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ABSTRACT 

Pattern recognition of time-series signals for movement and gesture 

analysis plays an important role in many fields as diverse as 

healthcare, astronomy, industry and entertainment. As a new 

technique in recent years, Deep Learning (DL) has made 

tremendous progress in computer vision and Natural Language 

Processing (NLP), but largely unexplored on its performance for 

movement and gesture recognition from noisy multi-channel sensor 

signals. To tackle this problem, this study was undertaken to 

classify diverse movements and gestures using four developed DL 

models: a 1-D Convolutional neural network (1-D CNN), a 

Recurrent neural network model with Long Short Term Memory 

(LSTM), a basic hybrid model containing one convolutional layer 

and one recurrent layer (C-RNN), and an advanced hybrid model 

containing three convolutional layers and three recurrent layers 

(3+3 C-RNN). The models will be applied on three different 

databases (DB) where the performances of models were compared. 

DB1 is the HCL dataset which includes 6 human daily activities of 

30 subjects based on accelerometer and gyroscope signals. DB2 

and DB3 are both based on the surface electromyography (sEMG) 

signal for 17 diverse movements. The evaluation and discussion for 

the improvements and limitations of the models were made 

according to the result.  
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1. INTRODUCTION 
For several decades, the pattern recognition of movement and 

gesture shows promise for human-machine interaction in many 

areas.  A remarkable application of movement recognition is human 

activity recognition (HAR). Most HAR applications are based on 

raw sensor inputs such as accelerometer and gyroscope signals 

which show its ability in learning profound knowledge about 

movement recognition [2]. Another potential application in this 

area is gesture classification for upper limb amputees which uses 

surface electromyography (sEMG) to capture the muscle activation 

as electrical signals. sEMG signals are recorded by several 

electrodes placed on the skin of the upper limb to detect voltage 

potential difference of muscle activities. Each hand movement can 

be treated as a class during the training process. The trained model 

can be applied on the applications ranging from polyarticulated 

prosthetic hands to entertainment interfaces. 

The traditional machine learning approaches such as decision tree, 

support vector machine, naive Bayes, and hidden Markov models 

have been widely used in classification and pattern recognition 

tasks [3]. These conventional models give a high accuracy with 

large amounts of hand-crafted, structured, and under controlled 

data. However, traditional ML models require lengthy offline and 

batch training which is not incremental or interactive for real time 

application. For a trained model, the testing data should be seen and 

labeled to produce a satisfactory result. In addition, ML models 

always cost a long period of time to extract a set of reliable features 

especially for high-dimensional, complex and noisy data because 

of the various situations in practical applications. It also requires a 

high-level domain knowledge for the hand-crafted feature 

extracting which lead to the poor transfer learning ability and poor 

re-usability. Besides the ML methodologies, recent years have 

witnessed the fast development and advancement of deep learning, 

which made significant progress in many areas such as pattern 

recognition and logic reasoning [1]. As a novel methodology for 

processing a large amount of data, DL technology makes it possible 

for computers via artificial intelligence to collect data, analyze data, 

classify data and sort out the result without hand-crafted feature 

extraction. The high accuracy and reliability of DL models such as 

Convolutional Neural Network (CNN) and Recurrent Neural 

Network (RNN) are proved especially in fields of image 

recognition, signal recognition and activity classification. 

The aim of this work is to develop deep learning based methods for 

human movement recognition from time-series signals such as 

obtained using sEMG and wearable sensors (IMU, accelerometers). 

We would like to understand the performance of DL for time-series 

signal analysis and accuracy, as to our knowledge, this aspect is still 

understudied. A series of experiments have been conducted to 

achieve it with different datasets and signals. The DB1 is a well-

known HAR dataset from 30 subjects. The DB2 and DB3 are sub-

datasets of Ninapro database contains the recordings of 17 gestures 

from subjects by collecting sEMG signal. There are 4 different DL 

models designed for the experiments to find out the optimum 

solution by performance comparison: a 1-D CNN, a LSTM model, 

a C-RNN and 3+3 C-RNN. The details of datasets and models are 

described in the following sections. In addition, performances and 

results of models are presented and analyzed. The limitations and 

potential improvements are discussed after the comparison of 

different models.    

