17,529 research outputs found

    A Spin-Statistics Theorem for Certain Topological Geons

    Get PDF
    We review the mechanism in quantum gravity whereby topological geons, particles made from non-trivial spatial topology, are endowed with nontrivial spin and statistics. In a theory without topology change there is no obstruction to ``anomalous'' spin-statistics pairings for geons. However, in a sum-over-histories formulation including topology change, we show that non-chiral abelian geons do satisfy a spin-statistics correlation if they are described by a wave function which is given by a functional integral over metrics on a particular four-manifold. This manifold describes a topology changing process which creates a pair of geons from R3R^3.Comment: 21 pages, Plain TeX with harvmac, 3 figures included via eps

    Gravitational Geons in 1+1 Dimensions

    Full text link
    It is well known that general relativity does not admit gravitational geons that are stationary, asymptotically flat, singularity free and topologically trivial. However, it is likely that general relativity will receive corrections at large curvatures and the modified field equations may admit solutions corresponding to this type of geon. If geons are produced in the early universe and survive until today they could account for some of the dark matter that has been "observed" in galaxies and galactic clusters. In this paper I consider gravitational geons in 1+1 dimensional theories of gravity. I show that the Jackiw-Teitelboim theory with corrections proportional to R2R^2 and â–ˇR\Box R admits gravitational geons. I also show that gravitational geons exist in a class of theories that includes Lagrangians proportional to R2/3R^{2/3}.Comment: 8 pages, a comment added, two references corrected, to appear in Classical and Quantum Gravit

    Addendum to `Gravitational Geons in 1+1 Dimensions'

    Full text link
    In a recent paper [arXiv:0807.0611] I found gravitational geons in two classes of 1+1 dimensional theories of gravity. In this paper I examine these theories, with the possibility of a cosmological constant, and find strong field gravitational geons. In the spacetimes in [arXiv:0807.0611] a test particle that is reflected from the origin suffers a discontinuity in d2t/dτ2d^2t/d\tau^2. The geons found in this paper do not suffer from this problem.Comment: To appear in Classical and Quantum Gravit

    Quantum Topology Change in (2 + 1)d

    Get PDF
    The topology of orientable (2 + 1)d spacetimes can be captured by certain lumps of non-trivial topology called topological geons. They are the topological analogues of conventional solitons. We give a description of topological geons where the degrees of freedom related to topology are separated from the complete theory that contains metric (dynamical) degrees of freedom. The formalism also allows us to investigate processes of quantum topology change. They correspond to creation and annihilation of quantum geons. Selection rules for such processes are derived.Comment: LaTeX file, 33 pages, 10 postscript figures, some typos corrected, references updated, and other minor change

    Quantum Geons and Noncommutative Spacetimes

    Get PDF
    Physical considerations strongly indicate that spacetime at Planck scales is noncommutative. A popular model for such a spacetime is the Moyal plane. The Poincar\`e group algebra acts on it with a Drinfel'd-twisted coproduct. But the latter is not appropriate for more complicated spacetimes such as those containing the Friedman-Sorkin (topological) geons. They have rich diffeomorphism groups and in particular mapping class groups, so that the statistics groups for N identical geons is strikingly different from the permutation group SNS_N. We generalise the Drinfel'd twist to (essentially) generic groups including to finite and discrete ones and use it to modify the commutative spacetime algebras of geons as well to noncommutative algebras. The latter support twisted actions of diffeos of geon spacetimes and associated twisted statistics. The notion of covariant fields for geons is formulated and their twisted versions are constructed from their untwisted versions. Non-associative spacetime algebras arise naturally in our analysis. Physical consequences, such as the violation of Pauli principle, seem to be the outcomes of such nonassociativity. The richness of the statistics groups of identical geons comes from the nontrivial fundamental groups of their spatial slices. As discussed long ago, extended objects like rings and D-branes also have similar rich fundamental groups. This work is recalled and its relevance to the present quantum geon context is pointed out.Comment: 41 page

    Black resonators and geons in AdS5_5

    Full text link
    We construct dynamical black hole solutions with a helical symmetry in AdS5_5, called black resonators, as well as their horizonless limits, called geons. We introduce a cohomogeneity-1 metric describing a class of black resonators and geons whose isometry group is R×SU(2)R\times SU(2). This allows us to study them in a wide range of parameters. We obtain the phase diagram for the black resonators, geons, and Myers-Perry-AdS5_5, where the black resonators emerge from the onset of a superradiant instability of the Myers-Perry-AdS5_5 with equal angular momenta and are connected to the geons in the small horizon limit. The angular velocities of the black resonators always satisfy Ω>1\Omega>1 in units of the AdS radius. A black resonator is shown to have higher entropy than a Myers-Perry-AdS5_5 black hole with the same asymptotic charges. This implies that the Myers-Perry-AdS5_5 can dynamically evolve into the black resonator under the exact SU(2)SU(2)-symmetry although its endpoint will be further unstable to SU(2)SU(2)-violating perturbations.Comment: 27 pages, 9 figure

    Geons of Galileons

    Get PDF
    We suggest that galileon theories should have an additional self-coupling of the fields to the trace of their own energy-momentum tensor. We explore the classical features of one such model, in flat 4D spacetime, with emphasis on solutions that are scalar analogues of gravitational geons. We discuss the stability of these scalar geons, and some of their possible signatures, including shock fronts.Comment: References added in v
    • …
    corecore