988 research outputs found

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures

    Three-dimensional alpha shapes

    Full text link
    Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ``shape'' of the set. For that purpose, this paper introduces the formal notion of the family of α\alpha-shapes of a finite point set in \Real^3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter \alpha \in \Real controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size nn in time O(n2)O(n^2), worst case. A robust implementation of the algorithm is discussed and several applications in the area of scientific computing are mentioned.Comment: 32 page

    Surface cubications mod flips

    Full text link
    Let Σ\Sigma be a compact surface. We prove that the set of surface cubications modulo flips, up to isotopy, is in one-to-one correspondence with Z/2Z⊕H1(Σ,Z/2Z)\Z/2\Z\oplus H_1(\Sigma,\Z/2\Z).Comment: revised version, 18

    A probabilistic approach to reducing the algebraic complexity of computing Delaunay triangulations

    Get PDF
    Computing Delaunay triangulations in Rd\mathbb{R}^d involves evaluating the so-called in\_sphere predicate that determines if a point xx lies inside, on or outside the sphere circumscribing d+1d+1 points p0,…,pdp_0,\ldots ,p_d. This predicate reduces to evaluating the sign of a multivariate polynomial of degree d+2d+2 in the coordinates of the points x, p0, …, pdx, \, p_0,\, \ldots,\, p_d. Despite much progress on exact geometric computing, the fact that the degree of the polynomial increases with dd makes the evaluation of the sign of such a polynomial problematic except in very low dimensions. In this paper, we propose a new approach that is based on the witness complex, a weak form of the Delaunay complex introduced by Carlsson and de Silva. The witness complex Wit(L,W)\mathrm{Wit} (L,W) is defined from two sets LL and WW in some metric space XX: a finite set of points LL on which the complex is built, and a set WW of witnesses that serves as an approximation of XX. A fundamental result of de Silva states that Wit(L,W)=Del(L)\mathrm{Wit}(L,W)=\mathrm{Del} (L) if W=X=RdW=X=\mathbb{R}^d. In this paper, we give conditions on LL that ensure that the witness complex and the Delaunay triangulation coincide when WW is a finite set, and we introduce a new perturbation scheme to compute a perturbed set L′L' close to LL such that Del(L′)=wit(L′,W)\mathrm{Del} (L')= \mathrm{wit} (L', W). Our perturbation algorithm is a geometric application of the Moser-Tardos constructive proof of the Lov\'asz local lemma. The only numerical operations we use are (squared) distance comparisons (i.e., predicates of degree 2). The time-complexity of the algorithm is sublinear in ∣W∣|W|. Interestingly, although the algorithm does not compute any measure of simplex quality, a lower bound on the thickness of the output simplices can be guaranteed.Comment: 24 page
    • …
    corecore