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We suggest that galileon theories should have an additional self-coupling of the fields to the trace of
their own energy-momentum tensor. We explore the classical features of one such model, in flat 4D
spacetime, with emphasis on solutions that are scalar analogues of gravitational geons. We discuss the
stability of these scalar geons, and some of their possible signatures, including shock fronts.
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Galileon theories are a class of models for new scalar fields
whose Lagrangians involve multilinears of first and second deriva-
tives, but whose nonlinear field equations are nonetheless still only
second-order. They may be important for the description of large-
scale features in astrophysics as well as for elementary particle
theory [1,7]. Hierarchies of such Lagrangians giving rise to such
field equations were first discussed mathematically in [8-10,14].
The simplest example involves a single scalar field.

This galileon field is usually coupled to all other matter through
the trace of the energy-momentum tensor, © (M€ and is thus
gravitation-like by virtue of the similarity between this universal
coupling and that of the metric g, to O™ in general relativ-
ity. Indeed, some galileon models have been obtained from limits
of higher dimensional gravitation theories [5].

But surely, in a self-consistent theory, for the coupling to be
truly universal, the galileon should also be coupled to its own
energy-momentum trace, even in the flat spacetime limit. Some
consequences of this additional self-coupling are considered in this
Letter.

The action for the lowest non-trivial member of the galileon
hierarchy can be written in various ways upon integrating by parts.
Perhaps the most compact and memorable of these is

1
o= f Sadadss d'x. (1)

where ¢ is the scalar galileon field, ¢y = d¢p(x)/3x“, etc., and
where repeated indices are summed using the Lorentz metric
Suv =diag(1, -1, -1,..)).

It is straightforward to include in A, a covariant coupling to
a background spacetime metric and hence to deduce a symmetric
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energy-momentum tensor. In the flat-space limit, the result is

@;(LZJ = ¢M¢v¢aa - ¢a¢av¢u - ¢a¢au¢v + 3#v¢a¢ﬂ¢aﬂ- (2)

This is seen to be conserved,

3,0 = ¢y E2[ 9], 3)

upon using the field equation that follows from locally extremiz-
ing Ay, 0=38A,/8¢ = —&2[¢], where

&Pl = baadpp — Papdas- (4)

An interesting wrinkle now appears: @,&23 is not traceless. Con-

sequently, the usual form of the scale current, x, (9&2,1 is not con-
served [15]. On the other hand, the action (1) is homogeneous
in ¢ and its derivatives, and is clearly invariant under the scale
transformations x — sx and ¢ (x) — s®~/3¢(sx). Hence the corre-
sponding Noether current must be conserved. This current is easily
found, especially for n =4, so let us restrict our attention to four
spacetime dimensions in the following.
In that case the trace is obviously a total divergence:

0@ =5,,0.) = du (Pubpdp). (5)
That is to say, for n =4 the virial is the trilinear Vo = ¢o¢pdg. So
a conserved scale current is given by the combination,

Sy =XaOL) — babady. (6)

Interestingly, this virial is not a divergence modulo a conserved
current, so this model is not conformally invariant despite being
scale invariant. Be that as it may, it is not our principal concern
here.

Our interest here is that the nonzero trace suggests an addi-
tional interaction where ¢ couples directly to its own @@, This is


https://core.ac.uk/display/81152203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2012.08.040
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:curtright@miami.edu
http://dx.doi.org/10.1016/j.physletb.2012.08.040
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

T.L. Curtright, D.B. Fairlie / Physics Letters B 716 (2012) 356-360 357

similar to coupling a conventional massive scalar to the trace of its
own energy-momentum tensor [11]. In that previously considered
example, however, the consistent coupling of the field to its trace
required an iteration to all orders in the coupling. Upon summing
the iteration and making a field redefinition, the Nambu-Goldstone
model emerged. But, for the simplest galileon model in four space-
time dimensions, (1), a consistent coupling of field and trace is
much easier to implement. No iteration is required. The first-order
coupling alone is consistent, after integrating by parts and ignor-
ing boundary contributions, so that [16]

