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ABOUT A NON-STANDARD INTERPOLATION PROBLEM

DANIEL ALPAY AND ALAIN YGER

Abstract. Using algebraic methods, and motivated by the one variable case, we
study a multipoint interpolation problem in the setting of several complex variables.
The duality realized by the residue generator associated with an underlying Goren-
stein algebra, using the Lagrange interpolation polynomial, plays a key role in the
arguments.
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1. Introduction

In [3] the following multipoint interpolation problem was considered:

Problem 1.1. Given complex numbers aj,k (j = 1, . . . ,m and k = 0, . . . , µj − 1)
and c, describe the set of all functions f analytic in a neighborhood Ω of the points
w1, . . . , wm and such that

m∑

j=1

µj−1∑

k=0

aj,kf
(k)(wj) = c (1.1)

Note that if f solves (1.1) so does f + ph, where

p(z) =

n∏

j=1

(z − wj)
µj , N =

m∑

j=0

µj. (1.2)

In other words one can work in the ideal H(Ω)/(p). In [3] one used a different approach
and a key tool to solve the above problem was to represent any function analytic in Ω
in the form

f(z) =

N−1∑

ν=0

zνfν(p(z)), (1.3)

and f0, . . . , fN−1 are analytic in a neighborhood of the origin. This representation
allows to reduce condition (1.1) to a tangential interpolation condition at the origin

for the CN -valued function F =
[
f0 · · · fN−1

]t
.
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2 D. ALPAY AND YGER

In the present paper we study the counterpart of the previous interpolation problem
in the setting of several complex variables, see Problems 4.1 and 4.2 below. We now
replace the polynomial (1.2) by a zero-dimensional ideal in C[s] generated by n poly-
nomials p1, . . . , pn, and characterize the elements in the corresponding quotient space
in terms of a duality realized by the residue generator associated with the Gorenstein
algebra C[s]/(p), using the Lagrange interpolation polynomial (see (3.4) for the latter).
This allows to define local coordinates and then translate the interpolation condition
into an hyperplan condition in terms of these coordinates. Thus both in the one vari-
able approach of [3] and in the present work one reduces condition (1.1) to a single
interpolation condition.

2. Zero dimensional polynomials ideals in C[s1, ..., sn] and duality

Notations. In the polynomial algebra C[s] (s = (s1, ..., sn)), one will denote, for

any β ∈ Nn as sβ the monomial sβ1

1 . . . sβn
n . Given two elements ℓ and ℓ′ in Nn, by

ℓ ≺ ℓ′, we mean ℓj ≤ ℓ′j for any j = 1, ..., n. We also denote |ℓ| := ℓ1 + · · · + ℓn and
ℓ! := ℓ1! · · · ℓn!.

A polynomial ideal (p) = (p1, ..., pM ) in C[s] is said to be zero-dimensional if its zero
set p−1(0) = {ζ ∈ Cn ; p1(ζ) = · · · = pM (ζ) = 0} is non-empty and discrete, hence
finite since it is an algebraic subvariety in the affine space An

C. When additionally
the number of polynomial generators equals the dimension, that is M = n, the set
of generators (p1, ..., pn) is said to define a discrete complete intersection in Cn (or,
equivalently, the sequence (p1, ..., pn) is a quasi-regular sequence in C[s]).

It is equivalent to say that (p) = (p1, ..., pM ) is zero-dimensional and that the C-
vector space C[s]/(p) is finitely dimensional, with

dimC(C[s]/(p)) = N(p) ≤ d1d2 · · · dn

(provided d2 = deg p2 ≥ d3 = deg p3 ≥ · · · ≥ dM = deg pM ≥ d1 = deg p1) ;
this follows from Bézout geometric theorem. In order to construct a monomial basis
B

≺≺
C[s]/(p) = {ṡβk ; k = 0, ..., N(p)− 1} for C[s]/(p), which will be required in order to

settle the results presented in this paper, one proceeds algorithmically as follows :

• decide of an order ≺≺ on Nn (e.g the reverse lexicographic order, which is the
most currently used) ;

• compute a Gröbner basis Gp := {g1, ..., gL}≺≺ (with respect to the order ≺≺
fixed from the beginning) ;

• collect all monomials that do not belong to the monomial ideal generated by
the leading monomials (comparing their multi-exponents in terms of the order
≺≺) of the polynomial entries in Gp.

Example 2.1. In the particular case where M = n and each pj is a univariate poly-

nomial with degree dj in the single variable sj, a monomial basis Bd
C[s]/(p) is provided

(thanks to the Euclidean division algorithm with respect successively to the variables
s1, ..., sn) as

B
d
C[s]/(p) = B

euclid
p := {ṡβ ; β ∈ Nn with β ≺ d− 1}

(
d := (d1, ..., dn)

)
. (2.1)

Zero-dimensional ideals in C[s] that will be of interest for us in this paper will be
generated by exactly n polynomials (p1, ..., pn) (defining then a quasi-regular sequence
in C[s]). In such a case, one can find a matrix A = [aj,k] ∈ Mn,n(C[s]) and n univariate
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polynomials q1(s1), ..., qn(sn) such that


q1(s1)

...
qn(sn)


 = A(s) ·



p1(s)

...
pn(s)


 (2.2)

with maxj,k(deg qj,deg pj + deg aj,k) ≤ d1 · · · dn (resp. ≤ d1 · · · dndn+1), see [14].

