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Abstract—This paper aims to characterize the effects that
the velocity variations of the mobile stations (MSs) produce
on the correlation properties of non-stationary time-frequency
(TF) dispersive mobile-to-mobile (M2M) fading channels. Toward
that end, we propose a novel geometrical model for non-wide-
sense stationary uncorrelated scattering (non-WSSUS) M2M
channels that incorporates such variations following a plane
wave propagation approach. Capitalizing on the mathematical
simplicity of this approach, we derive a general expression for
the four-dimensional (4D) TF correlation function (TFCF) of the
proposed channel model. From this expression, we analyze the
influence of the MSs’ acceleration/deceleration on the channel’s
correlation properties. Some simulation examples illustrating our
findings are presented for the particular case of the geometrical
one-ring scattering model. The proposed channel model can
be used as a reference to study the performance of emerging
vehicular communication systems in safety-threatening scenarios,
such as when a MS is forced to break suddenly.

Keywords—Accelerated motion, channel modeling, mobile-to-
mobile communications, non-stationary processes, non-WSSUS
channels, radiowave propagation, vehicular communications.

I. INTRODUCTION

The interest that exists globally in the development of

vehicular communication systems for road safety and traffic

management applications has opened new research directions

in the wireless communications field [1], [2]. One of such

directions targets at modeling the non-stationary characteris-

tics of the vehicular communication channel that have been

observed empirically. To address this problem, several dif-

ferent geometry-based statistical models (GBSMs) for non-

wide-sense stationary uncorrelated scattering (non-WSSUS)

mobile-to-mobile (M2M) fading channels have recently been

proposed, e.g., see [3]–[6]. An important feature of these

models is that they lend themselves to the mathematical

analysis of the relevant statistics of non-stationary channels,

such as the correlation and scattering functions. However, a

review of the literature reveals that the existing GBSM for non-

WSSUS M2M channels have been formulated by assuming

constant velocities of the transmitting and receiveing mobile

stations (MSs). This assumption is reasonably justified in many

situations in which the vehicular communication systems are

expected to operate. Nevertheless, an acceleration/deceleration

component should be included to properly characterize the

channel’s dynamics for important scenarios that arise occa-

sionally, such as when a vehicle accelerates in preparation to

overtake a slower one, or when a vehicle brakes suddenly.

To close the gap, we propose in this paper a novel GBSM for

non-WSSUS M2M fading channels that incorporates velocity

variations of the MSs. The proposed model has been formu-

lated following a plane wave propagation approach that fa-

cilitates the characterization of the channel’s nonstationarities

stemming from the propagation over small local areas. Cap-

italizing on the mathematical simplicity of this approach, we

derive a general expression for the channel four-dimensional

(4D) time-frequency correlation function (TFCF). To the best

of the authors’ knowledge, the effects produced by the MSs’

acceleration/deceleration on the correlation properties of non-

WSSUS channel have not been analytically investigated be-

fore. However, a closely related work is presented in [7]. In

that paper, the authors characterize the correlation and spec-

tral properties of non-stationary narrowband M2M channels

assuming variations in the MSs’ speeds and trajectories. The

main difference between our work and that in [7] is that we

are dealing here with the modeling of non-stationary doubly-

selective M2M channels, whereas the focus of [7] is only

on time-selective channel characteristics. Another important

difference is that the motion of the MSs is characterized in

this paper by the sum of a velocity vector and an acceleration

vector. By contrast, the model of motion considered in [7]

cannot be expressed as the sum of such vectors. Finally, the

authors of [7] assume that each “echo” of the transmitted

signal interacts with two different interfering objects (IOs)

before impinging on the receiver antenna. In this paper, we

suppose that each propagation path expriences only a single

interaction with IOs.