1 1
—3/¢%wmww¥w=;/%%@mw%. (7)

(Similar quadrilinear terms have appeared previously in [2,3], only
multiplied there by scalar curvature R so that they would drop
out in the flat spacetime limit that we consider.) Consistency fol-
lows because (7) gives an additional contribution to the energy-
momentum tensor which is traceless, in 4D spacetime:

00 _ 1 3 _
Ty = SudvPada — Z(Sp.vfpa‘ﬁad’ﬁ‘ﬁﬂa 6 =0. (8)
Of course, coupling ¢ to its own trace may impact the Vainstein
mechanism [20] by changing the effective coupling of @ (Mmatter) tg
both backgrounds and fluctuations in ¢. We leave this as an exer-
cise for the reader.

Based on these elementary observations, we consider a model
with action

1 1 1
A =/<E¢a¢a - E)ud)ozd’a(z’ﬂﬁ - ZK¢“¢a¢ﬂ¢ﬂ> d4X, 9)

where for the Lagrangian L we take a mixture of three terms:
the standard bilinear, the trilinear galileon, and its corresponding
quadrilinear trace-coupling. The quadrilinear is reminiscent of the
Skyrme term in nonlinear o models [19] although here the topol-
ogy would appear to be always trivial.

The second and third terms in A are logically connected, as we
have indicated. But why include in A the standard bilinear term?
The reasons for including this term are to soften the behavior of
solutions at large distances, as will be evident below, and also to
satisfy Derrick’s criterion for classical stability under the rescaling
of x. Without the bilinear term in L the energy within a spatial
volume would be neutrally stable under a uniform rescaling of x,
and therefore able to disperse [4,6].

Similarly, for positive «, the last term in A ensures the en-
ergy density of static solutions is always bounded below under a
rescaling of the field ¢, a feature that would not be true if x =0
but A # 0. So, we only consider ¥ > 0 in the following. But be-
fore discussing the complete @, for the model, we note that we
did not include in A a term coupling ¢ to the trace of the energy-
momentum due to the standard bilinear term, namely, [ ¢©@® d4x,
where

O = bup — et O = ~guge. (10)
We have omitted such an additional term in A solely as a matter
of taste, thereby ensuring that L is invariant under constant shifts
of the field. Among other things, this greatly simplifies the task of
finding solutions to the equations of motion.

The field equation of motion for the model is 0 = §A/5¢ =
—&[¢], where

Eldl = daa — }\(¢aa¢’ﬂﬂ - d’aﬂd’aﬂ) - K(¢’tx¢ﬁ¢ﬂ)a- (11)

As expected, this field equation is second-order, albeit nonlinear.
Also note, under a rescaling of both x and ¢, nonzero parameters
A and « can be scaled out of the equation. Define

A K
¢(X)=;l/f( A_2X> (12)

Then the field equation for ¥ (z) becomes

Wowz - (Waa\”ﬂﬂ - Waﬂl/’aﬁ) - (WuWﬂWﬂ)a =0, (13)

where ¥y = 0¥ (2)/9z%, etc. In effect then, if both A and « do not
vanish, it is only necessary to solve the model’s field equation for
A=k=1.

Though £ is nonlinear, it is nevertheless still true that some
plane waves are exact solutions. For “light-ray” plane waves,
E[Aexp(ikyxy)] = 0 for constant A and kg, if kyk, =0 with A
arbitrary. In this case, each of the terms in £ vanish separately. In
fact, light-ray plane waves are only one among many possible solu-
tions for which both ¢yq =0 and ¢g¢g = 0. On the other hand, for
massive plane waves, E[A exp(ikyxy)] = 0 if 1/kyky = —3k A% < 0.
The latter “tachyonic” solutions would seem to be less interesting
for real physics.

