18,255 research outputs found

    Geometric Inference on Kernel Density Estimates

    Get PDF
    We show that geometric inference of a point cloud can be calculated by examining its kernel density estimate with a Gaussian kernel. This allows one to consider kernel density estimates, which are robust to spatial noise, subsampling, and approximate computation in comparison to raw point sets. This is achieved by examining the sublevel sets of the kernel distance, which isomorphically map to superlevel sets of the kernel density estimate. We prove new properties about the kernel distance, demonstrating stability results and allowing it to inherit reconstruction results from recent advances in distance-based topological reconstruction. Moreover, we provide an algorithm to estimate its topology using weighted Vietoris-Rips complexes.Comment: To appear in SoCG 2015. 36 pages, 5 figure

    Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation

    Get PDF
    Approximate Bayesian computation has emerged as a standard computational tool when dealing with the increasingly common scenario of completely intractable likelihood functions in Bayesian inference. We show that many common Markov chain Monte Carlo kernels used to facilitate inference in this setting can fail to be variance bounding, and hence geometrically ergodic, which can have consequences for the reliability of estimates in practice. This phenomenon is typically independent of the choice of tolerance in the approximation. We then prove that a recently introduced Markov kernel in this setting can inherit variance bounding and geometric ergodicity from its intractable Metropolis--Hastings counterpart, under reasonably weak and manageable conditions. We show that the computational cost of this alternative kernel is bounded whenever the prior is proper, and present indicative results on an example where spectral gaps and asymptotic variances can be computed, as well as an example involving inference for a partially and discretely observed, time-homogeneous, pure jump Markov process. We also supply two general theorems, one of which provides a simple sufficient condition for lack of variance bounding for reversible kernels and the other provides a positive result concerning inheritance of variance bounding and geometric ergodicity for mixtures of reversible kernels.Comment: 26 pages, 10 figure

    A selective overview of nonparametric methods in financial econometrics

    Full text link
    This paper gives a brief overview on the nonparametric techniques that are useful for financial econometric problems. The problems include estimation and inferences of instantaneous returns and volatility functions of time-homogeneous and time-dependent diffusion processes, and estimation of transition densities and state price densities. We first briefly describe the problems and then outline main techniques and main results. Some useful probabilistic aspects of diffusion processes are also briefly summarized to facilitate our presentation and applications.Comment: 32 pages include 7 figure
    corecore