The remainder of the paper is organized in four sections:

Our proposal for the geometrical modeling of non-WSSUS

M2M fading channels assuming variations in the MSs’ veloc-

ities is presented in Section II. The 4D TFCF of the proposed

channel model is analyzed in Section III. Some numerical

examples illustrating our findings are presented in Section IV

for the particular case of the geometrical one-ring scattering

model. Finally, our conclusions are given in Section V.
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Notation: The complex conjugate and the absolute value

operations are denoted by (·)∗ and | · |, respectively. Vectors

are written in bold-face. The transpose operation is denoted by

(·)†, ‖·‖ stands for the Euclidean norm, and the scalar product

between two vectors z1 and z2 is represented as 〈z1, z2〉. The

operator E{·} designates the statistical expectation. The set of

positive real numbers is denoted by R
+.

II. THE PROPOSED GBSM FOR NON-WSSUS M2M

CHANNELS

A. Mathematical Model of the Channel Impulse Response

The scope of this paper is on the characterization of small-

scale non-WSSUS channels for single-input single-output

(SISO) M2M communication systems. We assume that mul-

tiple replicas of the transmitted signal arrive at the receiver

via a single interaction with IOs that are static and arbitrarily

located on the propagation environment. Under this condition,

we define the baseband-equivalent channel impulse response

(CIR) at time t due to an impulse applied τ seconds in the

past by the superposition of L electromagnetic plane waves as

h(t; τ) , ΠT0
(t)

L
∑

ℓ=1

gℓ exp
{

jϕℓ(t)
}

δ(τ − τℓ(t)) (1)

where j2 = −1, δ(·) is the Dirac delta function, gℓ is

an attenuation factor introduced by the interaction of the

transmitted signal with the ℓth IO; ϕℓ(t) and τℓ(t) are the

instantaneous phase and propagation delay of the ℓth received

electromagnetic wave, respectively, and ΠT0
(t) is a windowing

function given by

ΠT0
(t) ,

{

1, 0 ≤ t ≤ T0

0, otherwise.
(2)

The windowing function is introduced as a means to limit

the length of the CIR h(t; τ) within an interval of length T0

inside of which the large-scale variations of the channel are

negligible. The instantaneous phase ϕℓ(t) of the ℓth received

plane wave can be modeled as

ϕℓ(t) = θ0 − θℓ − ϑT
ℓ (t)− ϑR

ℓ (t) (3)

where θ0 is the initial phase of the transmitted signal, θℓ
is a phase rotation produced by the interaction with the ℓth
IO, ϑT

ℓ (t) and ϑR
ℓ (t) are additional phase rotations related

to the distance that the ℓth received wave travels from the

transmitting MS (TX) to the ℓth IO, and from there to the

receiving MS (RX ), respectively. Without loss of generality,

we will henceforth assume that θ0 = 0.

B. Geometrical Modeling of the CIR Parameters

For the characterization of the instantaneous propagation

delay τℓ(t), and phase rotations ϑT
ℓ (t) and ϑR

ℓ (t), we will

consider an arbitrary geometrical configuration of the prop-

agation area, such as the one illustrated in Fig. 1. The IOs

are represented in Fig. 1 by black dots. The time-invariant

vector sℓ indicates the position of the ℓth IO. In turn, pT
0 and

p
R
0 stand for the initial position of TX and RX , respectively,

D

vT

aT

vR

aRu
T

ℓ
u
R

ℓ

p
T
0 p

R
0

O (Coordinate system’s origin)
z
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ℓ

Fig. 1. The reference 2D propagation scenario at time t0 = 0.

i.e., the position of the MSs at the time t = 0 when the

communications between them begin. The distance between

p
T
0 and p

R
0 is equal to D, that is, ‖pT

0 −p
R
0 ‖ = D. The initial

velocities of TX and RX are given by the vectors vT and vR,

respectively, while the corresponding acceleration vectors are

denoted by aT and aR. The time-invariant vectors p̊T
ℓ and p̊

R
ℓ

indicate, in that order, the position of the ℓth IO as seen from

the initial position of TX , and the initial position of RX as seen

from the ℓth IO. Note that p̊T
ℓ = sℓ−p

T
0 , and p̊

R
ℓ = p

R
0 − sℓ.