Given a zero-dimensional ideal (p) = (p1, ..., pM ), the finitely dimensional C-vector
space HomC(C[s]/(p),C) inherits a structure of C[s]/(p)-module, setting

∀ ḣ ∈ C[s]/(p), ∀Φ ∈ HomC(C[s]/(p),C), ḣ · Φ = Φ ◦ h, (2.3)

where h denotes the element in HomC(C[s]/(p),C[s]/(p)) which is induced by the
multiplication by h.

In the particular case where M = n and p = (p1, ..., pn) is a quasi-regular sequence,
the C[s]/(p)-module C[s]/(p) · HomC(C[s]/(p),C) defined as in (2.3) is generated by
the single element

ḣ 7−→ Res

[
h(s) ds1 ∧ · · · ∧ dsn
p1(s), ..., pn(s)

]
= Res

[
h(s) det[A(s)] ds1 ∧ · · · ∧ dsn

q1(s1), ..., qn(sn)

]
, (2.4)

where the univariate polynomials qj and the matrix A ∈ Mn,n(C[s]) satisfy (2.2)
(independently of the choice of the qj(sj) and A such that such the matricial identity
(2.2) holds). If dq = (deg q1, ...,deg qn) and 1 = (1, ..., 1), the right-hand side of (2.4)
equals the coefficient τdq−1 of the monomial sdq−1 in the remainder

∑
ℓ≺dq−1

τℓs
ℓ after

the successive euclidean divisions respectively by q1(s1) = sdeg q11 + · · · ,...,qn(sn) =

sdeg qnn + · · · of the multivariate polynomial h(s) det[A(s)] (h being any representant

of ḣ), see for example [12]. The following important equivalence materializes in this
case algebraic duality :

∀F ∈ C[s], F ∈

n∑

j=1

C[s] pj ⇐⇒ ∀Φ ∈ C[s], Res

[
Φ(s)F (s) ds1 ∧ · · · ∧ dsn

p1(s), ..., pn(s)

]
= 0,

(2.5)
which amounts to say that the quadratic form

Qp : (Φ̇, Ψ̇) ∈ (C[s]/(p))2 7−→ Res

[
Φ(s)Ψ(s) ds1 ∧ · · · ∧ dsn

p1(s), ..., pn(s)

]
∈ C (2.6)

is non-degenerated. The matrix of this non-degenerated quadratic form expressed in
the monomial basis B

≺≺
C[s]/(p) = {ṡβk ; k = 0, ..., N(p)−1} for the C-finite dimensional

vector space C[s]/(p) is then

Qp[B
≺≺
C[s]/(p)] =

[
Res

[
sβk1

+βk2 ds1 ∧ · · · ∧ dsn
p1(s), ..., pn(s)

]]

0≤k1,k2≤N(p)−1

=

[
Res

[
sβk1

+βk2 det[A(s)] ds1 ∧ · · · ∧ dsn
q1(s1), ..., qn(sn)

]]

0≤k1,k2≤N(p)−1

. (2.7)

When M = n, one can attach to the homomorphism (2.4) a unique complex valued
(0, n) current

∧n
j=1 ∂̄(1/pj) in Cn such that, whenever U is an open subset of Cn,



4 D. ALPAY AND YGER

h
∧n

j=1(∂̄(1/pj))|U = 0 as a (0, n)-current in U for any h ∈ H(U) which vanishes on

p−1(0) and moreover

∀ ḣ ∈ C[s]/(p),
〈 n∧

j=1

∂̄(1/pj) , h(s) ds1 ∧ · · · ∧ dsn

〉
= Res

[
h(s) ds1 ∧ · · · ∧ dsn
p1(s), ..., pn(s)

]
.

Such a current can be defined in several ways. One of the most robust ones is the
following (see [8], [16]) : for any (n, 0)-test form ϕ(s) ds1∧· · ·∧dsn where ϕ ∈ D(Cn,C)
is compactly supported sufficiently close from p−1(0), the holomorphic mapping

̟ = (̟1, ...,̟n) ∈ {̟ ∈ Cn ; Re̟j > 1 for j = 1, ..., n} 7−→

1

(2iπ)n

∫

Cn

∂̄
( |pn(s)|2̟n

pn(s)

)
∧ · · · ∧ ∂̄

( |p1(s)|2̟1

p1(s)

)
∧ ϕ(s) ds1 ∧ · · · ∧ dsn

extends as an holomorphic function in {̟ ∈ Cn ; Re̟j > −η} for some η > 0, which
value at ̟ = 0 equals precisely

〈∧n
j=1 ∂̄(1/pj), ϕ ds1 ∧ · · · ∧ dsn〉.

Example 2.2. If p1, ..., pn are n univariate monic polynomials in the respective vari-
ables s1, ..., sn with

pj(s) = pj(sj) =

mj∏

κj=1

(sj − ξj,κj
)νj,κj , j = 1, ..., n, (2.8)

one has

〈 n∧

j=1

∂̄(1/pj) , ϕ(s) ds1 ∧ · · · ∧ dsn

〉
=

m1∑

κ1=1

· · ·

mn∑

κn=1

( n∏

j=1

1

(νj,κj
− 1)!