For static, spherically symmetric solutions, ¢ = ¢ (r), the field
equation of motion becomes

1 d / 2 / /
Ozr—zg(rz@ +k;(¢)2+'<(¢)3))» (14)

where ¢’ =d¢/dr. This is immediately integrated once to obtain a
cubic equation,

¢ + 2kr(¢’)2 +Kr? (4)’)3 =C, (15)
where C is the constant of integration. Now, without loss of gen-
erality (cf. (12) and (13)) we may choose A > 0. Then, if C =0,
either ¢’ vanishes, or else there are two solutions that are real

only within a finite sphere of radius r = /A2 /k. These two “interi-
or” solutions are given exactly by

1
L =——(AE£VA2—1%). 16
¢l =——( ) (16)
Note that these solutions always have ¢’ < 0 within the finite
sphere.

Otherwise, if C # 0, then examination of the cubic equation for
small and large |¢’| determines the asymptotic behavior of ¢’ for
large and small r. In particular, there is only one type of asymptotic
behavior for large r:

ro L
¢ 2

r—>00 T+

for either sign of C. (17)

However, there are two types of behavior for large |¢’|, corre-
sponding to small r. Either

= (1+0(5)) (18)
¢k ¢’

provided ¢’ < 0, but with either sign of C; or else

—1 ¢ 0 1 19
“W(Z+ (&)) (19)

provided C > 0, but with either sign of ¢’. The corresponding real
solutions behave as

-2\
¢ ~ —— foreithersignofC, or (20)
r—0 Kr
C
¢ ~ +,/— provided C > 0. (21)

r—0 2Ar
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Fig. 1. ¥/(r) for C = +1/4", with N =0,1,2,3 for top to bottom curves, respec-
tively.

Fig. 2. ¥/(r) for C = 71/2"’, with N =6,5,4,3,2,1,0 from left to right, respec-
tively. The thin black curve is a union of the two C = 0 solutions in (16).

Comparison of the small r behavior to the large r asymptotics
shows that in half these cases the solutions would require zeroes
to be real and continuous for all r. But such zeroes do not occur.
Instead, half of the cases provide real solutions only over a finite
interval of r, somewhat similar to the C = 0 solutions in (16), but
not so easily expressed, analytically.

The solutions which are real for all r > 0 boil down to two
cases, with small and large r behavior given by either

C C
/ ’
¢ r—>0‘/ o7 and ¢ oo 12 forC >0, (22)

or else

—21 C
¢ ~ —— and ¢ ~ —
r—0o0 T

for C <0. (23)
r—0 Kr

From further inspection of the cubic equation to determine the be-
havior of ¢’ for intermediate values of r, when C > 0 it turns out
that ¢’ is a single-valued, positive function for all r > 0, joining
smoothly with the asymptotic behaviors given in (22). However, it
also turns out there is an additional complication when C < 0. In
this case there is a critical value (k3/2/12)Cqitical = —4+/3/27 ~
—0.2566 such that, if C < Cgitical then ¢’ is a single-valued, neg-
ative function for all r > 0, while if Cgijtical < C < 0 then ¢’ is
triple-valued for an open interval in r > 0. It is not completely
clear to us what physics underlies this multivalued-ness for some
negative C. But in any case, when C < 0 it is also true that ¢’ joins
smoothly with the asymptotic behaviors given in (23). All this is
illustrated in Figs. 1 and 2, for A=k =1.

A test particle coupled by ¢®™ateD to5 any of these galileon
field configurations would see an effective potential which is not
1/r, for intermediate and small r. Therefore its orbit would show

deviations from the usual Kepler laws, including precession at
variance with that predicted by conventional general relativity. It
would be interesting to search for such effects, say, by considering
stars orbiting around the galactic center.

For the solutions described by (22) and (23), the total energy
outside any large radius is obviously finite for both C > 0 and
C < 0. And if C > 0, the total energy within a small sphere sur-
rounding the origin is also manifestly finite. But if C < 0 the energy
within that same small sphere could be infinite unless there is a
cancellation between the galileon term and the trace interaction
term. Remarkably, this cancellation does occur [17]. So both C > 0
and C < 0 types of static solutions for the model have finite total
energy.