Finally, uT
ℓ and u

R
ℓ are unit vectors that point in the direction

of propagation of the ℓth received wave on transmission and

after the interaction with the ℓth IO, respectively.

Following the geometrical channel modeling approach pre-

sented in [5], [6], and with reference to Fig. 1, we define the

propagation delay τℓ(t) and the phases ϑT
ℓ (t) and ϑR

ℓ (t) as

ϑT
ℓ (t) , κ0〈p

T
ℓ (t),u

T
ℓ 〉 (4)

ϑR
ℓ (t) , κ0〈p

R
ℓ (t),u

R
ℓ 〉 (5)

τℓ(t) ,
〈pT

ℓ (t),u
T
ℓ 〉+ 〈pR

ℓ (t),u
R
ℓ 〉

C
(6)

where κ0 = 2π/λ is the wavenumber of the transmitted signal,

λ stands for the wavelength, and C is the speed of light. The

time-varying vector p
T
ℓ (t) indicates the position of the ℓth

IO with respect to (w.r.t.) the instantaneous position of TX ,

whereas p
R
ℓ (t) describes the instantaneous position of RX as

seen from the ℓth IO. Regardless of how the IOs are arranged,

the instantaneous position vectors p
T
ℓ (t) and p

R
ℓ (t) can be

written as

p
k
ℓ (t) = p̊

k
ℓ − ckmk(t), k ∈ {T,R} (7)

where ck = 1 if k = T , and ck = −1 if k = R. The time-

varying vector mk(t), k ∈ {T,R}, accounts for the motion of

TX (k = T ) and RX (k = R). From classical mechanics, and

assuming constant acceleration, we can define

mk(t) = t

(

vk +
1

2
t · ak

)

, k ∈ {T,R}. (8)

The model of motion defined above is similar to the one

considered in [7] in the sense that both models can be used

to describe motion over linear and curvilinear trajectories.



However, the model in (8) applies for trajectories over open

curves, such as parabolic and hyperbolic curves, while the

model in [7] is valid for curvilinear trajectories over circles

and spirals.

The M2M channel model given by (1)–(8) is transparent

to the geometrical configuration of the IOs’ location, and is

valid regardless of whether the vectors that characterize the

relative position among IOs and MSs are defined in a two-

dimensional (2D) or a three-dimensional (3D) space. However,

to simplify our analysis, we will restrict our attention to the

case of a 2D propagation scenario. For this particular case, the

parameters of the velocity, acceleration, and position vectors

introduced in this section will be defined as in Table I, where

the notation x = Mx∠Θx indicates that x is a vector having

a magnitude Mx and a direction specified by the angle Θx.

The angles φT
ℓ and φR

ℓ presented in Table I can be identified

as the angle of departure (AOD) and angle of arrival (AOA),

respectively, of the ℓth received plane wave. The interpretation

of the other vector parameters is in analogy to the definition

of the corresponding vector.

The AOD φT
ℓ and AOA φR

ℓ of the ℓth received plane wave

can be modeled in a number of ways. In this paper, we assume

that φT
ℓ and φR

ℓ are given in such a way that

〈̊pk
ℓ ,u

k
ℓ 〉 = dkℓ , for k ∈ {T,R} (9a)

meaning that p̊
k
ℓ and u

k
ℓ are collinear vectors. Under this

condition, we find by evaluating (4)–(6) that:

ϑk
ℓ (t) = κ0 d

k
ℓ − 2πt

[ .
fk
max(t)

2
cos(φk

ℓ − βk)

+fk
max cos(φ

k
ℓ − γk)

]

, for k ∈ {T,R} (10)

τℓ(t) =
dTℓ + dRℓ

C
−

t

fc

[

fS
ℓ +

.
fA
ℓ (t)

2

]