)

( ∂ν1,κ1−1

∂s
ν1,κ1−1
1

◦ · · · ◦
∂νn,κn−1

∂s
νn,κn−1
n

)[
ϕ(s)

n∏

j=1

(sj − ξj,κj
)νj,κj

pj(sj)

]
(ξ1,κ1

, ..., ξn,κn). (2.9)

The analytic pendant of the realization of algebraic duality (2.5) is then :

∀U open subset of Cn, ∀ f ∈ H(U), f ∈
( n∑

j=1

H(U) pj

)
loc

⇐⇒ ∀ϕ ∈ D(U,C),
〈 n∧

j=1

∂̄(1/pj) , f(s)ϕ(s) ds1 ∧ · · · ∧ dsn

〉
= 0. (2.10)

In order to describe more precisely the current
∧n

j=1 ∂̄(1/pj) when (p1, ..., pn) is a

quasi-regular sequence in C[s] (as we did in Example 2.2 in the particular case where
each pj is univariate in the single variable sj, see (2.9)), we need to recall how each of
the distinct points wj , j = 1, ...,m, of the set p−1(0) is equipped with a multiplicity
νwj

(p) ∈ N∗. Given wj ∈ p−1(0), such an integer νwj
(p) can be defined in two ways :

• “algebraically”, as the dimension of the C-vector space OCn,wj
/(p)wj

, where
(p)wj

denotes the ideal generated by the germs at wj of the polynomials
p1, ..., pn in the local regular ring OCn,wj

of germs of holomorphic functions
about the point wj ;

• “dynamically”, as the number of points in the fiber p−1(η) which remain close
to wj when η ∈ (C∗)n tends to 0 in Cn and is taken as a non-critical value for
the polynomial map p.
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If one uses the first definition, it is easy to see that

N(p) = dimC

(
C[s]/(p)

)
=

m∑

j=1

νwj
(p).

It follows from (2.10), together with the fact that the Nœther exponent of the ideal
(p)wj

in OCn,wj
is bounded from above by n νj(p) (see [15, 17]), that the order of the

current
∧n

j=1 ∂̄(1/fj) about the point wj is at most n νwj
(p)− 1. Therefore there ex-

ists a collection of differential operators Qw1
(∂/∂s), ...,Qwm(∂/∂s) ∈ C[∂/∂s] (where

∂/∂s = (∂/∂s1, ..., ∂/∂sn)) such that deg∂/∂s Qwj
≤ nνwj

(p)− 1 for j = 1, ...,m and

〈 n∧

j=1

∂̄(1/pj) , ϕ(s) ds1 ∧ · · · ∧ dsn

〉
=

n∑

j=1

Qwj
(∂/∂s)[ϕ](wj)

∀ϕ ∈ D(Cn,C). (2.11)

Example 2.3. If p1, ..., pn are monic univariate polynomials respectively in the vari-
ables s1, ..., sn as in Example 2.2 (more precisely of the form (2.8)), the multiplicity
νw(p) at the point w = (ξ1,κ1

, ..., ξn,κn) equals
∏n

j=1 νj,κj
and the order of the dif-

ferential operator Qw(∂/∂s) attached to such w ∈ p−1(0) as in (2.9) equals in this
case

∏n
j=1(νj,κj

− 1), which happens to be strictly less than n νw(p)− 1 which should
stand for the estimate of degQw in the general case. In the general case estimates
degQwj

≤ n νwj
(p)− 1 (j = 1, ...,m) cannot in fact be sharpened.

When U is an open subset of Cn, f ∈ H(U) and ϕ ∈ D(U,C), it follows from the
Leibniz rule, together with the symetry of the left-hand side expression in (ϕ, f) from
the computational point of view, that one can write

〈 n∧

j=1

∂̄(1/pj) , f(s)ϕ(s) ds1 ∧ · · · ∧ dsn

〉

=
∑

{j∈{1,...,m} ;wj∈U}

∑

ℓ∈Awj

∂|ℓ|

∂sℓ
[ϕ](wj)Qwj ,ℓ(∂/∂s)[f ](wj)

=
∑

{j∈{1,...,m} ;wj∈U}

∑

ℓ∈Awj

∂|ℓ|

∂sℓ
[f ](wj)Qwj ,ℓ(∂/∂s)[ϕ](wj),

(2.12)

where Aw1
, ..., Awn are finite subsets of Nn which are such that

ℓ ∈ Awj
=⇒ |ℓ| ≤ n νwj

(p)− 1 ∀ j = 1, ...,m

and each Qwj ,ℓ (j = 1, ...,m, ℓ ∈ Awj
) is a polynomial in ∂/∂s with total degree

at most n νwj
(p) − 1 − |ℓ| with support in Awj

. Note that the Awj
and the Qwj ,ℓ

(j = 1, ...,m, ℓ ∈ Awj
) depend only on the differential operators Qwj

(∂/∂s) involved
in (2.11), hence only on the given polynomial quasi-regular sequence p = (p1, ..., pn).