2. RELATED WORK 
Traditionally, movement and gesture recognition is based on the 

machine learning approaches which produce a satisfactory result 

with large amounts of hand-crafted and structured data. As a 

research of ML and signal recognition, an artificial neural network 

(ANN) was developed in [4] to classify the sEMG movement 

signals based on handcrafted features. A series of features in time-

domain and frequency domain such as Mean Absolute Value 

(MAV), Root Mean Square (RMS) and Variance of EMG (VAR) 

were selected to train the ANN model [4]. Another application of 

ML in this field is mentioned in [5], which developed a support 

vector machine (SVM) model to train the data and give a strategy 

of parameter adjustment to improve controller performance [5]. 

Similarly, in [6], an unsupervised adaptation strategy of linear 
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discriminant analysis (ALDA) was developed to improve the 

performance of sEMG-based motion recognition. The ML models 

above rely on the accurate and complex hand-crafted features 

which require a high-level domain knowledge for researches.  

In the recent years, many researchers turn to DL models like CNN 

and RNN for a potential improvement of signal recognition. In an 

early work in this direction [7], the signal in each dimension of the 

accelerometer data is treated as the data in RGB channels of an 

image. Then the convolution and pooling can be applied separately 

in each channel. Another similar work in [8] use 1-D CNN to train 

the data where the single sensor input is treated as a 1-D image. The 

limitation of these works based on 1-D CNN is the ignored 

dependencies between sensors and dimension, which make a 

difference on the performance [2]. For the signals from multiple 

channels, some researchers such as [9] use 2-D CNN which regards 

the signals from channels as a complete image, the height of the 

‘image’ is the channels of signal where the width of the ‘image’ is 

the time period of input signal (usually presented as a sliding 

window width). So that it is possible to feed multiple channels 

signal into an image recognition model. Besides, there are also 

some hybrid models of CNN and RNN. In [10], a deeper network 

was developed named DeepConvLSTM, which contains 4 

convolution layers and 2 recurrent layers. It leads to a better 

performance compared to basic CNN models on HAR recognition. 

In addition, other researches combined CNN with different models 

such as restricted Boltzmann machine (RBM) [11] and Stacked 

autoencoder (SAE) [12]. In these compound models, CNN is used 

to extract features before the data go through the classifier. As a 

similar project in [13], Carl (2017) used 5 different classifiers on 

the DB3, where the Random Forest (RF) classifier performs best 

out of all five. The DL models used in this paper were inspired by 

previous works, especially the 1-D CNN and the hybrid model of 

different networks. 

3. METHOD 
In this section, the structures of four designed models are described. 

In addition, section 3.3 presents more details of the advanced 

hybrid model.  

3.1 1-D CNN 
CNN is the most well-known model of DL in recent years. It is a 

special kind of multi-layer neural network which at the early stage 

was developed for image pattern recognition. CNN is able to 

recognize different patterns based on the features analyzed by itself 

[17]. The most famous CNN application on visual recognition is 

that in 2012, Alex Krizhevsky used them to win that year’s 

ImageNet competition, dropping the classification error rate from 

26% to 15%. It is an outstanding improvement in this field at that 

time [18]. After that, more and more CNN applications in other 

fields such as video recognition [17], natural language processing, 

online photo searching and speech recognition show up in recent 

years. And for signal recognition, the CNN traditionally treats the 

multiple channels signal as a 2-D image where the height is the 

number of channels and the width is the sliding window size. 

However, the signal and image are vastly different. The features 

and variabilities of the signal are materialized on the time domain. 

Therefore, in the experiment, a 1-D CNN was designed which was 

inspired by [19]. The model processes separable convolution 

operation on each channel of the data rather than do the convolution 

on the entire input matrix. There are 2 convolutional layers in the 

model with max pooling and activation function applied after each 

convolution layer. The output of several separable convolution 

layers is the feature maps of inputs from different channels. And a 

fully-connected layer will be applied on these nodes, following by 

the classifier to generate the result. 

3.2 LSTM 
As mentioned in the last section, the features of data based on time 

domain are significant in signal recognition. In this field, RNN 

shows its ability on sequence data such as speech, texts, and signals. 