(11)

where fk
max = νk/λ,

.
fk
max(t) = t · ak/λ, for k ∈ {T,R},

fc = C/λ is the carrier frequency, and

fS
ℓ = fT

max cos(φ
T
ℓ − γT )

+fR
max cos(φ

R
ℓ − γR) (12)

.
fA
ℓ (t) =

.
fT
max(t) cos(φ

T
ℓ − βT )

+
.
fR
max(t) cos(φ

R
ℓ − βR). (13)

The parameters fS
ℓ and

.
fA
ℓ (t) characterize the Doppler fre-

quency shifts caused by the MSs’ speed and acceleration,

respectively. Note that if the AODs φT
ℓ and AOAs φR

ℓ are

modeled by random variables, then the time-invariant Doppler

frequencies fS
ℓ are random variables too, whereas the time-

varying Doppler frequencies
.
fA
ℓ (t) are stochastic processes.

C. Modeling of the Instantaneous Doppler Shift

The instantaneous Doppler frequency shift υD
ℓ (t) of the ℓth

received plane wave can be computed from the time-varying

phase ϕℓ(t) as [8]

υD
ℓ (t) =

1

2π

dϕℓ(t)

dt
. (14)

TABLE I
VECTORS THAT CHARACTERIZE THE RELATIVE POSITIONS AMONG IOS

AND MSS

Vector Form

Velocity vector of TX vT = νT∠γT

Velocity vector of RX vR = νR∠γR

Acceleration vector of TX aT = aT∠βT

Acceleration vector of RX aR = aR∠βR

Position of the ℓth scatterer w.r.t. the initial
position of TX

p̊
T

ℓ
= dT

ℓ
∠αT

ℓ

Initial position of RX as seen from the ℓth
scatterer

p̊
R

ℓ
= dR

ℓ
∠αR

ℓ

Unit vector pointing at the direction of propaga-
tion of the plane wave that travels from TX to
the ℓth scatterer

u
T

ℓ
= 1∠φT

ℓ

Unit vector pointing at the direction of propaga-
tion of the plane wave that travels from the ℓth
scatterer to RX

u
R

ℓ
= 1∠(φR

ℓ
+ π)

From the results presented in (3) and (10), one can easily

verify that

υD
ℓ (t) = fS

ℓ +
.
fA
ℓ (t), ∀ℓ. (15)

The equation above is different from the one obtained in

[7]. This was to be expected, since the underlying models

of motion of the MSs are different.

III. CORRELATION PROPERTIES OF THE PROPOSED

MODEL FOR NON-WSSUS M2M CHANNELS

A. Definitions and Considerations

The 4D TFCF of the non-WSSUS channel is defined as

RH(t, f ; ∆t,∆f) , E{H∗(t−∆t; f)H(t; f +∆f)} (16)

where

H(t; f) ,

∞
∫

−∞

h(t; τ) exp{−j2πfτ}dτ (17)

= ΠT0
(t)

L
∑

ℓ=1

gℓ exp
{

− j
[

θℓ + 2πτℓ(t)[fc + f ]
]}

(18)

is the channel transfer function. For the evaluation of (16),

we will assume that the interaction with the IOs produces a

random attenuation and a random phase shift on the impinging

electromagnetic waves. With this in mind, we characterize

the gains gℓ by statistical independent, but not necessarily

identically distributed, positive random variables. We assume

that the average power of the gains is given in such a way

that
∑L

ℓ=1
E{|g2ℓ |} = σ2

h, where σ2
h is the average power of

the channel. Furthermore, we model the phases θℓ by random

variables uniformly distributed over [−π, π).
In order to obtain a general expression of RH(t, f ; ∆t,∆f)

that is not restricted to any particular geometrical configuration

of the propagation area, we characterize the distances dTℓ and



dRℓ introduced in Table I as functions of the AODs φT
ℓ and

AOAs φR
ℓ , that is:

dTℓ = GT (φ
T
ℓ ), GT : [−π, π) 7−→ R

+ (19a)

dRℓ = GR(φ
R
ℓ ), GR : [−π, π) 7−→ R

+. (19b)

We assume that the local scatterers are distributed randomly

around the receiver. The AOAs φR
ℓ can therefore be modeled

by independent and identically distributed (i.i.d.) random vari-

ables characterized by a circular probability density function

(PDF) pRφ (φ). Without loss of generality, we will consider that

the initial position vectors pT
0 and p

R
0 are aligned with the co-

ordinate system’s x-axis, in such a way that p̊T
ℓ = [D, 0]−p̊

R
ℓ .