Definition 2.4. The list of differential operators with complex coefficients (and as-
signed evaluations)

Noethp[(p)] :=
{

Qwj ,ℓ(∂/∂s)|wj
; j = 1, ...,m, ℓ ∈ Awj

}
(2.13)

will be called the standard list of assigned Nœtherian differential operators for the ideal
(p) when considered as generated by the quasi-regular sequence p = (p1, ..., pn).
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Thanks to Definition 2.4, one can reformulate (2.10) as

∀U open subset of Cn, ∀ f ∈ H(U), f ∈
( n∑

j=1

H(U) pj

)
loc

⇐⇒ ∀wj ∈ U, ∀ ℓ ∈ Awj
, Qwj ,ℓ(∂/∂s)[f ](wj) = 0. (2.14)

Example 2.5. When the polynomials pj are monic univariate polynomials respectively
in the variables s1, ..., sn as (2.8), one has

Noeth(p1(s1),...,pn(sn))[(p1(s1), ..., pn(sn))] =

{∂|ℓ|
∂sℓ |(ξ1,κ1 ,...,ξn,κn)

; 1 ≤ κj ≤ mj for j = 1, ...,m, ℓ ≺ (ν1,κ1
, ..., νn,κn)− 1

}
(2.15)

3. Cauchy-Weil’s integral representation formula and Lagrange

interpolation

Cauchy-Weil’s integral representation formula (originally introduced in [19]) plays
a major role in this paper. Let us briefly recall it in the particular simple case where
it happens to be the most useful (one refers for example to [2, 8, 13, 10, 18] for a
more detailed as well as a presentation in its generality in the analytic or algebraic
context). Let f1, ..., fn be n holomorphic functions in a bounded open set U ⊂ Cn

(possibly not connected) and continuous up to ∂U , with no common zero on ∂U , such
that additionally there exists a matrix Bf ∈ Mn,n

(
H
(
U × U) ∩C(U × U)

)
with

∀ j ∈ {1, ..., n}, ∀ s,z ∈ U, fj(s)− fj(z) =

n∑

ℓ=1

bj,ℓ(s,z) (sj − zj).

Such a matrix Bf (which is definitevely non unique as soon as n > 1) is called an
Hefer matrix or a Bézoutian matrix when the fj happen to be (as it will be the case in

this paper) polynomial functions. The set V (f) := {w ∈ U ; f(w) = 0} is necessarily
finite since f does not vanish on ∂U . For almost all ε ∈ (R+)n such that ‖ε‖ is small
enough, the so-called Weil analytic polyhedron

∆ε := {s ∈ U ; |fj(s)| < εj , j = 1, ..., n}

is relatively compact in U and, provided ε is not a critical value of the smooth map
s ∈ U 7→ (|f1(s)|

2, ..., |fn(s)|
2) (the set of such critical values being negligible in (R+)n

according to A. Sard’s lemma), is such its Shilov boundary

ΓShilov(∆ε) := {s ∈ ∆ε ; |fj(s)| = εj , j = 1, ..., n}

is a real analytic n-dimensional manifold which will be oriented as follows : the n-
differential form

∧n
j=1 d[arg(fj(s))] on will be a n-volume form on it. We denote

then as Γ+
Shilov(∆ε) the corresponding real-analytic n-cycle. Then any holomorphic

function f ∈ H(U) ∩ C(U) can be represented in ∆ε (whenever this Weil polyhedron
is connected or not) as

∀ z ∈ U, f(z) =

1

(2iπ)n

∫

Γ+

Shilov
(∆ε)

f(s) det [Bf (s,z)]
ds1 ∧ · · · ∧ dsn(

f1(s)− f1(z)
)
· · ·
(
fn(s)− fn(z)

) . (3.1)

In this section, one considers a zero-dimensional polynomial ideal generated by
a quasi-regular sequence p = (p1, ..., pn), which means that p−1(0) is a non-empty
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finite set {w1, ..., wn} in Cn (supposed distinct, each of them been equipped with a
multiplicity νwj

(p) such that
∑m

j=1 νwj
(p) = dimC(C[s]/(p)) = N(p)). In all this

section, let us also suppose that a monomial basis

B
≺≺
C[s]/(p) = {ṡβk ; k = 0, ..., N(p)− 1}

for C[s]/(p) has been obtained thanks to the search for a Gröbner basis for (p) with
respect to the prescribed ordering ≺≺ on monomials in C[s] (as recalled in section 2).

Proposition 3.1. Let p = (p1, ..., pn) and B
≺≺
C[s]/(p) as above. Let U be an open subset

of Cn which contains p−1(0) and f ∈ H(U). There is a unique system of coordinates
(α0[f ], ..., αN(p)−1[f ]) ∈ Cn such that the holomorphic function

s ∈ U 7−→ f(s)−

N(p)−1∑

k=0

αk[f ] s
βk

belongs the ideal (
∑n

j=1H(U)pj)loc.

Proof. The proof of the unicity clause goes as follows : if a polynomial function which

restriction to U is s ∈ U 7→
∑N(p)−1

k=0 (αk − α̃k)s
βk belongs to

(∑n
j=1H(U) pj

)
loc

,

it implies since p−1(0) ⊂ U that the polynomial
∑N(p)−1

k=0 (αk − α̃k)s
βk belongs to

C[s]p1 + · · · + C[s] pn, that is αk = α̃k for k = 0, ..., N(p) − 1 since the collection

{β̇
k
; k = 0, ..., N(p)− 1} is a basis of the quotient C-vector space C[s]/(p).