Especially, LSTM is a powerful variation of RNN models for time-

series signal recognition focusing on the relationships between the 

data at different time points. The features and information from 

previous time point are stored in a memory node of each neuron. 

The input and memory of current time point influence the 

prediction synchronously.  

The RNN used in the experiment is a basic LSTM model with the 

sequence length of 128 which equals to the sliding window size. 

There is a dropout layer after the LSTM layer with problem rate of 

0.8 to overcome the overfitting problem. And a fully-connected 

layer will be applied on these nodes, following by the classifier to 

generate the result. 

3.3 C-RNN 
The hybrid model combined with CNN and RNN for pattern 

recognition has become a trend in recent years. One or more 

convolutional layers are applied as a feature extractor in the 

structure. The output of the convolutional layers is the feature map 

of the input signal which contains useful information for other 

layers and the classifier. The LSTM layers focus on the influence 

from previous time point and generate a probability map for each 

input. In the early stage of the experiment, a basic C-RNN model 

was developed including 1 convolutional and 1 recurrent layer. 

After some literature reviews and modifications, another advanced 

C-RNN model was built with 3 convolutional layers and 3 recurrent 

layers. In this section, the structure of the 3+3 C-RNN is described 

with more details. 

 

Figure 1. Input format of 3+3 C-RNN. 

As shown in Figure 1, the input of the model should be a signal 

piece fixed by a sliding window. The width of the input is in the 

time domain, and the size equals to the window size w. The height 

of the signal should always be 1. C represents the number of input 

channels while the signal from each channel will be fed into 1-D 

convolutional layers separately. For one round of training, a batch 

of such signal piece will be fed into the network where the batch 

size equals to i. As Figure 2 shows, the number of filters of the 1st 

Conv layer is designed as C*2, with the filter size of 2 and stride 

size of 1. The zero-padding approach is applied after each Conv 

layer to generate a feature map (FM) in the same width. The output 

format of 1st Conv layer should be [B(i), w, C*2]. The 2nd and 3rd 

Conv layers are designed to have the same filter size and stride size 

but twice of the number of filters. The output of the 3rd Conv layer 

should be [B(i), w, C*8]. It is worth mentioning that, the parameters 

in the layers are controllable for a better performance. And different 

from traditional CNN, there is no max pooling layer after 

convolution which aims to keep the integrality of data and ensure 

the fixed length of the sequence to feed into LSTM layers.  

 



 

 

Figure 2. Structure of 3+3 C-RNN. 

As shown in Figure 2, the output of convolutional layers are 

sequences of the feature map. These feature sequences will be 

reshaped into a node for recurrent layers. The width of the sequence 

is treated as the time period of recurrent layers which equals to w. 

Then, a dense layer will transform these nodes and feed them into 

the LSTM cells, each with the dimension LSTM size (Ls). This size 

parameter is designed to be 3 times larger than the number of 

channels, which is the similar way in the embedding layers in text 

applications where words are embedded as vectors from a given 

vocabulary [20].  Then the sequence with the length of window size 

will be feed into three LSTM layers continuously. The input of each 

layer is the output from the previous layer. The dropout function is 

applied with problem rate of 0.8 for 1st and 2nd layers. And for the 

3rd recurrent layer, the problem rate will be 0.5. In addition, the 

gradient clipping approach is added to improve training by 

preventing exploding gradients during back propagation. Only the 

last member of the sequence at the last LSTM layer is used as the 

final result, which will be feed into the fully-connected layers and 

a Softmax layer for classification.   

3.4 DATA 
This section describes the datasets and signal types used in the 

experiments. All the databases are public and available online.  

3.4.1 Database 1 
The DB1 used in the experiment is the HAR dataset from the UCI 

repository. The dataset is taken from with 30 subjects within an age 

range of 19-48 years. Each volunteer was asked to perform six 

movements (walking, walking upstairs, walking downstairs, sitting, 

standing and laying) wearing a smartphone on the waist. The 

accelerometers, gyroscope, and body accelerometer signals were 

recorded at a sampling rate of 50 Hz. The dataset was separated into 

two parts randomly where 70% of the set was selected as training 

set and 30% as the testing set. In the pre-processing step, noise 

filters were applied to the signals. The signals sampled in the fixed-

width sliding window of 2.56 sec with 50% overlapping [14].  More 

details and attributes information of DB1 are available at 

https://archive.ics.uci.edu/ml/index.php.  

