds of expert knowledge

One may of course come across other kinds of expert knowledge, such as,
e.g., negativity requirements, or relations to other functions on given domains.
These can be implemented by means similar to those presented above, as
long as they allow for constraint descriptions that are simple enough wrt. the
interpolation/approximation coefficients α.

5 Numerical examples

We next describe and perform numerical experiments testing the performance
of the methodology proposed in Section 4 by using a known, simple one-
dimensional test function as the ”unknown” function. The accuracy of the ap-
proximation can easily be measured.

All numerical studies were performed in MATLAB R2012b ([27]). The fi-
nite quadratic programming problems (14), (15), (18), and (20), were solved by
the trust region implementation quadprog.m from the MATLAB Optimization
Toolbox ([8]). The tolerance 1e−12 wrt. the function values was used as termi-
nation criterion. All the algorithms were initiated with α0 = (1, . . . , 1)T. To
find global minima of the non-convex programs (13) the global solver BARON
was used. The cubic radial function was used for all the RBF interpolations.

5.1 Non-negativity requirement

Consider the simple one-dimensional function f defined by

f(x) := c1 − c2 cosx+
c3
x
, x ∈ R, (21)

where c1 := 4.75, c2 := 5, and c3 := 0.04. Since this particular function is
one-dimensional, a spline interpolation would be more suitable. This example
is, however, used to demonstrate the methodology presented, and which is de-
signed primarily for higher dimensions. The function (21) and the nine sample
points {x̄1, . . . , x̄9} := {0.01, 0.10, 0.28, 0.58, 0.66, 0.72, 0.76, 0.98, 1} are plot-
ted in the left part of Figure 1, which also illustrates the RBF interpolation
Sα0 of these sample points. We assume, according to the expert knowledge,
that the surrogate model has to be non-negative.

The original RBF interpolation forms the surrogate model Sα0 [see (14)]
which obviously does not fulfill the expert’s non-negativity requirement. The
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Fig. 1 (Left) The test function f with sample points (+) and its RBF interpolation Sα0 .
(Right) The surrogate model Sα1 which meets the non-negativity requirement, as computed
by Algorithm 2. The function f is plotted for comparison.

desired non-negative model Sα1 was found at the 2nd iteration of Algorithm
2; see the rightmost plot of Figure 1.

Since our test function is known and the RBF interpolation yields an ex-
plicit function Sα, a one-dimensional measure of the error of the P th model (P
denoting the number of iterations in Algorithm 2) is given by their Li distance
for i = 1, 2, i.e.,

vPi :=

(∫ 1

0

|SαP (x)− f(x)|i dx

)1/i

. (22)

From Table 1 we deduce that the model Sα1 , which in addition to the
sample points uses the expert knowledge about the non-negativity of the un-
known function at x0opt = 0.2 found when minimizing the original surrogate
model, is more accurate than the original RBF interpolation Sα0 wrt. the L1

distance (22) and its correspondence with the expert knowledge is increased.
The L2 distance is, however, higher for the model Sα1 . Note also that a trans-
formation of function values prior constructing the surrogate model can be
advantageously used to fulfill the expert expectations in this case.1

Table 1 Errors of different surrogate models

vP1 vP2

Model Sα0 0.29 1.00
Model Sα1 0.26 1.01

1A logarithmic transformation possesses a non-negative and smooth surrogate model of the
unknown function in this case. On the other hand, the resulting surrogate function then
becomes exponential, which may contradict the expert knowledge.
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5.2 Prescribed function values

The expert may state that the function must not oscillate. This requirement
may be expressed, e.g., such that the surrogate function should interpolate
the centre of a line between two specific sample points. In Figure 2, an unde-
sired oscillation and two sample points (+) are circled (left) and the expert
point (•), denoted (x̂1, f(x̂1)), is marked (right). The implementations of the
three approaches for the requirements described in Section 4.2 are described
below.

Utilizing expert knowledge as constraints of the optimization problem

This approach amounts to solving the optimization problem (15), yielding
Sαopt . Here, M := 1, representing the point (x̂1, f(x̂1)) = (0.19, 0.13); we set
the tolerance ε1 := 0.2, reflecting the requirement that Sαopt(x̂1) ∈ [ f(x̂1) −
ε1, f(x̂1) + ε1]. The resulting model is shown in Figure 2 (right).
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Fig. 2 Illustrations of the numerical test of prescribed function values utilized as constraints
of the optimization problem. The true (i.e., ”unknown”) function f , the sample points (+),
and the expert point (•) are plotted for comparison. (Left) The original RBF interpolation
Sα0 (with the undesired oscillation marked with a circle). (Right) The updated surrogate
model Sαopt given by the optimal solution to (15).