Complete information about the distribution of energy is pro-
vided by the model’s energy-momentum tensor,

Oy =0 — 100 —KkOL. (24)

As expected, this is conserved, given the field equation £[¢] =
since

O Ouv = PpElP]. (25)

The energy density for static solutions differs from the canonical
energy density for such solutions (namely, —L) by a total spatial
divergence that arises from the galileon term:

AV - (V)2 Vg). (26)

This divergence will not contribute to the total energy for fields
such that lim;_ o (¢/Inr) exists. Assuming that is the case, Der-
rick’s scaling argument for static, finite energy solutions of the
equations of motion [4] shows the energy is just twice that due
to the bilinear @(()é). Thus,

@00 = _L|static I

E=/@Ooa3r=/(%)2d3r. (27)

For the spherically symmetric static solutions of (15), this be-
comes an expression of the energy as a function of the parameters
and the constant of integration C:

oo

f (¢)’rdr. (28)

0

E[A,k,Cl=4r

Again without loss of generality, consider A = k = 1. Then for ei-
ther C > 0 or for C < Cgitical < 0 [18], change integration variables
from r to s = ¢’ to find:

1
E(C20)=I(|C|):F<|C|+—n), (29)
P(s,C)ds
He=0= /(52+1)4R(s c)’ (30)

where R(s, C) = /s* + s(s2 + 1)C and where the numerator of the
integrand is an eighth-order polynomial in s, namely, P(s,C) =
8s8 4+ 12Cs” + (3C2 — 8)s® + 8Cs® + 7C2s* — 4Cs3 + 5C2s2 + C2.
Thus, I(C) is an elliptic integral. But rather than express the final
result in terms of standard functions, it suffices here just to plot
E(C), in Fig. 3. Note that E increases monotonically with |C]|.

For other values of A and k with the constant of integration C
specified as in (15), the energy of the solution is given in terms of
the function defined by (29), (30):

Elr, &, Cl= (A3 /k52) E(k3/2C/22). (31)
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Fig. 3. E(+C) versus C > 0 as lower/upper curves (the horizontal line is
E(Ceritical) &~ 3.7396).

The energy curves indicate double degeneracy in E, for different
values of |C|, when E[A,k,C] > mA3/k3/%. Also, for a given |C|
the negative C solutions are higher in energy, with E[A, k, —|C|] —
E[r, K, |C|1 = A3 /K% + 2|C|r/k. Or at least this is true for
all |C] > |Cericical] in Which case E[1,k,C] > 2 E(“ Ceritical) ~
3.7396 A3/k>/2 [18].

Finite energy classical solutions of gravity-like theories bring
to mind the “geons” proposed long ago by Wheeler [21]. These
were envisioned in their purest form as distributions of only grav-
itational energy held together solely by gravitational interaction.
Combinations of electromagnetic energy and gravity were also con-
sidered, as were systems containing neutrinos. Wheeler argued
that such configurations would be relatively stable, if they existed,
but would eventually dissipate due to a variety of both classical
and quantum effects, including light-light scattering, as well as
production and absorption of quanta. While plausible distributions
were sketched, and decay rates were estimated, exact classical so-
lutions were not found.

The same mechanisms would seem to apply to any hypothetical
classical galileon distributions such as those discussed here, the
main difference being that analytic spherically symmetric solutions
might still be obtainable even if conventional gravitational effects
were included. Perhaps these gravitational effects would not alter
the qualitative features of the static pure ¢ configurations given
above. Should they really exist, presumably these galileon geons
could also be dissipated by various classical and quantum effects.
All this is far beyond our current abilities and the scope of this
Letter, of course, but the general ideas suggest some interesting
possibilities.

