109 research outputs found

    Montgomery's method of polynomial selection for the number field sieve

    Get PDF
    The number field sieve is the most efficient known algorithm for factoring large integers that are free of small prime factors. For the polynomial selection stage of the algorithm, Montgomery proposed a method of generating polynomials which relies on the construction of small modular geometric progressions. Montgomery's method is analysed in this paper and the existence of suitable geometric progressions is considered

    From approximating to interpolatory non-stationary subdivision schemes with the same generation properties

    Full text link
    In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C.Conti, L.Gemignani, L.Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971-1987] to full generality by removing additional assumptions on the input symbols. For the so obtained interpolatory schemes we prove that they are capable of reproducing the same exponential polynomial space as the one generated by the original approximating scheme. Moreover, we specialize the computational methods for the case of symbols obtained by shifted non-stationary affine combinations of exponential B-splines, that are at the basis of most non-stationary subdivision schemes. In this case we find that the associated family of interpolatory symbols can be determined to satisfy a suitable set of generalized interpolating conditions at the set of the zeros (with reversed signs) of the input symbol. Finally, we discuss some computational examples by showing that the proposed approach can yield novel smooth non-stationary interpolatory subdivision schemes possessing very interesting reproduction properties

    About a non-standard interpolation problem

    Get PDF
    Using algebraic methods, and motivated by the one variable case, we study a multipoint interpolation problem in the setting of several complex variables. The duality realized by the residue generator associated with an underlying Gorenstein algebra, using the Lagrange interpolation polynomial, plays a key role in the arguments

    On Hilbert's construction of positive polynomials

    Full text link
    In 1888, Hilbert described how to find real polynomials in more than one variable which take only non-negative values but are not a sum of squares of polynomials. His construction was so restrictive that no explicit examples appeared until the late 1960s. We revisit and generalize Hilbert's construction and present many such polynomials

    Eigenvectors of tensors - A primer

    Full text link
    We give an introduction to the theory and to some applications of eigenvectors of tensors (in other words, invariant one-dimensional subspaces of homogeneous polynomial maps), including a review of some concepts that are useful for their discussion. The intent is to give practitioners an overview of fundamental notions, results and techniques

    Solving geoinformatics parametric polynomial systems using the improved Dixon resultant

    Get PDF
    Improvements in computational and observational technologies in geoinformatics, e.g., the use of laser scanners that produce huge point cloud data sets, or the proliferation of global navigation satellite systems (GNSS) and unmanned aircraft vehicles (UAVs), have brought with them the challenges of handling and processing this “big data”. These call for improvement or development of better processing algorithms. One way to do that is integration of symbolically presolved sub-algorithms to speed up computations. Using examples of interest from real geoinformatic problems, we will discuss the Dixon-EDF resultant as an improved resultant method for the symbolic solution of parametric polynomial systems. We will briefly describe the method itself, then discuss geoinformatics problems arising in minimum distance mapping (MDM), parameter transformations, and pose estimation essential for resection. Dixon-EDF is then compared to older notions of “Dixon resultant”, and to several respected implementations of Gröbner bases algorithms on several systems. The improved algorithm, Dixon-EDF, is found to be greatly superior, usually by orders of magnitude, in both CPU usage and RAM usage. It can solve geoinformatics problems on which the other methods fail, making symbolic solution of parametric systems feasible for many problems

    On the intrinsic complexity of the arithmetic Nullstellensatz

    Get PDF
    We show several arithmetic estimates for Hilbert's Nullstellensatz. This includes an algorithmic procedure computing the polynomials and constants occurring in a Bézout identity, whose complexity is polynomial in the geometric degree of the system. Moreover, we show for the first time height estimates of intrinsic type for the polynomials and constants appearing, again polynomial in the geometric degree and linear in the height of the system. These results are based on a suitable representation of polynomials by straight-line programs and duality techniques using the Trace Formula for Gorenstein algebras. As an application we show more precise upper bounds for the function πS(x) counting the number of primes yielding an inconsistent modular polynomial equation system. We also give a computationally interesting lower bound for the density of small prime numbers of controlled bit length for the reduction to positive characteristic of inconsistent systems. Again, this bound is given in terms of intrinsic parameters.Facultad de Ciencias Exacta

    On the intrinsic complexity of the arithmetic Nullstellensatz

    Get PDF
    We show several arithmetic estimates for Hilbert's Nullstellensatz. This includes an algorithmic procedure computing the polynomials and constants occurring in a Bézout identity, whose complexity is polynomial in the geometric degree of the system. Moreover, we show for the first time height estimates of intrinsic type for the polynomials and constants appearing, again polynomial in the geometric degree and linear in the height of the system. These results are based on a suitable representation of polynomials by straight-line programs and duality techniques using the Trace Formula for Gorenstein algebras. As an application we show more precise upper bounds for the function πS(x) counting the number of primes yielding an inconsistent modular polynomial equation system. We also give a computationally interesting lower bound for the density of small prime numbers of controlled bit length for the reduction to positive characteristic of inconsistent systems. Again, this bound is given in terms of intrinsic parameters.Facultad de Ciencias Exacta
    • …
    corecore