3 research outputs found

    Output regulation of rational nonlinear systems with input saturation

    Get PDF
    This thesis deals with the output regulation of rational nonlinear systems with input saturation. The output regulation problem considers a controlled plant subject to non-vanishing perturbations or reference signals produced by an exogenous autonomous system, where the goal is to ensure asymptotic convergence to zero of the plant output error. This work develops systematic methodologies for stability analysis and design of anti-windup compensated dynamic output feedback stabilizing controllers able to solve the output regulation problem for rational nonlinear systems with saturating inputs. In order to obtain these results, the proposed method employs the differential-algebraic representation, a theoretical framework that treats rational nonlinear systems by a differential equation combined with an equality relation. This tool is utilized in order to cast the stability analysis and control synthesis into optimization problems subject to linear matrix inequality constraints. Towards ensuring asymptotic output regulation, it is initially assumed the prior knowledge of an exact solution to the regulator equations, which represent an invariant and zero-error steady-state manifold. This assumption is later relaxed, where the results are extended for the practical regulation problem. In this last scenario, any numerically approximated solution to the regulator equations may be considered and the devised methodology ensures ultimate boundedness of the output error. Overall, the main innovation of this thesis is the application of the differential-algebraic representation into the nonlinear output regulation context, in turn providing a solution to a new set of problems intractable by state-of-the-art nonlinear methods.Esta tese trata da regulação de saída de sistemas não-lineares racionais com saturação na entrada. O problema de regulação de saída considera uma planta sujeita a sinais persistentes de distúrbio ou referência produzidos por um sistema exógeno autônomo, onde o objetivo é garantir a convergência assintótica do erro de saída da planta para zero. Este trabalho desenvolve metodologias sistemáticas para análise de estabilidade e projeto de controladores estabilizantes dinâmicos de realimentação de saída com compensadores anti-windup para sistemas não-lineares racionais com saturação no contexto de regulação de saída. O método proposto utiliza principalmente a representação algébrico-diferencial, uma abordagem teórica que trata sistemas não-lineares racionais por meio de uma equação diferencial combinada com uma igualdade algébrica. Para assegurar a regulação assintótica de saída, inicialmente assume-se o conhecimento de um modelo interno e uma solução exata para as equações do regulador, que representa um conjunto invariante de regime permanente onde o erro de saída é zero. Esta suposição é posteriormente relaxada, onde os resultados são estendidos para o contexto de regulação de saída prática. Os desenvolvimentos principais desta tese estão divididos nos seguintes capítulos: Regulação de Saída de Sistemas Não-Lineares Racionais; Regulação de Saída de Sistemas Não-Lineares Racionais com Saturação de Entrada e Extensão para Regulação de Saída Prática. O primeiro capítulo mencionado introduz a proposta de base deste trabalho, que consiste no emprego da representação algébrico-diferencial para a dinâmica do erro de regulação entorno do conjunto invariante descrito pelas equações do regulador. Com base nesta formulação, teoremas de estabilidade e desempenho são obtidos com condições na forma de desigualdades matriciais, permitindo o uso de otimização numérica para análise e síntese de controladores estabilizantes. No próximo capítulo, a formulação é estendida para a presença de saturação no sinal de controle, onde uma nova condição de setor é proposta para tratar esta não-linearidade adicional. Desta forma, novos teoremas são obtidos tanto para análise quanto para síntese de controladores estabilizantes incluindo compensadores anti-windup. No capítulo final da metodologia, considera-se uma abordagem de regulação prática onde soluções numéricas aproximadas podem ser consideradas para as equações do regulador. Novos teoremas de estabilidade voltados para análise e síntese também são obtidos dentro deste panorama prático, onde garante-se um conjunto terminal para a trajetória do erro de saída. Em geral, a grande importância deste trabalho é a possibilidade de solucionar um novo conjunto de problemas de regulação de saída não-linear, anteriormente intratáveis por métodos do estado-da-arte

    Global adaptive regulation of uncertain nonlinear systems in output feedback form

    No full text
    Minimum phase uncertain nonlinear systems in output feedback form are considered: they are subject to disturbances and/or uncertainties and are required to track reference signals. Both disturbances and references are generated by an exosystem whose model and order are uncertain. Assuming that the regulator problem has a solution, but with no a priori assumption on the required control input (e.g. no `immersion' assumption), a global robust error feedback regulator is explicitly computed which includes an adaptive internal model and a nonlinear stabilizing control, on the basis of known bounding functions for the uncertain system nonlinearities. The regulation error tends to a residual set which decreases as the reference input modeling error due to the internal model choice decreases. If the adaptive internal model can generate the required unknown control input, global asymptotic regulation is achieved

