371 research outputs found

    A unified data: framework for mapping underground: Project Iceberg. Work package 2, defining the problem space for an integrated data operating system above and below ground

    Get PDF
    Project Iceberg is an exploratory project undertaken by Future Cities Catapult, British Geological Survey (BGS) and Ordnance Survey (OS). The project aims to address the serious issue of the lack of information about the ground beneath our cities and the un-coordinated way in which the subsurface space is managed. Difficulties relating to data capture and sharing of information about subsurface features are well understood by some sectors and have been explored in previous research and industry reports. This study does not replicate past work, but rather reviews outcomes and explores the barriers to wider uptake of subsurface management systems. The long-term goal is to help increase the viability of land for development and de-risk future investment through better management of subsurface data and ground-related risk. To help achieve this, our study aims to enable a means to discover and access relevant data about the ground’s physical condition and assets housed within it, in a way that is suitable for modern data driven decision making processes. The project considers both physical infrastructure i.e. underground utilities and natural ground conditions i.e. geological data and is divided into three different work packages: Work Package 1: Market research and analysis Work Package 2: Data operation systems and interoperability for a subsurface data platform Work Package 3: Identification of use cases for a subsurface data platform This report summarises the findings of work package 2

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    From Here to Eternity: An Experiment Applying the e-Framework Infrastructure for Education and Research and the SUMO Ontology to Standards-based Geospatial Web Services

    Get PDF
    A number of efforts have been made in recent years to define standards for the description of resources (including web services) in services oriented architectures. These standards often use description logic ontologies (for example, OWL-S) and are intended to be machine-readable. They have been applied to geospatial web services to describe the functions that those services perform in a way that can be automatically interpreted by systems. By contrast, little effort has gone into the development of human readable descriptions of resources in a services oriented architecture, other than using unstructured natural language. e-Framework is an infrastructure for the higher education environment that provides a typology of human-readable artefacts that can be used to describe resources, and provides an internal structure for those artefacts. e-Framework has thus far not been used with geospatial information even though geospatial information has a number of important roles in education and research, and has a well-organised community of users and creators. This paper applies the e-Framework infrastructure to OGC web services, and also recommends the refinement of e-Framework with the use of the SUMO Upper Level Ontology to define Service Genres, the most abstract level of artefacts in e-Framework. It then illustrates the ways in which the Open Geospatial Consortium standards and specifications may be described in e-Framework. The work evaluates SUMO for e-Framework purposes, finding that its use for Service Genres is possible and offers a number of gains. It also evaluates e-Framework from a geospatial perspective, and shows that e-Framework’s constraints on resource descriptions do not suit the large and complex nature of geospatial web services

    Quality of Service Aware Data Stream Processing for Highly Dynamic and Scalable Applications

    Get PDF
    Huge amounts of georeferenced data streams are arriving daily to data stream management systems that are deployed for serving highly scalable and dynamic applications. There are innumerable ways at which those loads can be exploited to gain deep insights in various domains. Decision makers require an interactive visualization of such data in the form of maps and dashboards for decision making and strategic planning. Data streams normally exhibit fluctuation and oscillation in arrival rates and skewness. Those are the two predominant factors that greatly impact the overall quality of service. This requires data stream management systems to be attuned to those factors in addition to the spatial shape of the data that may exaggerate the negative impact of those factors. Current systems do not natively support services with quality guarantees for dynamic scenarios, leaving the handling of those logistics to the user which is challenging and cumbersome. Three workloads are predominant for any data stream, batch processing, scalable storage and stream processing. In this thesis, we have designed a quality of service aware system, SpatialDSMS, that constitutes several subsystems that are covering those loads and any mixed load that results from intermixing them. Most importantly, we natively have incorporated quality of service optimizations for processing avalanches of geo-referenced data streams in highly dynamic application scenarios. This has been achieved transparently on top of the codebases of emerging de facto standard best-in-class representatives, thus relieving the overburdened shoulders of the users in the presentation layer from having to reason about those services. Instead, users express their queries with quality goals and our system optimizers compiles that down into query plans with an embedded quality guarantee and leaves logistic handling to the underlying layers. We have developed standard compliant prototypes for all the subsystems that constitutes SpatialDSMS