The result from this approach, when adding just one expert point, does not
fully accomplish our desires. While the oscillation is limited around the expert
point, the function Sαopt oscillates in other subdomains and, hence, does not
approximate the true function well.

We add the expert point (x̂2, f(x̂2)) = (0.62, 0.75) in order to compare
the values of the Lagrange multipliers for the constraints (15b) corresponding
to the two expert points. We choose ε2 := ε1 = 0.2. The resulting Lagrange
multiplier values µ1∗

1 = 1.7e−17 and µ2∗
1 = 1.48 (corresponding to the triple

(x̂1, f(x̂1), ε1)), and µ1∗
2 = 3.8e−17, and µ2∗

2 = 3.2e−17 (corresponding to the
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Fig. 3 Illustration of Lagrange multipliers comparison when the expert points (•) are uti-
lized to define the constraints (15b).

triple (x̂2, f(x̂2), ε2)) indicate that the chosen RBF surrogate model is more
suitable for obeying the additional expert point (x̂2, f(x̂2)) than the initial one,
(x̂1, f(x̂1)). Hence the tolerance ε2 = 0.2 should be decreased. See Figure 3
for an illustration.

Utilizing expert knowledge directly

This approach amounts to use the point given by expert knowledge directly
as a new sample point in the construction of Sαupd . The resulting model is
illustrated in Figure 4 (left).

The result of this approach is a much less oscillating function, which also
fits the unknown function better. Table 2 shows the errors, vPi defined in
(22), for all the surrogate models utilizing the point given by expert knowledge.
Nevertheless, this model still contains an undesirable dip, that can be restricted
by posing constraints on the smoothness of the model

Table 2 Errors of surrogate models for three approaches for utilizing the prescribed function
value and error of the original surrogate model

vP1 vP2

Model Sα0 0.29 1.00
Model Sαopt 0.28 1.01
Model Sαupd 0.18 0.96
Model Sαapprox 0.16 0.96
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Fig. 4 Illustration of the numerical test of prescribed function values utilized directly with
the resulting surrogate function Sαupd (Left). The function Sαapprox interpolates the sample
points and approximates the expert point (Right).

Interpolating sample points and approximating expert points

The third approach—constructing the surrogate model Sαapprox of the un-
known function by interpolating the sample points and approximating the
expert point—is suitable if we are doubtful about the expert knowledge. The
resulting surrogate model depends on the tuning of the coefficients η1 and η2
in (16). Their values are given by expert knowledge. The resulting surrogate
model Sαapprox , with η1 = 1e−5 and η2 = 2.5e−4, is shown in Figure 4 (right).

We conclude that the third approach with well chosen values of η1 and η2
performs the best among the three approaches implemented for this simple
case; see Table 2. As an alternative to adding a point, the oscillations can
be avoided by requiring a positive curvature of the surrogate model on the
interval [0, 1], which can be implemented using the methodology described in
Section 4.3.

All three approaches presented in this subsection provide a better good-
ness of fit than the original RBF interpolation, while using the same expert
knowledge. Note that the goodness of fit always depends on the individual
application as well as on the accuracy of the expert knowledge employed.

5.3 Boundedness requirement on function derivatives

In order to to obtain a surrogate model of the unknown function that is
smoother than the original RBF interpolation, we have utilized the second
derivative of the surrogate function over its domain; see [47]. Suppose that
the expert knowledge prescribes the values of the second derivatives of the
surrogate model to be in the interval [−b, b], over the domain X := (0, 1]. This
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is represented as constraints in the optimization problem (18), as

minimize
α

‖Ãα− f̃‖2, (23a)

subject to

∣∣∣∣ d2

dx2
Sα(x)

∣∣∣∣ ≤ b, x ∈ X. (23b)

The optimization problem (23) is semi-infinite, since it includes infinitely many
linear constraints. Its finite reformulation is obtained by representing X by the
finite set of points {x̂1, . . . , x̂M} ⊂ X, as that to

minimize
α

‖Ãα− f̃‖2,

subject to

∣∣∣∣ d2

dx2
Sα(x̂m)

∣∣∣∣ ≤ b, m = 1, . . . ,M.
(24)