Hence, the AODs φT
ℓ can be written as follows

φT
ℓ = arctan

(

dRℓ sin(φR
ℓ )

D + dRℓ cos(φR
ℓ )

)

, ∀ℓ. (20)

Finally, we will assume that the gains gℓ, the phases θℓ, and

the AOAs φR
ℓ are mutually independent for all ℓ.

B. General Solution of the 4D TFCF of the Proposed Geo-

metrical Model for Non-WSSUS M2M Channels

From (16) and (17), we have

RH(t, f ; ∆t,∆f) = σ2
h ΥT0

(t,∆t)

× E

{

exp
{

j2π
[

(

fc + f
)[

τ(t−∆t)− τ(t)
]

−∆fτ(t)
]}

}

(21)

where ΥT0
(t,∆t) = ΠT0

(t)ΠT0
(t−∆t), and

τ(t) =
GT (φT ) + GR(φR)

C
−

t

fc

[

fS +

.
fA(t)

2

]

. (22)

In the previous equation, φR is an arbitrary AOA in the set

{φR
1 , φ

R
2 , . . . , φ

R
L}, and fS ,

.
fA(t), and φT are functions of φR

given as in (12), (13), and (20), respectively. Substituting (22)

into (21), and invoking the expected value theorem [9], we

obtain the general solution presented in (23) at the bottom of

this page. Details on the derivations are omitted for reasons

of brevity.

C. Discussion of Results

From (23), we can observe that the 4D TFCF of H(t; f) is

a TF-dependent function, meaning that RH(t1, f1; ∆t,∆f) 6=
RH(t2, f2; ∆t,∆f) for (t1, f1) 6= (t2, f2). The proposed

channel model is therefore a 2D random process that does

not fulfill the WSSUS condition. It is worth highlighting that

the nonstationarities of our channel model are not caused

by factors typically associated with non-stationary channels,

such as a time-varying average power due to path loss or

shadowing, or time-shift sensitive correlation properties due

to gross changes of the IOs (appearance and disappearance of

scattering and reflecting objects). The nonstationarities of our

channel model stem, on the one hand, from the time-varying

nature of the propagation delays, and on the other hand, from

the accelerated motion of the MSs. Each of these two factors

is by itself a source for nonstationarities, as one may observe

from (23) by making either
.
fA(t) = 0, or ∆f = 0.

The special case of non-accelerated linear motion of the

MSs, which ensues when
.
fA(t) = 0, is analyzed in detail

in [6]. The results presented in that paper indicate that the

WSSUS condition is not compatible with the time-varying

nature of the propagation delays, implying that the wide-sense

stationary (WSS) condition cannot be met simultaneously in

the time and the frequency domains. However, such results

suggest that if the frequency selectivity of H(t; f) is neglected

(i.e., if ∆f = 0), assuming, e.g., a communication system

operating with a very narrow bandwidth, then the WSS con-

dition is fulfilled in the time domain. This is not the case if the

MSs’ motion includes an acceleration component, since the 4D

TFCF in (23) still is a TF-dependent function if we neglect

the frequency selectivity of H(t; f) and
.
fA(t) 6= 0. This is

consistent with the work of previous papers that investigate the

stationary characteristics of frequency-nonselective multipath

fading channels under conditions of accelerated motion of the

MSs, e.g., see [7]. On the other hand, the results obtained in [6]

indicate that if the channel’s time selectivity is neglected, i.e.,

if ∆t = 0, then H(t; f) can be characterized by a frequency-

domain WSS random process. The expression in (23) shows

that this remark also applies under conditions of accelerated

motion of the MSs. Note that RH(t, f ; ∆t,∆f) is a frequency-

invariant function if we make ∆t = 0 in (23), regardless of

the value of
.
fA(t). Aside from these two particular cases,

we can conclude from (23) that the acceleration of the MSs

exacerbates the nonstationarities of doubly-selective M2M

fading channels; particularly those nonstationarities observed

in the time domain.