As for the existence, one proceeds as follows. Let Bp ∈ Mn,n(C[s,z]) be any Bé-
zoutian matrix of polynomials in 2n variables (s,z) = (s1, ..., sn, z1, ..., zn) such that
the following polynomial identities hold in C[s,z] :

pj(s)− pj(z) =

n∑

ℓ=1

bj,ℓ(s,z) (sℓ − zℓ), j = 1, ..., n. (3.2)

Such a matrix Bp always exists : one can for example either invoke the so-called
Fundamental Theorem of Analysis and take

bp,j,ℓ(s,z) :=

∫ 1

0

( ∂

∂zℓ

)
[pj
(
z + t(s− z)

)
] dt ∀ j, ℓ ∈ {1, ..., n}

or better proceed iteratively as follows for each j = 1, ..., n :

pj(s)− pj(z) =
pj(s1, s2, ..., sn)− pj(z1, s2, ..., sn)

s1 − z1
(s1 − z1)

+
pj(z1, s2, s3, ..., sn)− pj(z1, z2, s3, ..., sn)

s2 − z2
(s2 − z2) + · · ·

in order to keep track of the smallest subring A ⊂ C (for example A = Z or A = Q)
that contains all coefficients of p (if all pj lie in A[s], so do then all entries of such Bp).
Consider then a Weil polyhedron ∆ ⊂⊂ U subordonned to (p1, ..., pn) in the open set
U . Cauchy-Weil’s integral representation formula (3.1), together with the fact that
the rational function ζ 7→ 1/(1− ζ) can be expanded normally on any compact of the
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unit disk D(0, 1) as
∑

ℓ≥0 ζ
ℓ, imply

∀ z ∈ ∆, f(z) =
1

(2iπ)n

∫

Γ+

Shilov
(∆)

f(s)
det[Bp(s,z)] ds1 ∧ · · · ∧ dsn∏n

j=1

(
pj(s)− pj(z)

)

=
1

(2iπ)n

∫

Γ+

Shilov
(∆)

f(s)
det[Bp(s,z)]

n∏
j=1

pj(s)

(
n∏

j=1

1

1−
pj(z)

pj(s)

)
ds1 ∧ · · · ∧ dsn

=
1

(2iπ)n

∫

Γ+

Shilov
(∆)

f(s)
det[Bp(s,z)] ds1 ∧ · · · ∧ dsn∏n

j=1 pj(s)

+
∑

ℓ∈Nn\0

(
1

(2iπ)n

∫

Γ+

Shilov
(∆)

f(s)
det[Bp(s,z)] ds1 ∧ · · · ∧ dsn

∏n
j=1 p

ℓj+1
j (s)

)
pℓ(z)

=
1

(2iπ)n

∫

Γ+

Shilov
(∆)

f(s)
det[Bp(s,z)] ds1 ∧ · · · ∧ dsn∏n

j=1 pj(s)
+

n∑

j=1

pj(z) g∆,j(z), (3.3)

where g∆,j ∈ H(∆) for any j = 1, ..., n. If one takes as (α0[f ], ..., αN(p)−1[f ]) the vector

of coordinates (in the basis B
≺≺
C[z]/(p(z))) of the class in C[z]/(p(z)) of the polynomial

1

(2iπ)n

∫

Γ+

Shilov
(∆)

f(s)
det[Bp(s,z)] ds1 ∧ · · · ∧ dsn∏n

j=1 pj(s)
∈ C[z],

one gets the required result.

Remark 3.2. The polynomial (considered here in C[z])

Lag[f ] :=
1

(2iπ)n

∫

Γ+

Shilov
(∆)

f(s)
det[Bp(s,z)] ds1 ∧ · · · ∧ dsn∏n

j=1 pj(s)
(3.4)

depends only on the list of germs [fw1
, ..., fwn ] of germs of f respectively about each of

the distinct points wj in p−1(0). It then can be considered as a Lagrange interpolator
of such list of germs, hence the terminology used here to denote it. More precisely let
ϕ ∈ D(U, [0, 1]) be any test-function which equals identically 1 about each point wj for
j = 1, ...,m. It is worth to point out that Lag[f ] expresses alternatively (independently
of the choice of the Weil polyhedron ∆) as

Lag[f ] =
〈( n∧

j=1

∂̄(1/fj)
)
(s) , f(s) det[Bp(s,z)]ϕ(s) ds1 ∧ · · · ∧ dsn

〉

=
m∑

j=1

Qwj
(∂/∂s)

[
f(s) det[Bp(s,z)]

]
(wj)

=

m∑

j=1

∑

ℓ∈Awj

∂|ℓ|

∂sℓ
[f ](wj)Qwj ,ℓ(∂/∂s)

[
det[Bp(s,z)]

]
(wj)

=

m∑

j=1

∑

ℓ∈Awj

∂|ℓ|

∂sℓ
[
det[Bp(s,z)]

]
(wj)Qwj ,ℓ(∂/∂s)[f ](wj),

(3.5)

where the differential operators with complex coefficients Qwj
(∂/∂s) for j = 1, ...,m

(respectively the finite sets Awj
∈ Nn together with differential operators Qwj ,ℓ for

j = 1, ...,m and ℓ ∈ Awj
) are those introduced in (2.11) (respectively in (2.12)). We

refer here the reader for example to [8] or to the more up-to-date survey [18].
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�

Proposition 3.3. Let p and B
≺≺
C[s]/(p) as above. Let [hw1

, ..., hwm ] be a list of m

germs of holomorphic functions, each respectively about the zero wj of p. There is
a unique system of coordinates

(
α0([hw]), ..., αN(p)−1([hw])

)
∈ Cn such that for each

j = 1, ...,m, one has, as elements in the local ring OCn,wj
,

hwj
−
(
s 7→

N(p)−1∑

k=0

α([hw]) s
βk

)
wj

∈ OCn,wj
p1,wj

+ · · ·+ OCn,wj
pn,wj

.