3.4.2 Database 2 
The DB2 and DB3 used in the experiment are sub-datasets of 

Ninapro database which provides a repository of sEMG data. 

sEMG measures the electrical activity when muscles are moving 

and exercising. It is an important attribute of the nervous systems 

aimed at collecting more muscular force or compensating for force 

losses. When measuring the movements of muscle, sEMG is 

reliable, but with light movements and deep muscles, sEMG 

collected by the wearable sensor is required for a high level of 

accuracy [16]. The purpose of the Ninapro project is to aid research 

on advanced hand myoelectric prosthetics with public datasets [15]. 

Currently, there are 7 databases available, each containing results 

from a series of movements where volunteers performed sets of 

hand, wrist and finger movements in controlled laboratory 

situations. The DB2 is the sub-dataset 5 of Ninapro database which 

contains data acquisitions of 10 subjects. The sEMG signals in the 

set were collected using two Thalmic Myo armbands with 16 

electrodes, providing the upsampled sEMG signal at 200 Hz. The 

armbands were fixed close to the elbow according to the Ninapro 

standards. Each subject repeats 17 different hand movements for 6 

times. Each movement lasts for 5 seconds and following by 3 

seconds of rest as shown in Figure 3. 

 

Figure 3. 17 Movements in Ninapro databases. 

The subject 1-7 were treated as training set and subject 8,9,10 were 

selected as the testing set. 

3.4.3 Database 3 
The DB3 is the sub-dataset 2 of Ninapro database, which contains 

data acquisitions of 40 subjects. The sEMG signals in the set were 

collected using 12 electrodes from a Delsys Trigno Wireless 

System, providing the raw sEMG signal at 2 kHz. The type of 

movements of DB3 is same as DB2. The dataset was separated into 

two parts randomly where 70% of the set was selected as training 

set and 30% as the testing set. More details and attributes 

information of DB2 and DB3 are available at 

http://ninapro.hevs.ch/node/7.  

3.5 Evaluation   
In the above sections, 3 databases and 4 DL models are described. 

This section contains the evaluation function and configurations of 

the experiments. During the testing, the average accuracy of each 

model is measured by a testing set with the loss function of 

multiclass cross-entropy as shown in (1). 

                               𝐻(𝑝, 𝑞) =  − ∑ 𝑝(𝑥) 𝑥 log 𝑞(𝑥).                       (1) 

Multiclass cross-entropy compares two values or matrices, which 

present the label and prediction of the network and generate a loss 

of the model. Where the p(x) equals the value of label for dataset 

x and q(x) equals to the prediction result for dataset x. The lower 

loss rate means the prediction is closer to the label. 

4. RESULT 
For each model, the learning rate is set at 0.0001 and the epoch size 

is set as 1000. The batch size is designed as 600. The training and 

testing are implemented on a computer with GPU of GTX 1080ti 

and CPU of Intel(R) Core(TM) i7-7700k @ 4.20Ghz. The 

programming platform is Tensorflow with python.  

Table 1 shows the average accuracy of different models when 

applied on datasets. It is obvious that 3+3 C-RNN gives the best 

performance on three datasets, which are 90.29%, 83.61% and 

https://archive.ics.uci.edu/ml/index.php
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63.74%. For the Ninapro datasets (DB2 and DB3), 1-D CNN 

produces an unsatisfactory result of 53.17% when compared to 

other models. It is clear that for these 2 datasets, the models 

containing LSTM layer give a better accuracy, which means the 

relationships between different time points have more influence on 

the sEMG signal recognition.  

Table 1. Performance of DL models 

Models DB1 DB2 DB3 

1-D CNN 88% 72.49% 52.17% 

LSTM 86.8% 78.13% 55.3% 

C-RNN 87.62% 82.1% 59.31% 

3+3 C-RNN 90.29% 83.61% 63.74% 

 

However, for the HAR dataset, 4 models produce a high accuracy 

(above 85%). The one reason is the HAR database has fewer classes 

(6) than the Ninapro database (18) which makes it easier to classify. 

