147 research outputs found

    Building Confidential and Efficient Query Services in the Cloud with RASP Data Perturbation

    Full text link
    With the wide deployment of public cloud computing infrastructures, using clouds to host data query services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy are guaranteed. On the other hand, a secured query service should still provide efficient query processing and significantly reduce the in-house workload to fully realize the benefits of cloud computing. We propose the RASP data perturbation method to provide secure and efficient range query and kNN query services for protected data in the cloud. The RASP data perturbation method combines order preserving encryption, dimensionality expansion, random noise injection, and random projection, to provide strong resilience to attacks on the perturbed data and queries. It also preserves multidimensional ranges, which allows existing indexing techniques to be applied to speedup range query processing. The kNN-R algorithm is designed to work with the RASP range query algorithm to process the kNN queries. We have carefully analyzed the attacks on data and queries under a precisely defined threat model and realistic security assumptions. Extensive experiments have been conducted to show the advantages of this approach on efficiency and security.Comment: 18 pages, to appear in IEEE TKDE, accepted in December 201

    A Hybrid Multi-user Cloud Access Control based Block Chain Framework for Privacy Preserving Distributed Databases

    Get PDF
    Most of the traditional medical applications are insecure and difficult to compute the data integrity with variable hash size. Traditional medical data security systems are insecure and it depend on static parameters for data security. Also, distributed based cloud storage systems are independent of integrity computational and data security due to unstructured data and computational memory. As the size of the data and its dimensions are increasing in the public and private cloud servers, it is difficult to provide the machine learning based privacy preserving in cloud computing environment. Block-chain technology plays a vital role for large cloud databases. Most of the conventional block-chain frameworks are based on the existing integrity and confidentiality models. Also, these models are based on the data size and file format. In this model, a novel integrity verification and encryption framework is designed and implemented in cloud environment.  In order to overcome these problems in the cloud computing environment, a hybrid integrity and security-based block-chain framework is designed and implemented on the large distributed databases. In this framework,a novel decision tree classifier is used along with non-linear mathematical hash algorithm and advanced attribute-based encryption models are used to improve the privacy of multiple users on the large cloud datasets. Experimental results proved that the proposed advanced privacy preserving based block-chain technology has better efficiency than the traditional block-chain based privacy preserving systems on large distributed databases

    Building an Authentication and Quality of Query Services in the Cloud

    Get PDF
    AbstractCloud outpouring is careful when an information distributor has given sensitive data to a set of trusted agents and few o f the information is leaked and found in an unauthorized place. An enterprise data leak may be a scary proposition. Security practitioners always deal with data cloud leakage issues that arise from various ways like e-mail and different net channels. In case of information cloud leakage from trusted agents, the distributor should assess the probability that the leaked information came from one or more agents.The proposed system can identify those parties who are guilty for such cloud leakage even once the data is altered. For this the system will use data allocation ways are also can inject “realistic but fake” information records improve the identification of cloud leakage. Moreover, data can also be leaked from inside an organization through e-mail. Hence there's also a need to filter these e-mails, may be done by blocking e-mails that contain pictures, videos or sensitive data in an organization. A principle utilized in e-mail filtering is classify e-mail based mostly the fingerprints of message bodies, the white and black lists of mail addresses and the words specified to spam

    Privacy Preserving Multi-Server k-means Computation over Horizontally Partitioned Data

    Full text link
    The k-means clustering is one of the most popular clustering algorithms in data mining. Recently a lot of research has been concentrated on the algorithm when the dataset is divided into multiple parties or when the dataset is too large to be handled by the data owner. In the latter case, usually some servers are hired to perform the task of clustering. The dataset is divided by the data owner among the servers who together perform the k-means and return the cluster labels to the owner. The major challenge in this method is to prevent the servers from gaining substantial information about the actual data of the owner. Several algorithms have been designed in the past that provide cryptographic solutions to perform privacy preserving k-means. We provide a new method to perform k-means over a large set using multiple servers. Our technique avoids heavy cryptographic computations and instead we use a simple randomization technique to preserve the privacy of the data. The k-means computed has exactly the same efficiency and accuracy as the k-means computed over the original dataset without any randomization. We argue that our algorithm is secure against honest but curious and passive adversary.Comment: 19 pages, 4 tables. International Conference on Information Systems Security. Springer, Cham, 201

    Preserving Data Confidentiality and Query Privacy Using KNN-R Approach

    Get PDF
    Cloud computing is one of the famous and well known technique that processes the data query efficiently. Since it is maintaining huge amount of resources, its privacy and security is an issue. Cloud service providers are not trust worthy, so data is to be secured. Whenever the data is sent to the cloud, it is encrypted because to protect the sensitive data such that query privacy and data confidentiality is assured. Cloud computing reduces the in- house resources .This doesn’t mean processing of the query should be slow. To ensure query privacy and data confidentiality RASP approach is designed. The RASP Perturbation technique combines Order preserving Encryption, Dimensionality Expansion, random noise injection , random projection to provide strong safety to the perturbed data and query. RASP make use of the kNN algorithm to process the query efficiently. kNN approach use the minimum square range to process the query. It transfers data to the multidimensional space where it uses indexing approach to process the minimum square range points. DOI: 10.17762/ijritcc2321-8169.150313

    Confidential Machine Learning on Untrusted Platforms: a Survey

    Get PDF
    With the ever-growing data and the need for developing powerful machine learning models, data owners increasingly depend on various untrusted platforms (e.g., public clouds, edges, and machine learning service providers) for scalable processing or collaborative learning. Thus, sensitive data and models are in danger of unauthorized access, misuse, and privacy compromises. A relatively new body of research confidentially trains machine learning models on protected data to address these concerns. In this survey, we summarize notable studies in this emerging area of research. With a unified framework, we highlight the critical challenges and innovations in outsourcing machine learning confidentially. We focus on the cryptographic approaches for confidential machine learning (CML), primarily on model training, while also covering other directions such as perturbation-based approaches and CML in the hardware-assisted computing environment. The discussion will take a holistic way to consider a rich context of the related threat models, security assumptions, design principles, and associated trade-offs amongst data utility, cost, and confidentiality
    • …
    corecore