4 research outputs found

    Geometry-Based Statistical Modeling of Non-WSSUS Mobile-to-Mobile Rayleigh Fading Channels

    Get PDF
    In this paper, we present a novel geometry-based statistical model for small-scale non-wide-sense stationary uncorrelated scattering (non-WSSUS) mobile-to-mobile (M2M) Rayleigh fading channels. The proposed model builds on the principles of plane wave propagation to capture the temporal evolution of the propagation delay and Doppler shift of the received multipath signal. This is different from existing non-WSSUS geometry-based statistical channel models, which are based on a spherical wave propagation approach, that in spite of being more realistic is more mathematically intricate. By considering an arbitrary geometrical configuration of the propagation area, we derive general expressions for the most important statistical quantities of nonstationary channels, such as the first-order probability density functions of the envelope and phase, the four-dimensional (4-D) time-frequency correlation function (TF-CF), local scattering function (LSF), and time-frequency-dependent delay and Doppler profiles. We also present an approximate closed-form expression of the channel's 4-D TF-CF for the particular case of the geometrical one-ring scattering model. The obtained results provide new theoretical insights into the correlation and spectral properties of non-WSSUS M2M Rayleigh fading channels.acceptedVersionnivÄ

    Doppler Shift Characterization of Wideband Mobile Radio Channels

    Get PDF
    Author's accepted manuscript (post-print).© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Available from 08/10/2021.acceptedVersio

    A non-WSSUS mobile-to-mobile channel model assuming velocity variations of the mobile stations

    Get PDF
    This paper aims to characterize the effects that the velocity variations of the mobile stations (MSs) produce on the correlation properties of non-stationary time-frequency (TF) dispersive mobile- to-mobile (M2M) fading channels. Toward that end, we propose a novel geometrical model for non-wide-sense stationary uncorrelated scattering (non-WSSUS) M2M channels that incorporates such variations following a plane wave propagation approach. Capitalizing on the mathematical simplicity of this approach, we derive a general expression for the four-dimensional (4D) TF correlation function (TFCF) of the proposed channel model. From this expression, we analyze the influence of the MSs' acceleration#x002F;deceleration on the channel's correlation properties. Some simulation examples illustrating our findings are presented for the particular case of the geometrical one-ring scattering model. The proposed channel model can be used as a reference to study the performance of emerging vehicular communication systems in safety-threatening scenarios, such as when a MS is forced to break suddenly.acceptedVersionnivÄ
    corecore