Proof. Take U as a union of balls with infinitesimal small radii about each wj (so
that, for any j = 1, ...,m, the germ hwj

∈ OCn,wj
admits a representant hj in the

connected component of U that contains wj). Take now the holomorphic function
f : U → C defined by f|Bj

= hj for j = 1, ...,m and then conclude appealing
to Proposition 3.1. It also follows from Remark 3.2 that the system of coordinates(
α0([hw]), ..., αN(p)−1([hw])

)
is that of the class of the polynomial (considered here in

C[z])

Lag[hw1
, ..., hwm ]

=
m∑

j=1

∑

ℓ∈Awj

∂|ℓ|

∂sℓ
[hwj

](wj)Qwj ,ℓ(∂/∂s)
[
det[Bp(s,z)]

]
(wj)

=

m∑

j=1

∑

ℓ∈Awj

∂|ℓ|

∂sℓ
[
det[Bp(s,z)]

]
(wj)Qwj ,ℓ(∂/∂s)[hwj

](wj)

(3.6)

in the basis B
≺≺
C[z]/(p(z)). �

4. Two non-standard interpolation problems

Let p = (p1, ..., pn) be a quasi-regular sequence in C[s] and

B
≺≺
C[s]/(p) = {ṡβk ; k = 0, ..., N(p)− 1}

be a monomial basis of the N(p)-dimensional C-vector space C[s]/(p) which has pre-
viously been obtained thanks to the search for a Gröbner basis for (p) with respect to
the prescribed ordering ≺≺ on monomials in C[s] (as recalled in section 2).

We will denote as in section 2 as Qp[B
≺≺
C[s]/(p)] (see (2.7)) the matrix of the qua-

dratic non-degenerated form (2.6) which stands as the residual generator of the module
HomC(C[s]/(p),C) (equipped with its structure of C[s]/(p)-module as described in
section 2) constructed from the given quasi-regular sequence (p1, ..., pn) of generators
of the polynomial zero dimensional ideal (p). The action of this generator is described
as seen in section 2 by a standard list of Nœtherian operators

Noethp[(p)] :=
{

Qwj ,ℓ(∂/∂s)|wj
; j = 1, ...,m, ℓ ∈ Awj

}
(4.1)

(see Definition 2.4).

We can now formulate (and indicate how to solve) the two following non-standard
interpolation problems inspired by Problem 4.1 formulated in [3] in the univariate case.

Problem 4.1. Let p−1(0) = {w1, ..., wm} and 1 ≤ µ ≤ m. Let U be an open subset
of Cn that contains {w1, ..., wµ}. Let aj,ℓ (j = 1, ..., µ, ℓ ∈ Awj

), together with c, be
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(
∑µ

j=1#Awj
) + 1 given complex numbers. Describe the C-affine space of functions

f : U → C which are holomorphic in U and moreover satisfy

µ∑

j=1

∑

ℓ∈Awj

aj,ℓ Qwj ,ℓ[f ](wj) = c. (4.2)

Problem 4.2. Let w1, ..., wµ be µ distinct points in Cn, together with µ elements
ν1,...,νµ in (N∗)n (prescribed multi-vectors of multiplicities). Let U be an open subset
of Cn that contains {w1, ..., wµ} Let aj,ℓ (j = 1..., µ, ℓ ∈ Nn such that ℓ ≺ νj − 1),

together with c, be
(∑µ

ℓ=1

∏n
j=1 νℓ,j

)
+1 given complex numbers. Describe the C-affine

space of functions f : U → C which are holomorphic in U and moreover satisfy

µ∑

j=1

∑

{ℓ∈Nn ; ℓ≺νj−1}

aj,ℓ

(∂|ℓ|
∂sℓ

)
[f ](wj) = c. (4.3)

We start by indicating how to solve Problem 4.1 in the particular case µ = m.
Recall that for each j = 1, ...,m, for each ℓ ∈ Awj

, Supp (Qwj ,ℓ) ⊂ Awj
, so that

Qwj ,ℓ(∂/∂s) =
∑

λ∈Awj

τj,ℓ,λ
∂|λ|

∂sλ

for some complex coefficients τj,ℓ,λ.

Lemma 4.3. Let {w1, ..., wm} = p−1(0), U be an open subset of Cn containing p−1(0)
and the aj,ℓ (j = 1, ...,m, ℓ ∈ Awj

), together with c, be complex numbers. For each

j = 1, ...,m, let hawj
be the germ in OCn,wj

of s 7−→
∑

λ∈Aj
aj,λ (s − wj)

λ/λ! and

[ha
w] = [haw1

, ..., hawm
] . The following alternative holds :

• either the coordinate system
(
α0([h

a
w]), ..., αN(p)−1([h

a
w])
)

introduced in Propo-
sition 3.3 is the null system, which amounts to say that

∑

λ∈Awj

τj,ℓ,λ aj,λ = 0 ∀ j = 1, ...,m, ∀ ℓ ∈ Awj
, (4.4)

in which case the set of holomorphic functions f : U → C satisfying (4.2) is
empty when c 6= 0 and is the whole space H(U) when c = 0 ;

• either the coordinate system
(
α0([h

a
w]), ..., αN(p)−1([h

a
w])
)

introduced in Propo-
sition 3.3 is non-zero, in which case a function f ∈ H(U) satisfies (4.2) if and
only if

[
α0[f ] . . . αN(p)−1)[f ]

]
·Qp[B

≺≺
C[s]/(p)]




α0([h
a
w])

...
αN(p)−1([h

a
w])


 = c, (4.5)

which means that the vector (α0[f ], ..., αN(p)−1)[f ]) of the coordinates of f in