    미지의 정현파 외부 입력을 갖는 선형시스템을 위한 적응 출력 제어

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 2. 심형보.This dissertation investigates the output regulation problem (which is equivalent to the problem of asymptotic tracking and disturbance rejection when the reference inputs and the disturbances are generated by an autonomous differential equation, the so-called exosystem) for linear systems driven by unknown sinusoidal exosystems. Unlike previous researches, our ultimate goal is to achieve asymptotic regulation of the plant output to the origin for the sinusoidal exogenous signals (representing the reference inputs and disturbances) generated by the exosystems whose magnitudes, phases, bias, frequencies, and even the number of frequencies are all unknown. Here, the plant is linear time-invariant (LTI) single-input-single-output (SISO) systems (including non-minimum phase systems) without uncertainty. Before achieving the final control goal, we first start by considering an output regulation problem under the assumption that the number of frequencies contained in the exogenous inputs is known but magnitudes, phases, bias, and frequencies are unknown. To solve this problem, an add-on type output regulator with an adaptive observer is presented. The adaptive observer, based on the persistently exciting (PE) property, is used to estimate the frequencies of sinusoidal exogenous inputs as well as the states of plant and exosystem. Also, by add-on controller we mean an additional controller which runs harmonically with a preinstalled controller that has been in operation for the plant. When the desired performance of the preinstalled controller is not satisfactory, the add-on controller can be used. Some advantages of the proposed add-on controller include that it can be designed without much information about the preinstalled controller and it can be plugged in the feedback loop any time in operation without causing unnecessary transient response. Both simulation and experimental results of the track-following control for commercial optical disc drive (ODD) systems confirm the effectiveness of the proposed method. As the next step, we deal with the case where, as well as magnitudes, phases, bias, and frequencies, the number of frequencies contained in the exogenous inputs is unknown. To this end, a closed-form solution is given under the assumptions that the plant has hyperbolic zero dynamics (i.e., there is no zero on the imaginary axis of the complex plane), and that the number of unknown frequencies has known upper bound. In particular, the PE property is not necessary for the estimation of the unknown frequencies. For this, an adaptive observer is proposed to estimate the frequencies and the number of frequencies, simultaneously. This is important contribution, because, sufficient persistency of excitation is usually required since the unknown parameters are estimated by the adaptive control. Moreover, we propose a suitable dead-zone function with a computable dead-band only using the plant parameters to avoid the singularity problem in the transient-state and, at the same time, to achieve output regulation in the steady-state.Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Contributions and Outline of the Dissertation 5 Chapter 2 Reviews of Related Prior Studies 9 2.1 Control Methods for Rejecting of Sinusoidal Disturbance 9 2.1.1 Adaptive Feedforward Cancellation (AFC) 9 2.1.2 Repetitive Control 12 2.1.3 Disturbance Observer (DOB) with Internal Model 15 2.2 Frequency Estimation Algorithms for Indirect Approach 19 2.2.1 Adaptive Notch Filtering 19 2.2.2 Phase-Locked Loops 20 2.2.3 Extended Kalman Filtering 21 2.2.4 Marinos Frequency Estimator 23 Chapter 3 Highlights of Output Regulation for Linear Systems 27 3.1 Problem Formulation 27 3.2 Output Regulation via Full Information 29 3.3 Output Regulation via Error Feedback 31 Chapter 4 Adaptive Add-on Output Regulator for Unknown Sinusoidal Exogenous Inputs 37 4.1 Add-on Output Regulator 39 4.1.1 Problem Formulation 39 4.1.2 Controller Design and Stability Analysis 41 4.2 Adaptive Add-on Output Regulator 44 4.2.1 Problem Formulation 44 4.2.2 Controller Design and Analysis 46 4.3 Industrial Application: Optical Disc Drive (ODD) Systems 54 4.3.1 Introduction of ODD Systems 54 4.3.2 Simulation Results 58 4.3.3 Experimental Results 63 Chapter 5 Adaptive Output Regulator for Unknown Number of Unknown Sinusoidal Exogenous Inputs 69 5.1 Problem Formulation 71 5.2 Adaptive Output Regulator 72 5.3 Constructive Proof of Theorem 5.2.1 75 5.4 Numerical Examples 88 Chapter 6 Conclusions and Further Issues 93 6.1 Conclusions 93 6.2 Further Issues 94 APPENDIX 97 A.1 Stabilizability and Detectability of the Plant in Chapter 4 97 A.2 Nonsingularity of the Matrix T(θ) in Chapter 4 99 A.3 Pseudo Code Implemented on the DSP Board in Chapter 4 99 A.4 Observability Property of the Pair (S, γ) in Chapter 5 101 A.5 Structure of the Matrix Tc(θ) in Chapter 5 102 A.6 Convergence Property of det2(i(t)) in Lemma 5.3.2 104 BIBLIOGRAPHY 109 국문초록 121Docto
    corecore