In addition, the class of ‘rest’ in Ninapro datasets seems to cause a 

decrease of the accuracy.  

It is also worthy to mention that a large number of subjects (40 for 

DB3) with insufficient sample data cause a confusion for DL 

models and lead to a lower accuracy. Theoretically, this situation 

should be ameliorated if more sample data are fed to the networks. 

Since some researchers and organizations are interested in the 

performance of specific movements, the confusion matrices of 3+3 

C-RNN are provided for each dataset. Each row of the matrix 

represents the instances in predicted movements while each column 

represents the instances in actual movements. Figure 5 is the 

confusion matrix of DB1. During the testing, 94 samples of 

movement 4 were classified as movement 5 and 95 samples of 

movement 5 were classified as movement 4. It means the 3+3 C-

RNN still make mistakes between movement 4 (sitting) and 

movement 5 (standing) after training. In addition, the classification 

of movement 1 (walking) and movement 2 cause a trivial confusion 

for the model. 

 

 

Figure 5. Confusion matrix of 3+3 C-RNN for DB1. 

The confusion matrix of DB2 and DB3 shows the similar result 

because they based on the same dataset. Figure 6 is the confusion 

matrix of DB2 as an example, which contains the specific accuracy 

of 18 movements. The movement 0 is the pausing class which 

obviously cause a confusion for the 3+3 C-RNN when classifying 

it with other movements. The similarity of movements and pausing 

is mainly distributed in the early stage and the ending stage of 

signals. 

 

 

 

 

Figure 6. Confusion matrix of 3+3 C-RNN for DB2. 

5. DISCUSSION 
From the results, the DL models give a satisfactory result on DB1 

and DB2 where the accuracy of DB3 is lower. The larger amount 

of data, the higher sampling rate, and unsuitable model strategy can 

be the reasons. Therefore, there is still potential to improve the DL 

models for a better performance.  

● Hyperparameter Tuning 

Hyperparameter tuning is an important approach in Model 

optimization for machine learning and deep learning. The 

parameters such as learning rate, sliding window size, and batch 

size make a vital influence on the performance and can be tuned to 

control the behavior of a DL algorithm. The window size 

adjustment can be a direction of improvement where the size is 

fixed to 128 in this stage. It seems to be reasonable to set different 

window size for each dataset with different sampling rate to ensure 

that each window contains the same amount of sample as the inputs. 

More experiments should be done with diverse sets of 

hyperparameter for a better performance. 

● Dataset Strategy Adjustment 

Obviously, different dataset strategy leads to the different results 

for models. The adjustment of data can be a potential way to 

improve the performance. For instance, in the DB2 and DB3, 

removing the class of pausing may increase the accuracy because 

this class causes a confusion for DL models with other movements 

as shown in previous sections. In addition, for the practical 

application, each model should be able to give a reasonable 

performance on unseen subjects. It is a possible optimization to use 

unseen dataset for testing in the experiment.  

● Structure Modification 

The DL model is the core of the experiment so the structure 

modification is another fact for improvement. For instance, the 

adding of dropout layer solved the overfitting problem for each 

model. In the future work, more functional layers can be inserted 

into the networks for a better result. 

● Data Preprocessing  

A critical difference between traditional machine learning and deep 

learning is the ML models use hand-crafted features as the input 
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where the DL models use raw data. The ML approaches such as 

support vector machine and deep belief network with well-designed 

features give a tremendous performance in pattern recognition field. 

It can be a worthy trial to feed preprocessed data or hand-crafted 

features as the input to DL models rather than using the raw signals. 

6. CONCLUSION 
Signal-based recognition is an important research area in pattern 

recognition and signal processing. In this paper, four different deep 

learning models were applied for signal recognition. The structure 

of each model was introduced. In the experiment, three databases 

were used including an IMU dataset and two EMG datasets. The 

3+3 C-RNN gave the best performance over 3 datasets where the 

accuracy reached 90.29%, 83.61%, and 63.74%. Based on the 

performance result, the potential improvements were discussed in 

different aspects.  
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