IV. NUMERICAL EXAMPLES

In what follows, we will present some numerical examples

illustrating the remarks of Section III-C. For that purpose,

we will consider the particular case of the geometrical one-

ring scattering model [10]. For this geometrical configuration

of the propagation area, the functions GT (φ
T
ℓ ) and GR(φ

R
ℓ )

RH(t, f ; ∆t,∆f) = σ2
h ΥT0

(t,∆t)

π
∫

−π

exp

{

j2π

[

fc + f

fc

[ .
fA(∆t)

2
(t−∆t) + ∆t

(

fS +

.
fA(t)

2

)]

−∆f

[

GT (φT ) + GR(φ)

C
−

t

fc

(

fS +

.
fA(t)

2

)] ]}

pRφ (φ)dφ. (23)



describing the distance to sℓ from p
T
0 and p

R
0 , respectively

(see Fig. 1), are equal to

GT (φ
T
ℓ ) =

√

D2 + d2 − 2dD cos(φR
ℓ ) (24)

GR(φ
R
ℓ ) = d (25)

for all ℓ = 1, 2, . . . ,L, where d is the radius of the ring on

which the IOs are located. We will assume also that the statis-

tics of the AOA follow the von Mises distribution with mean

µ ∈ [−π, π) and concentration parameter κ, 0 ≤ κ < ∞ [10],

in such a way that pRφ (φ) = exp{κ cos(φ − µ)}/(2πI0(κ)) ,

φ ∈ [−π, π), where I0(·) is the modified Bessel function of

the first kind and zeroth order.

Assuming that d ≪ D, the integral in (23) can be written

in a closed form as follows

RH(t, f ; ∆t,∆f) ≈ Υ(t,∆t)
exp{j2πA(t, f ; ∆t,∆f)}

I0(κ)

×I0

(

{

[

κ cos(µ) + j2πBc(t, f ; ∆t,∆f)
]2

+
[

κ sin(µ) + j2πBs(t, f ; ∆t,∆f)
]2
}1/2

)

. (26)

The functions A(t, f ; ∆t,∆f), Bc(t, f ; ∆t,∆f), and

Bs(t, f ; ∆t,∆f) are defined as in (27) at the bottom of this

page, where

Z(t, f ; ∆t,∆f) = ∆t

(

fc + f

fc

)

+∆f
t

fc
(28)

W(t, f ; ∆t) =

(

t−∆t

2

)(

fc + f

fc

)

(29)

F k
c (t) = fk

max cos(γk) +

.
fk
max(t)

2
cos(βk) (30)

F k
s (t) = fk

max sin(γk) +

.
fk
max(t)

2
sin(βk) (31)

for k ∈ {T,R}.

For the simulations, we will consider an observation time

window of length T0 = 6.4 ms (t ∈ [0, T0]), which cor-

responds to the duration of a long data frame in the IEEE

802.11p standard [2], a carrier frequency fc = 5.9 GHz,

and a system bandwidth B = 10 MHz (f ∈ [−B,B]). We

also set: νT = 90 m/s (fT
max = 492.01 Hz), νR = 70 m/s

(fR
max = 382.68 Hz), γT = βT = 105◦, γR = 70◦,

βR = 250◦, aT = 30 m/s2, aR = 10 m/s2, D = 300 m,

d = 30 m, σ2
h = 1, κ = 1, and µ = 40◦. This choice

of parameters describes an arbitrary scenario where RX is

decelerating, while TX is accelerating and changing lanes in

preparation to overtake RX .