H(U)/(
∑n

1 H(U) pj)loc lies in a specific affine hyperplane Πa of CN since the
quadratic form (2.6) is non-degenerated.

Proof. For each j = 1, ...,m, let ψj ∈ D(U, [0, 1]) with support in an arbitrary small
neighborhood of wj (which does not contain any other zero of p and is such that the
germ hawj

admits a representant still denoted as hawj
in it) such that furthermore ψj ≡ 1
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about wj . It follows from (2.12) and (2.10) that one can rewrite the left-hand side of
(4.2) as

m∑

j=1

〈( n∧

j=1

∂̄(1/pj)
)
(s) , f(s)hawj

(s)ψj(s) ds1 ∧ · · · ∧ dsn

〉

=
〈( n∧

j=1

∂̄(1/pj)
)
(s) , Lag[f ](s) Lag[ha

w](s)
( m∑

j=1

ψj(s)
)
ds1 ∧ · · · ∧ dsn

〉

= Res

[
Lag[f ](s) Lag[ha

w](s) ds1 ∧ · · · ∧ dsn
p1(s), ..., pn(s)

]

=
[
α0[f ] . . . αN(p)−1)[f ]

]
·Qp[B

≺≺
C[s]/(p)]




α0([h
a
w])

...
αN(p)−1([h

a
w])


 .

We now conclude using the fact that the quadratic form Qp is non degenerated. The
first situation in the alternative corresponds precisely (thanks to the role of the Nœthe-
rian operators in the realisation of duality, see (2.14)) to the fact that the system of
linear relations (4.5) holds. �

We may now state the solution to Problem 4.1.

Theorem 4.4. Let p−1(0) = {w1, ..., wm} and 1 ≤ µ ≤ m. Let U be an open subset
of Cn that contains {w1, ..., wµ}. Let aj,ℓ (j = 1, ..., µ, ℓ ∈ Awj

), together with c, be

(
∑µ

j=1#Awj
)+ 1 given complex numbers. For each j = 1, ..., µ, let hawj

be the germ in

OCn,wj
of s 7−→

∑
λ∈Aj

aj,λ (s−wj)
λ/λ!. Let

[ha
w] = [haw1

, ..., hawµ
, 0wµ+1

, ..., 0wn ].

The following alternative then holds :

• either the coordinate system
(
α0([h

a
w]), ..., αN(p)−1([h

a
w])
)

introduced in Propo-
sition 3.3 is the null system, which amounts to say that

∑

λ∈Awj

τj,ℓ,λ aj,λ = 0 ∀ j = 1, ..., µ, ∀ ℓ ∈ Awj
, (4.6)

in which case the set of holomorphic functions f : U → C satisfying (4.2) is
empty when c 6= 0 and is the whole space H(U) when c = 0 ;

• either the coordinate system
(
α0([h

a
w]), ..., αN(p)−1([h

a
w])
)

introduced in Propo-
sition 3.3 is non-zero, in which case a function f ∈ H(U) satisfies (4.2) if and
only if (4.5) holds, which means that the vector (α0[f ], ..., αN(p)−1)[f ]) of the

coordinates of f in H(U)/(
∑n

1 H(U) pj)loc lies in a specific affine hyperplane

Πa of CN since the quadratic form (2.6) is non-degenerated.

Proof. One may assume that µ < n since the result is already proved when µ = m
(Lemma 4.3).
Let us first assume that ∂U does not contain any of the points wj such that µ < j ≤ m.

Let Ũ be the union of U with open balls B(wj, εj), j = µ+1, ..., n, where εj is strictly

smaller than the distance from wj to U . Any holomorphic function f : U → C which

satisfies (4.3) can be considered as f̃
|Ũ

where f̃ : Ũ → C satisfies (4.2) with ãj,ℓ = aj,ℓ
for any j = 1, ..., µ and any ℓ ∈ Awj

, ãj,ℓ = 0 for any index j = µ + 1, ...,m and

any ℓ ∈ Awj
, c̃ = c. Conversely, given any such holomorphic solution f̃ : Ũ → C of
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(4.2) in Ũ (with the aj,ℓ replaced by ãj,ℓ), it restricts to U as a solution of (4.3). The
conclusion of Theorem 4.4 follows then from that of Lemma 4.3.
Consider now the case when ∂U may contain some wj for j = µ+1, ...,m. Let (Uk)k≥0

be an increasing sequence of open subsets such that {w1, ..., wµ} ⊂ Uk ⊂ Uk ⊂ U which
exhausts U . It is equivalent to say that f : U → C is solution of (4.2) in U or that
for any k ∈ N, its restriction f|Uk

is solution of (4.2) in Uk (the data awj ,ℓ and c
remaining unchanged). For any k ≥ 0, we showed that the alternative proposed in
the statement of Theorem 4.4 hold. As pointed out in Remark 3.2, we also know
that the coordinate system (α0[f ], ..., αN(p)−1[f ]) (f being arbitrarily continued in

Ũk = Uk ∪
⋃m

j=µ+1B(wj, d(wj , Uk)/2)) does depend only of the germs of f at the

points wj for j = 1, ..., µ. On the other hand the condition on [ha
w] which governs the

alternative proposed in the statement of Theorem 4.4 (when U = Uk) does not depend
on k. Hence this alternative still holds in the limit case U∞ = U . Theorem 4.4 is thus
proved in general. �

Consider as an example the particular situation where p is a sequence of univariate
monic polynomials respectively in the variables s1, ..., sn, as in the series of Examples
2.1 till 2.5. In this case, the pj being as in (2.8), the set Aw which is related to the
point w = (ξ1,κ1

, ..., ξn,κn) ∈ p−1(0) is

Aw = {ℓ ∈ Nn ; ℓ ≺ νw(p) := (ν1,κ1
, ..., νn,κn)− 1},

with cardinal
∏n

ℓ=1 νℓ,κℓ
. Since one has in this case

m∑

j=1

#Awj
= N(p) = dimC(C[s]/(p)),

the first alternative in Lemma 4.3 leads in this particular case to awj ,λ = 0 for any
j = 1, ...,m, for any λ ∈ Awj

for dimension reasons. This holds also for which what
concerns the first alternative in Theorem 4.4 in the case 1 ≤ µ < m : it boils down
in this case to the conditions aj,λ = 0 for any j = 1, ..., µ, for any ℓ ∈ Nn such that
ℓ ≺ νw(p)− 1.

Consider now µ ≥ 1 distinct points in Cn, paired with vectors of prescribed multi-
plicities ν1, · · · ,νµ in (N∗)n as in Problem 4.2. If wj = (ξj,1, ..., ξj,n), let us form the
n univariate monic polynomials

pj(sj) :=

µ∏

ℓ=1

(sj − ξℓ,j)
νℓ,j ∈ C[sj ], j = 1, ..., n.

Let d = (deg p1, ...,deg pn), where deg pj =
∑µ

ℓ=1 νℓ,j for j = 1, ..., n. A monomial
basis for C[s]/(p) is provided thanks to Euclid’s algorithm in the separated variables
s1, ..., sn as

B
euclid
p = {ṡk ; k ∈ Nn with k ≺ d− 1}.

From now on, one organizes this basis with respect to the lexicographical order on the
multi-exposants of monomials in C[s]. Keeping to such ordering, let

Qeuclid
p :=

[
Res

[
sk1+k2 ds1 ∧ · · · ∧ dsn
p1(s1), ..., pn(sn)

]]

k1,k2∈Nn

k1,k2≺d−1

. (4.7)
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The (k1,k2) entry of such a matrix is obtained as the coefficient γk1,k2,d−1 of sd−1 in
the expansion as a geometric series about 0 of

s 7→ sk1+k2

n∏

j=1

( 1

1 +
pj(sj)−s

dj
j

s
dj
j

)
=

∑

{κ∈Zn ; κ≺k1+k2}

γk1,k2,κ sκ.

For each j = 1, ..., µ, let ψj ∈ D(Cn, [0, 1]) be a test-function which is identically equal
to 1 near wj and identically equal to 0 about any point in p−1(0) \ {wj}. Given a list
a = {aj,ℓ ; j = 1, ..., µ, ℓ ∈ Nn with ℓ ≺ νj − 1}, consider the Lagrange interpolator
Lag[ha

w] ∈ C[z] defined as

Lag[ha
w](z) =

µ∑

j=1

〈( n∧

j=1

∂̄(1/pj)
)
(s) ,

( ∑

ℓ≺νj−1

aj,ℓ
(s− wj)

ℓ

ℓ!

)( n∏

j=1

pj(zj)− pj(sj)

zj − sj

)
ψj(s) ds1 ∧ · · · ∧ dsn

〉

=
∑

{k∈Nn ;k≺d−1}

τk(a)z
k. (4.8)

One can now state the following result with respect to Problem 4.2.

Theorem 4.5. Let w1, ..., wµ be µ distinct points in Cn, together with µ elements
ν1,...,νµ in (N∗)n. Let U be an open subset of Cn that contains {w1, ..., wµ}. Let aj,ℓ
(j = 1..., µ, ℓ ∈ Nn such that ℓ ≺ νj − 1), together with c, be

(∑µ
ℓ=1

∏n
j=1 νℓ,j

)
+ 1

given complex numbers such that the aj,ℓ (for j = 1, ..., µ, ℓ ≺ νj) are not all equal
to 0. An holomorphic function f : U → C satisfies (4.3) if and only if there are
coefficients αk, k ≺ d, where dj =

∑µ
ℓ=1 νℓ,j for j = 1, ..., µ, such that

f(s) =
∑

{k∈Nn ;k≺d−1}

αk s
k + g(s)

where g is an holomorphic function in U which belongs locally to the ideal generated by
the univariate polynomials pj(sj) =

∑µ
ℓ=1(sj − wℓ,j)

νℓ,j (j = 1, ..., n) and (αk)k≺d−1

satisfies

[
α0 · · · αd−1

]
·Qeuclid

p ·



τ0(a)

...
τd−1(a)


 = c,

where the coefficients τk(a) (k ∈ Nn, k ≺ d−1) are those of the Lagrange interpolator
(4.8).

Proof. This is an immediate application of Theorem 4.4. �

5. Conclusions

We have presented a new algebraic approach, based on residue theory and duality
(see [9, 11, 12]) to solve a scalar interpolation problem in several complex variable. In
a future work we plan to exploit the present methods in the matricial case to study
the counterpart of the bitangential interpolation problem (see e.g. [6]) in the present
setting. We focused here on the algebraic point of view. Hilbert space constraints
will be considered elswhere. Both the methods and results are different from the ones
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classically related up to now to interpolation in the Drury-Arveson space or Schur
multipliers and Schur-Agler classes (see [1, 4, 5, 7] for the latter).
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