Whatever the cause, if the configuration’s energy loss were
gradual, as a first step it might suffice to model the time-
dependent system quasi-statically, as a continuous flow from one
static solution to another. That is to say, perhaps a good approx-
imation would be to take C(t), with |C| and E(C) decreasing
monotonically with time. For the positive C case, this would be
more or less uneventful as the whole configuration would just
slowly disappear without any abrupt changes. But for the neg-
ative C case, as t increased Ceiticai Would be reached, beyond
which the solution would begin to fold over, exhibiting the mul-
tivalued features shown in Fig. 2. But this is just the usual pic-
ture for the formation of a shock front. These particular galileon
shocks would implode, converging towards the origin, as shown in
http://server.physics.miami.edu/~curtright/PsiWave.gif. We believe
this is a plausible scenario and a reasonable physical interpretation
of the model’s multivalued solutions. Moreover, it would seem to
provide a signature for their existence.

As is clear from Fig. 2, the shock front would form when
d¢’/dr = co. For the C < O static solutions of (15) it is not dif-
ficult to determine the locus of such singular points. It is given
by the intersection of the solutions, for various C, and the curve
(1 +3k¢'?)r = 4r¢’. As usual for singular points in the develop-
ment of a shock, almost certainly there is some physics missing
from the equations. Since ¢” is large, the obvious modification
would be to include higher derivative terms in the action, which is
tantamount to attempting an ultraviolet completion of the model.
This is an open question. Perhaps higher terms in the galileon hi-
erarchy would be natural candidates to be included.

To get a handle on such terms, and for purposes of compar-
ison to the model in (9), consider briefly another model some-
what similar in form, but whose Lagrangian consists only of terms
taken from the galileon hierarchy, without any coupling to . Af-
ter rescaling the field and coordinates to achieve a standard form,
this alternate model may be defined by

1 1
Aself—dual[llf] = /(5%)[1”0{ - ZWawot ‘//ﬂﬁ

1
+ oy VeV Wpptyy — wﬁywm) d'x. (32)

The difference with (9) lies in the last term, which is quadrilinear
in the field, as before, but now has two fields with second deriva-
tives.

As the name suggests, this model is self-dual, in the following
sense: The action retains its form under a Legendre transforma-
tion [9] (also see [12]) to a new field ¥ and new coordinates X, as
defined by:

V(X)) + P (X) =X Xo.- (33)

Thus Aself-duall¥] = Aself-dual[¥], provided integrations by parts
give no surface contributions. This identity suggests that there are
interesting properties for the quantized model, such as its ultravi-
olet behavior, but that is outside the scope of the present discus-
sion.

Here it suffices to compare the classical physics following from
(32) with that following from (9). Upon integrating once the classi-
cal equations of motion for static, spherically symmetric solutions
of the field equations for (32), the result is again a cubic equation,

2 1 3
Py () + () =C, (34)
but the ()3 term is no longer weighted by r? as it was in (15).

Thus the small and large r behaviors are now given by

v ~ @3B0V and ¢ ~ 52 (35)

r—0 r—00 1™
for either sign of the constant of integration, C. These static solu-
tions have finite total energy for either sign of C, as before, only
now v’ is always bounded. Moreover, upon inspection of the be-
havior of v for intermediate r, and various C, unlike the previous
model the solutions are now always single-valued for either C > 0
or C < 0. Thus there are no multivalued solutions like those shown
in Fig. 2. However, each of the C < 0 static solutions does have a
single point for which dy’/dr = oo, namely, r = (3|C|)!/3. So there
is still a reason to expect the existence of shock fronts for quasi-
static time-dependent fields in this alternate model. Finally, again
for C <0, to have ¢’ real for all r > 0, it is necessary to join to-
gether “interior” and “exterior” solutions at r = (3|C|/2)!/3.

It remains to investigate the stability of these spherically sym-
metric solutions under perturbations, especially to check for the
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existence of superluminal modes, along the lines of [13]. Evidently,
superluminal modes are a possible feature for models of this type.

In conclusion, it would be interesting to search for evidence of
geons containing galileons at all distance scales, including galactic
and sub-galactic, as well as cosmological. Perhaps a combination
of trace couplings and various galileon terms, such as those in (9)
and (32), will ultimately lead to a realistic physical model.
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