The resulting surrogate model Sαopt for b = 12 is plotted in Figure 5 together
with the original RBF interpolation Sα0 . The maximum curvature of the re-
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Fig. 5 Illustration of the numerical test of prescribed values of function derivatives. The
second derivative of the surrogate model Sαopt is constrained over its domain; the original
interpolation Sα0 is plotted for comparison.

sulting function is maxx∈[0,1]

∣∣∣ d2

dx2Sαopt
(x)
∣∣∣ = 10.8, while that of the original

surrogate function is maxx∈[0,1]

∣∣∣ d2

dx2Sα0
(x)
∣∣∣ = 218; we conclude that the re-

sulting function is smoother than the original interpolation. The L1 and L2

distances (22), i.e., vopt1 = 0.35 and vopt2 = 1.09, respectively, of this model
and of the function f are larger than that of the original interpolation. This in-
dicates that expert knowledge about the second derivative should be combined
with some other kind of expert knowledge (e.g., prescribed function values) in
order to yield a satisfactory result.
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5.4 Specific functions prescribed on subdomains

Suppose that expert knowledge provides the information that the unknown
function is affine on the closed interval X1 = [0.28, 1] (see Figure 6). This is
represented by the constraints of the optimization problem (19) to

minimize
α

‖Ãα− f̃‖2,

subject to Sα(x) = ax+ b, x ∈ X1,
(25)

where the values of a and b are given. A finite reformulation of the semi-
infinite optimization problem (25) is obtained by representing X1 by a finite
set {x̂11, . . . , x̂1N1} ⊂ X1 of points, according to

minimize
α

‖Ãα− f̃‖2,

subject to Sα(x̂1n) = ax̂1n + b, n = 1, ..., N1.
(26)

The optimal solution to (26) for N1 = 9 yields the surrogate model Sαopt in
Figure 6 (right).
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Fig. 6 Illustration of the numerical test of a prescribed function type. (Left) The original
RBF interpolation Sα0 (solid line) and the required function (dash-dotted line). (Right) the
updated surrogate model Sαopt (solid line) given by the solution to (26). The true function
f is plotted for comparison (dashed line).

The L1 and L2 distances of the new surrogate model Sαopt and the true
function f are larger than that of the original RBF interpolation, because the
linear part is forced to lie above the sample points. But the function Sαopt

can be more suitable for some applications, e.g., when the minimum of the
function f in (21) is to be localized.

The above illustrations indicate that expert knowledge of several different,
rather complex, types can be expressed by a finite number of affine constraints
and therefore also successfully incorporated in the surrogate model, in terms
of solving tractable optimization problems.
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6 The rolling resistance coefficient function

We next describe the application that motivated the research described in this
article, namely the analysis of the RRC of truck tyres.

In order to improve the fuel efficiency of truck transportation various en-
ergy losses must be reduced. One of the most important losses is caused by
the rolling resistance, which can be described as the effort required to keep
a given tyre rolling. Rolling resistance includes energy losses due to aerody-
namic drag associated with rolling, and within the structure of the tyre; it
also includes friction between the tyre and the road and between the tyre and
the rim.

The rolling resistance is determined by the RRC. Ali et al. [2] identified that
the RRC is influenced mainly by the tyre inflation pressure, the tyre width, the
tyre diameter, the groove depth, the vehicle speed, and the vertical load on the
corresponding axle. The RRC can hence be represented by a six-dimensional
function. In order to explicitly describe this function we have utilized the func-
tion values (all of which are positive) for a set XN of N = 252 sample points
from a finite element analysis (FEA) model of a representative truck tyre; see
[2] for detailed descriptions of the tyre and the FEA model, for which each
evaluation requires four hours of computation time. The RBF-based interpo-
lation described in this article is next used to construct a surrogate model of
the RRC function such that the most important characteristics of the FEA
model are retained.

The surrogate model Sα of the RRC as defined in (2) is found by solving
the system (4) of linear equations. We utilized cross-validation (see [23]) to
show that the linear RBF provides the best fit of the unknown function.

Incorporating the resulting model of the RRC into a complex joint model of
the vehicle, the tyre, and the road revealed some contradictions with existing
expert knowledge. Figure 7 shows a cut through the six-dimensional space
parallel to the load axis and which illustrates the unphysical properties of the
original model Sα0 . For this model the RRC possesses negative values in the
interval [6600, 8700] lbs (see Figure 7), which contradicts the physical meaning
of the RRC. The function Sα0 also possesses ”kinks” at some of the sample
points over the load axis (see the neighborhood of 6000 lbs in Figure 7) which
is not desired from the experts’ point of view. Below, we implement these two
types of expert knowledge into the surrogate model of the RRC function.