    Performance assessment of urban precinct design: a scoping study

    Get PDF
    Executive Summary: Significant advances have been made over the past decade in the development of scientifically and industry accepted tools for the performance assessment of buildings in terms of energy, carbon, water, indoor environment quality etc. For resilient, sustainable low carbon urban development to be realised in the 21st century, however, will require several radical transitions in design performance beyond the scale of individual buildings. One of these involves the creation and application of leading edge tools (not widely available to built environment professions and practitioners) capable of being applied to an assessment of performance across all stages of development at a precinct scale (neighbourhood, community and district) in either greenfield, brownfield or greyfield settings. A core aspect here is the development of a new way of modelling precincts, referred to as Precinct Information Modelling (PIM) that provides for transparent sharing and linking of precinct object information across the development life cycle together with consistent, accurate and reliable access to reference data, including that associated with the urban context of the precinct. Neighbourhoods are the ‘building blocks’ of our cities and represent the scale at which urban design needs to make its contribution to city performance: as productive, liveable, environmentally sustainable and socially inclusive places (COAG 2009). Neighbourhood design constitutes a major area for innovation as part of an urban design protocol established by the federal government (Department of Infrastructure and Transport 2011, see Figure 1). The ability to efficiently and effectively assess urban design performance at a neighbourhood level is in its infancy. This study was undertaken by Swinburne University of Technology, University of New South Wales, CSIRO and buildingSMART Australasia on behalf of the CRC for Low Carbon Living

    Design and Implementation of a Scalable Crowdsensing Platform for Geospatial Data

    Get PDF
    In the recent years smart devices and small low-powered sensors are becoming ubiquitous and nowadays everything is connected altogether, which is a promising foundation for crowdsensing of data related to various environmental and societal phenomena. Very often, such data is especially meaningful when related to time and location, which is possible by already equipped GPS capabilities of modern smart devices. However, in order to gain knowledge from high-volume crowd-sensed data, it has to be collected and stored in a central platform, where it can be processed and transformed for various use cases. Conventional approaches built around classical relational databases and monolithic backends, that load and process the geospatial data on a per-request basis are not suitable for supporting the data requests of a large crowd willing to visualize phenomena. The possibly millions of data points introduce challenges for calculation, data-transfer and visualization on smartphones with limited graphics performance. We have created an architectural design, which combines a cloud-native approach with Big Data concepts used in the Internet of Things. The architectural design can be used as a generic foundation to implement a scalable backend for a platform, that covers aspects important for crowdsensing, such as social- and incentive features, as well as a sophisticated stream processing concept to calculate incoming measurement data and store pre-aggregated results. The calculation is based on a global grid system to index geospatial data for efficient aggregation and building a hierarchical geospatial relationship of averaged values, that can be directly used to rapidly and efficiently provide data on requests for visualization. We introduce the Noisemap project as an exemplary use case of such a platform and elaborate on certain requirements and challenges also related to frontend implementations. The goal of the project is to collect crowd-sensed noise measurements via smartphones and provide users information and a visualization of noise levels in their environment, which requires storing and processing in a central platform. A prototypic implementation for the measurement context of the Noisemap project is showing that the architectural design is indeed feasible to realize

    Policy, Geospatial, and Market Factors in Solar Energy: a Gestalt Approach

    Get PDF
    abstract: Our dependence on fossil fuels is driving anthropogenic climate change. Solar energy is the most abundant and cleanest alternative to fossil fuels, but its practicability is influenced by a complex interplay of factors (policy, geospatial, and market) and scales (global, national, urban). This thesis provides a holistic evaluation of these factors and scales with the goal of improving our understanding of the mechanisms and challenges of transitioning to solar energy. This analysis used geospatial, demographic, policy, legislative record, environmental, and industry data, plus a series of semi-structured, in-person interviews. Methods included geostatistical calculation, statistical linear regression and multivariate modeling, and qualitative inductive analysis. The results reveal valuable insights at each scale, but moreover a gestalt model across the factors and scales draws out a larger pattern at play of the transmutational weighting and increasing complexity of interplay as the level of analysis cascades down through the three geographic scales.Dissertation/ThesisDoctoral Dissertation Sustainability 201

    Semantic privacy-preserving framework for electronic health record linkage

    Get PDF
    The combination of digitized health information and web-based technologies offers many possibilities for data analysis and business intelligence. In the healthcare and biomedical research domain, applications depending on electronic health records (EHRs) identify privacy preservation as a major concern. Existing solutions cannot always satisfy the evolving research demands such as linking patient records across organizational boundaries due to the potential for patient re-identification. In this work, we show how semantic methods can be applied to support the formulation and enforcement of access control policy whilst ensuring that privacy leakage can be detected and prevented. The work is illustrated through a case study associated with the Australasian Diabetes Data Network (ADDN – www.addn.org.au), the national paediatric type-1 diabetes data registry, and the Australian Urban Research Infrastructure Network (AURIN – www.aurin.org.au) platform that supports Australia-wide access to urban and built environment data sets. We demonstrate that through extending the eXtensible Access Control Markup Language (XACML) with semantic capabilities, finer-grained access control encompassing data risk disclosure mechanisms can be supported. We discuss the contributions that can be made using this approach to socio-economic development and political management within business systems, and especially those situations where secure data access and data linkage is required
    • 

    corecore