3,142 research outputs found

    Movement and gesture recognition using deep learning and wearable-sensor technology

    Get PDF
    Pattern recognition of time-series signals for movement and gesture analysis plays an important role in many fields as diverse as healthcare, astronomy, industry and entertainment. As a new technique in recent years, Deep Learning (DL) has made tremendous progress in computer vision and Natural Language Processing (NLP), but largely unexplored on its performance for movement and gesture recognition from noisy multi-channel sensor signals. To tackle this problem, this study was undertaken to classify diverse movements and gestures using four developed DL models: a 1-D Convolutional neural network (1-D CNN), a Recurrent neural network model with Long Short Term Memory (LSTM), a basic hybrid model containing one convolutional layer and one recurrent layer (C-RNN), and an advanced hybrid model containing three convolutional layers and three recurrent layers (3+3 C-RNN). The models will be applied on three different databases (DB) where the performances of models were compared. DB1 is the HCL dataset which includes 6 human daily activities of 30 subjects based on accelerometer and gyroscope signals. DB2 and DB3 are both based on the surface electromyography (sEMG) signal for 17 diverse movements. The evaluation and discussion for the improvements and limitations of the models were made according to the result

    Investigating Machine Learning Techniques for Gesture Recognition with Low-Cost Capacitive Sensing Arrays

    Get PDF
    Machine learning has proven to be an effective tool for forming models to make predictions based on sample data. Supervised learning, a subset of machine learning, can be used to map input data to output labels based on pre-existing paired data. Datasets for machine learning can be created from many different sources and vary in complexity, with popular datasets including the MNIST handwritten dataset and CIFAR10 image dataset. The focus of this thesis is to test and validate multiple machine learning models for accurately classifying gestures performed on a low-cost capacitive sensing array. Multiple neural networks are trained using gesture datasets obtained from the capacitance board. In this paper, I train and compare different machine learning models on recognizing gesture datasets. Learning hyperparameters are also adjusted for results. Two datasets are used for the training: one containing simple gestures and another containing more complicated gestures. Accuracy and loss for the models are calculated and compared to determine which models excel at recognizing performed gestures

    Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition

    Get PDF
    Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation

    Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks

    Full text link
    This paper proposes three simple, compact yet effective representations of depth sequences, referred to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images (DDMNI). These dynamic images are constructed from a sequence of depth maps using bidirectional rank pooling to effectively capture the spatial-temporal information. Such image-based representations enable us to fine-tune the existing ConvNets models trained on image data for classification of depth sequences, without introducing large parameters to learn. Upon the proposed representations, a convolutional Neural networks (ConvNets) based method is developed for gesture recognition and evaluated on the Large-scale Isolated Gesture Recognition at the ChaLearn Looking at People (LAP) challenge 2016. The method achieved 55.57\% classification accuracy and ranked 2nd2^{nd} place in this challenge but was very close to the best performance even though we only used depth data.Comment: arXiv admin note: text overlap with arXiv:1608.0633

    Attention in Convolutional LSTM for Gesture Recognition

    Get PDF
    Convolutional long short-term memory (LSTM) networks have been widely used for action/gesture recognition, and different attention mechanisms have also been embedded into the LSTM or the convolutional LSTM (ConvLSTM) networks. Based on the previous gesture recognition architectures which combine the threedimensional convolution neural network (3DCNN) and ConvLSTM, this paper explores the effects of attention mechanism in ConvLSTM. Several variants of ConvLSTM are evaluated: (a) Removing the convolutional structures of the three gates in ConvLSTM, (b) Applying the attention mechanism on the input of ConvLSTM, (c) Reconstructing the input and (d) output gates respectively with the modified channel-wise attention mechanism. The evaluation results demonstrate that the spatial convolutions in the three gates scarcely contribute to the spatiotemporal feature fusion, and the attention mechanisms embedded into the input and output gates cannot improve the feature fusion. In other words, ConvLSTM mainly contributes to the temporal fusion along with the recurrent steps to learn the long-term spatiotemporal features, when taking as input the spatial or spatiotemporal features. On this basis, a new variant of LSTM is derived, in which the convolutional structures are only embedded into the input-to-state transition of LSTM. The code of the LSTM variants is publicly available2
    • …
    corecore