Plots of the 3D-surface and the contour of the absolute

value of RH(t, f ; ∆t,∆f) are shown in Fig. 2 for (t, f) =
(0.5T0, 0.25B). We can observe from these two plots that

|RH(t, f ; ∆t,∆f)| is in general asymmetric w.r.t. the ∆t-axis

and the ∆f -axis. This feature is a consequence of the non-

stationary characteristics of the proposed channel model. We

recall that a distinctive characteristic of a WSS random process

is that its autocorrelation function is Hermitian symmetric [9,

Theorem 10.12]. Nevertheless, from Fig. 2(b), one may note

that |RH(t, f ; ∆t,∆f)| seems to become symmetric in the

∆f (or ∆t) variable as ∆t (or ∆f ) approaches to zero. This

behavior is more evident in Fig. 3, where we show the absolute

value of RH(t, f ; ∆t,∆f) for the same observation point in

the TF plane, and three different values of ∆t (see Fig. 3(a))

and ∆f (see Fig. 3(b)).

Figure 3(a) shows clearly that |RH(t, f ; ∆t,∆f)| becomes

a symmetric function in the ∆f variable as ∆t → 0. This was

to be expected, since we discussed in the previous section

that H(t; f) can be modeled by a frequency-domain WSS

random process if we neglect the channel’s time selectivity.

However, the graphs shown in Fig. 3(b) follow a trend that is

somehow unexpected, as we concluded from (23) that under

conditions of accelerated motion of the MSs, H(t; f) does

not fulfill the WSS condition in the time domain, even if

the channel’s frequency selectivity is neglected. A more in-

depth inspection of the graph obtained for the case ∆f = 0
reveals that |RH(t, f ; ∆t,∆f)| is in fact asymmetric, but the

chosen observation window in the dimension of ∆t is not

large enough to make this characteristic readily apparent. To

demonstrate that |RH(t, f ; ∆t,∆f)| is asymmetric in the ∆t
variable if ∆f = 0, we have recomputed the aforementioned

graph by making T0 = 2 and ∆t ∈ [−1, 1]. The results are

presented in Fig. 4.

V. CONCLUSIONS

A novel GBSM for non-WSSUS M2M channels has been

proposed in this paper. This new model takes into account the

variations in velocity that the MSs may experience in reality

while communicating with each other. Based on this model, we

derived a general expression for the 4D TFCF of the channel.

This expression provides a tractable baseline for investigat-

ing the non-stationary characteristics and stationarity regions

of doubly-selective M2M fading channels under accelerated

motion of the MSs. The preliminary results presented in this

A(t, f ; ∆t,∆f) = Z(t, f ; ∆t,∆f)FT
c (t) +W(t, f,∆t)

.
fT
max(∆t) cos(βT )−∆f

(

D + d

C

)

(27a)

Bc(t, f ; ∆t,∆f) = Z(t, f ; ∆t,∆f)FR
c (t) +W(t, f,∆t)

.
fR
max(∆t) cos(βR) + ∆f

d

C
(27b)

Bs(t, f ; ∆t,∆f) = Z(t, f ; ∆t,∆f)

[

d

D
FT
s (t) + FR

s (t)

]

+W(t, f,∆t)

[

d

D

.
fT
max(∆t) sin(βT ) +

.
fR
max(∆t) sin(βR)

]

(27c)
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Fig. 2. The 4D TFCF RH (t, f ; ∆t,∆f) at (t, f) = (0.5T0, 0.25B):
(a) Absolute value of RH (t, f ; ∆t,∆f), (b) Contour plot of
|RH(t, f ;∆t,∆f)| (T0 = 6.4 ms, B = 10 MHz).

paper indicate that the acceleration exacerbates the channel’s

non-stationarities in both the time and the frequency domains,

with stronger effects in the time domain.
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