6,366 research outputs found

    Geometric Error of Finite Volume Schemes for Conservation Laws on Evolving Surfaces

    Get PDF
    This paper studies finite volume schemes for scalar hyperbolic conservation laws on evolving hypersurfaces of R3\mathbb{R}^3. We compare theoretical schemes assuming knowledge of all geometric quantities to (practical) schemes defined on moving polyhedra approximating the surface. For the former schemes error estimates have already been proven, but the implementation of such schemes is not feasible for complex geometries. The latter schemes, in contrast, only require (easily) computable geometric quantities and are thus more useful for actual computations. We prove that the difference between approximate solutions defined by the respective families of schemes is of the order of the mesh width. In particular, the practical scheme converges to the entropy solution with the same rate as the theoretical one. Numerical experiments show that the proven order of convergence is optimal.Comment: 23 pages, 5 figures, to appear in Numerische Mathemati

    Discrete Lie Advection of Differential Forms

    Get PDF
    In this paper, we present a numerical technique for performing Lie advection of arbitrary differential forms. Leveraging advances in high-resolution finite volume methods for scalar hyperbolic conservation laws, we first discretize the interior product (also called contraction) through integrals over Eulerian approximations of extrusions. This, along with Cartan's homotopy formula and a discrete exterior derivative, can then be used to derive a discrete Lie derivative. The usefulness of this operator is demonstrated through the numerical advection of scalar fields and 1-forms on regular grids.Comment: Accepted version; to be published in J. FoC

    Geometric partial differential equations: Surface and bulk processes

    Get PDF
    The workshop brought together experts representing a wide range of topics in geometric partial differential equations ranging from analyis over numerical simulation to real-life applications. The main themes of the conference were the analysis of curvature energies, new developments in pdes on surfaces and the treatment of coupled bulk/surface problems

    Modelling cell movement and chemotaxis pseudopod based feedback

    Get PDF
    A computational framework is presented for the simulation of eukaryotic cell migration and chemotaxis. An empirical pattern formation model, based on a system of non-linear reaction-diffusion equations, is approximated on an evolving cell boundary using an Arbitrary Lagrangian Eulerian surface finite element method (ALE-SFEM). The solution state is used to drive a mechanical model of the protrusive and retractive forces exerted on the cell boundary. Movement of the cell is achieved using a level set method. Results are presented for cell migration with and without chemotaxis. The simulated behaviour is compared with experimental results of migrating Dictyostelium discoideum cells

    Finite element methods for surface PDEs

    Get PDF
    In this article we consider finite element methods for approximating the solution of partial differential equations on surfaces. We focus on surface finite elements on triangulated surfaces, implicit surface methods using level set descriptions of the surface, unfitted finite element methods and diffuse interface methods. In order to formulate the methods we present the necessary geometric analysis and, in the context of evolving surfaces, the necessary transport formulae. A wide variety of equations and applications are covered. Some ideas of the numerical analysis are presented along with illustrative numerical examples

    Modeling Shallow Water Flows on General Terrains

    Full text link
    A formulation of the shallow water equations adapted to general complex terrains is proposed. Its derivation starts from the observation that the typical approach of depth integrating the Navier-Stokes equations along the direction of gravity forces is not exact in the general case of a tilted curved bottom. We claim that an integration path that better adapts to the shallow water hypotheses follows the "cross-flow" surface, i.e., a surface that is normal to the velocity field at any point of the domain. Because of the implicitness of this definition, we approximate this "cross-flow" path by performing depth integration along a local direction normal to the bottom surface, and propose a rigorous derivation of this approximation and its numerical solution as an essential step for the future development of the full "cross-flow" integration procedure. We start by defining a local coordinate system, anchored on the bottom surface to derive a covariant form of the Navier-Stokes equations. Depth integration along the local normals yields a covariant version of the shallow water equations, which is characterized by flux functions and source terms that vary in space because of the surface metric coefficients and related derivatives. The proposed model is discretized with a first order FORCE-type Godunov Finite Volume scheme that allows implementation of spatially variable fluxes. We investigate the validity of our SW model and the effects of the bottom geometry by means of three synthetic test cases that exhibit non negligible slopes and surface curvatures. The results show the importance of taking into consideration bottom geometry even for relatively mild and slowly varying curvatures

    Geometric partial differential equations: Theory, numerics and applications

    Get PDF
    This workshop concentrated on partial differential equations involving stationary and evolving surfaces in which geometric quantities play a major role. Mutual interest in this emerging field stimulated the interaction between analysis, numerical solution, and applications
    corecore