To eliminate the negative values and the ”kinks” we solve the optimization
problem (12) with additional constraints (23b) to restrict the second partial
derivative wrt. the load. In Figure 7 the same cut as for the model Sα0 is
plotted for the resulting model Sαopt .

The non-negativity of the updated surrogate model is established by the
non-negative value of its global minimum, which could be found due to the
explicit expression of the function and its first and second derivatives.

An approximate measure of the smoothness of the function Sα can be pro-
vided by its coefficient of variation (see [19]), which can be computed through
a discretization of the six-dimensional space and represented by W discretiza-
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Fig. 7 Illustration of the undesired behaviour of the original model Sα0 describing the RRC.
In this cut, the negative values are attained in the interval [6600, 8700] lbs and the ”kink” is
exhibited at the load = 6000 lbs. The undesired behaviour is limited for the updated model
Sαopt , whose values are all non-negative while the ”kink” is essentially removed.

tion points x̃1, . . . , x̃W . Evaluations of the surrogate model of the RRC at these
points then yield the values Sα(x̃1), . . . , Sα(x̃W ). The coefficient of variation
is defined as

cvar :=
σ

µ
,

where

µ :=
1

W

W∑
w=1

fr(x̃
w) and σ :=

√√√√ 1

W

W∑
w=1

[fr(x̃w)− µ]2. (27)

The smoothness cvar = 0.64 of the model Sα0
was slightly improved to cvar =

0.59 when utilizing the expert knowledge (i.e., for the model Sαopt
).

Since the updated surrogate model of the RRC is non-negative and ”smoother”
than the original one, we conclude that it is more easily acceptable by experts.
However, the model still does not correspond fully to the expert expectations—
at the end points of the load interval the function looks slightly unphysical wrt.
smoothness. This behaviour is due to the limiting of the second derivative wrt.
load and not wrt. other variables. The RRC attains the value zero (e.g., for
load 8100 lbs), which neither seems to be natural (to eliminate this drawback
the constraints (12b) can be replaced by Sα(x) ≥ ε, if an expert knowledge
about the value of ε > 0 is available). The overall accuracy of the surrogate
model of the true RRC function can be assessed, e.g., by cross-validation or
bootstrap; see [23]. The leave-one-out cross-validation value equals 0.002 for
both surrogate models because it assesses how well the surrogate model coin-
cide with the simulations not with the expert knowledge.

The surrogate model Sαopt
of the RRC was incorporated into surrogate

functions to define the objective and constraints of an optimization model for



Integration of expert knowledge into RBF surrogate models 25

finding an optimal set of tyres for each vehicle and operating environment spec-
ification. Available algorithms to solve this problem are currently investigated
and will be the subject of a future publication.

7 Conclusions

We have shown that utilizing expert knowledge in developing a surrogate func-
tion of an unknown function is possible and is often cheaper than performing
additional costly simulations of the unknown function. We show that utilizing
expert knowledge may lead to an increase of goodness of fit as compared to
interpolating the sample points. We show that also the surrogate model can be
enhanced by incorporating reliable expert knowledge. We have identified how
the RBF interpolation can be reformulated as a tractable optimization problem
allowing for the utilization of constraints stemming from expert knowledge.

The methodology of approximating an unknown function combining the
RBF interpolation with expert knowledge was described and illustrated on
a simple one-dimensional problem and on the six-dimensional case of the func-
tion describing the rolling resistance coefficient of a truck tyre. The user of the
approach described always has to decide whether he or she prefers to fulfil
the expert knowledge or the guaranteed accuracy of the RBF interpolation,
even though these two criteria are not always conflicting. Applying the ap-
proach described results in an approximation, rather than an interpolation,
at the sample points; the accuracy of the resulting model is thus not guar-
anteed, but the resulting function is more easily accepted by experts, since it
also fulfils the physical laws invoked. Although surrogate models do not meet
the simulation-based function values at the sample points, they might provide
a higher level of accuracy over the entire design space in comparison with
interpolation models.

Further efforts will be devoted to implementing the resulting model into
existing global optimization algorithms. The implementation of the expert
knowledge will typically be performed when the computation time required for
each simulation of the expensive function is too long or when the final surrogate
model, which by then cannot be further updated by simulating additional
sample points, is constructed.
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