7 research outputs found

    Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    Get PDF
    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the Orszag-Tang solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo--spectral solutions quite well. We show that low-order truncation--even with a comparable number of global degrees of freedom--fails to correctly model some strong (sup--norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.Comment: 19 pages, 10 figures, 1 table. Submitted to New Journal of Physic

    A comparison of interpolation techniques for non-conformal high-order discontinuous Galerkin methods

    Get PDF
    The capability to incorporate moving geometric features within models for complex simulations is a common requirement in many fields. Fluid mechanics within aeronautical applications, for example, routinely feature rotating (e.g. turbines, wheels and fan blades) or sliding components (e.g. in compressor or turbine cascade simulations). With an increasing trend towards the high-fidelity modelling of these cases, in particular combined with the use of high-order discontinuous Galerkin methods, there is therefore a requirement to understand how different numerical treatments of the interfaces between the static mesh and the sliding/rotating part impact on overall solution quality. In this article, we compare two different approaches to handle this non-conformal interface. The first is the so-called mortar approach, where flux integrals along edges are split according to the positioning of the non-conformal grid. The second is a less-documented point-to-point interpolation method, where the interior and exterior quantities for flux evaluations are interpolated from elements lying on the opposing side of the interface. Although the mortar approach has significant advantages in terms of its numerical properties, in that it preserves the local conservation properties of DG methods, in the context of complex 3D meshes it poses notable implementation difficulties which the point-to-point method handles more readily. In this paper we examine the numerical properties of each method, focusing not only on observing convergence orders for smooth solutions, but also how each method performs in under-resolved simulations of linear and nonlinear hyperbolic problems, to inform the use of these methods in implicit large-eddy simulations.Comment: 37 pages, 15 figures, 5 tables, submitted to Computer Methods in Applied Mechanics and Engineering, revision

    A Review of Element-Based Galerkin Methods for Numerical Weather Prediction: Finite Elements, Spectral Elements, and Discontinuous Galerkin

    Get PDF
    Numerical weather prediction (NWP) is in a period of transition. As resolutions increase, global models are moving towards fully nonhydrostatic dynamical cores, with the local and global models using the same governing equations; therefore we have reached a point where it will be necessary to use a single model for both applications. The new dynamical cores at the heart of these unified models are designed to scale efficiently on clusters with hundreds of thousands or even millions of CPU cores and GPUs. Operational and research NWP codes currently use a wide range of numerical methods: finite differences, spectral transform, finite volumes and, increasingly, finite/spectral elements and discontinuous Galerkin, which constitute element-based Galerkin (EBG) methods.Due to their important role in this transition, will EBGs be the dominant power behind NWP in the next 10 years, or will they just be one of many methods to choose from? One decade after the review of numerical methods for atmospheric modeling by Steppeler et al. (Meteorol Atmos Phys 82:287–301, 2003), this review discusses EBG methods as a viable numerical approach for the next-generation NWP models. One well-known weakness of EBG methods is the generation of unphysical oscillations in advection-dominated flows; special attention is hence devoted to dissipation-based stabilization methods. Since EBGs are geometrically flexible and allow both conforming and non-conforming meshes, as well as grid adaptivity, this review is concluded with a short overview of how mesh generation and dynamic mesh refinement are becoming as important for atmospheric modeling as they have been for engineering applications for many years.The authors would like to thank Prof. Eugenio Oñate (U. Politècnica de Catalunya) for his invitation to submit this review article. They are also thankful to Prof. Dale Durran (U. Washington), Dr. Tommaso Benacchio (Met Office), and Dr. Matias Avila (BSC-CNS) for their comments and corrections, as well as insightful discussion with Sam Watson, Consulting Software Engineer (Exa Corp.) Most of the contribution to this article by the first author stems from his Ph.D. thesis carried out at the Barcelona Supercomputing Center (BSCCNS) and Universitat Politècnica de Catalunya, Spain, supported by a BSC-CNS student grant, by Iberdrola Energías Renovables, and by grant N62909-09-1-4083 of the Office of Naval Research Global. At NPS, SM, AM, MK, and FXG were supported by the Office of Naval Research through program element PE-0602435N, the Air Force Office of Scientific Research through the Computational Mathematics program, and the National Science Foundation (Division of Mathematical Sciences) through program element 121670. The scalability studies of the atmospheric model NUMA that are presented in this paper used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. SM, MK, and AM are grateful to the National Research Council of the National Academies.Peer ReviewedPostprint (author's final draft

    Simulation of the Navier-Stokes Equations in Three Dimensions with a Spectral Collocation Method

    Get PDF
    This work develops a nonlinear, three-dimensional spectral collocation method for the simulation of the incompressible Navier-Stokes equations for geophysical and environmental flows. These flows are often driven by the interaction of stratified fluid with topography, which is accurately accounted for in this model using a mapped coordinate system. The spectral collocation method used here evaluates derivatives with a Fourier trigonometric or Chebyshev polynomial expansion as appropriate, and it evaluates the nonlinear terms directly on a collocated grid. The coordinate mapping renders ineffective fast solution methods that rely on separation of variables, so to avoid prohibitively expensive matrix solves this work develops a low-order finite-difference preconditioner for the implicit solution steps. This finite-difference preconditioner is itself too expensive to apply directly, so it is solved pproximately with a geometric multigrid method, using semicoarsening and line relaxation to ensure convergence with locally anisotropic grids. The model is discretized in time with a third-order method developed to allow variable timesteps. This multi-step method explicitly evaluates advective terms and implicitly evaluates pressure and viscous terms. The model’s accuracy is demonstrated with several test cases: growth rates of Kelvin-Helmholtz billows, the interaction of a translating dipole with no-slip boundaries, and the generation of internal waves via topographic interaction. These test cases also illustrate the model’s use from a high-level programming perspective. Additionally, the results of several large-scale simulations are discussed: the three-dimensional dipole/wall interaction, the evolution of internal waves with shear instabilities, and the stability of the bottom boundary layer beneath internal waves. Finally, possible future developments are discussed to extend the model’s capabilities and optimize its performance within the limits of the underlying numerical algorithms
    corecore