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Abstract
We show that geometric inference of a point cloud can be calculated by examining its kernel
density estimate with a Gaussian kernel. This allows one to consider kernel density estimates,
which are robust to spatial noise, subsampling, and approximate computation in comparison to
raw point sets. This is achieved by examining the sublevel sets of the kernel distance, which
isomorphically map to superlevel sets of the kernel density estimate. We prove new properties
about the kernel distance, demonstrating stability results and allowing it to inherit reconstruction
results from recent advances in distance-based topological reconstruction. Moreover, we provide
an algorithm to estimate its topology using weighted Vietoris-Rips complexes.
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1 Introduction

Geometry and topology have become essential tools in modern data analysis: geometry
to handle spatial noise and topology to identify the core structure. Topological data
analysis (TDA) has found applications spanning protein structure analysis [24, 40] to heart
modeling [32] to leaf science [49], and is the central tool of identifying quantities like
connectedness, cyclic structure, and intersections at various scales. Yet it can suffer from
spatial noise in data, particularly outliers.

When analyzing point cloud data, classically these approaches consider α-shapes [23],
where each point is replaced with a ball of radius α, and the union of these balls is analyzed.
More recently a distance function interpretation [8] has become more prevalent where the
union of α-radius balls can be replaced by the sublevel set (at value α) of the Hausdorff
distance to the point set. Moreover, the theory can be extended to other distance functions
to the point sets, including the distance-to-a-measure [12] which is more robust to noise.

This has more recently led to statistical analysis of TDA. These results show not only
robustness in the function reconstruction, but also in the topology it implies about the
underlying dataset. This work often operates on persistence diagrams which summarize
the persistence (difference in function values between appearance and disappearance) of all
homological features in single diagram. A variety of work has developed metrics on these
diagrams and probability distributions over them [43, 55], and robustness and confidence
intervals on their landscapes [6, 30, 15, 16]). It is now more clear than ever, that these
works are most appropriate when the underlying function is robust to noise, e.g., the
distance-to-a-measure [12].
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Figure 1 Example with 10,000 points in [0, 1]2 generated on a circle or line with N(0, 0.005)
noise; 25% of points are uniform background noise. The generating function is reconstructed with
kde with σ = 0.05 (upper left), and its persistence diagram based on the superlevel set filtration is
shown (upper middle). A coreset [58] of the same dataset with only 1,384 points (lower left) and
persistence diagram (lower middle) are shown, again using kde. This associated confidence interval
contains the dimension 1 homology features (red triangles) suggesting they are noise; this is because
it models data as iid – but the coreset data is not iid, it subsamples more intelligently. We also show
persistence diagrams of the original data based on the sublevel set filtration of the standard distance
function (upper right, with no useful features due to noise) and the kernel distance (lower right).

A very recent addition to this progression is the new TDA package for R [29]; it includes
built in functions to analyze point sets using Hausdorff distance, distance-to-a-measure,
k-nearest neighbor density estimators, kernel density estimates, and kernel distance. The
example in Figure 1 used this package to generate persistence diagrams. While, the stability
of the Hausdorff distance is classic [8, 23], and the distance-to-a-measure [12] and k-nearest
neighbor distances have been shown robust to various degrees [4], this paper is the first to
analyze the stability of kernel density estimates and the kernel distance in the context of
geometric inference. Some recent manuscripts show related results. Bobrowski et al. [5]
consider kernels with finite support, and describe approximate confidence intervals on the
superlevel sets, which recover approximate persistence diagrams. Chazal et al. [14] explore
the robustness of the kernel distance in bootstrapping-based analysis.

In particular, we show that the kernel distance and kernel density estimates, using
the Gaussian kernel, inherit some reconstruction properties of distance-to-a-measure, that
these functions can also be approximately reconstructed using weighted (Vietoris-)Rips
complexes [7], and that under certain regimes can infer homotopy of compact sets. Moreover,
we show further robustness advantages of the kernel distance and kernel density estimates,
including that they possess small coresets [45, 58] for persistence diagrams and inference.

1.1 Kernels, Kernel Density Estimates, and Kernel Distance
A kernel is a non-negative similarity measure K : Rd × Rd → R+; more similar points have
higher value. For any fixed p ∈ Rd, a kernel K(p, ·) can be normalized to be a probability
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distribution; that is
∫
x∈Rd K(p, x)dx = 1. For the purposes of this article we focus on the

Gaussian kernel defined as K(p, x) = σ2 exp(−‖p− x‖2/2σ2).1
A kernel density estimate [53, 50, 21, 22] is a way to estimate a continuous distribution

function over Rd for a finite point set P ⊂ Rd; they have been studied and applied in
a variety of contexts, for instance, under subsampling [45, 58, 2], motion planning [48],
multimodality [52, 25], and surveillance [28], road reconstruction [3]. Specifically,

kdeP (x) = 1
|P |

∑
p∈P

K(p, x).

The kernel distance [37, 33, 38, 46] (also called current distance or maximum mean
discrepancy) is a metric [44, 54] between two point sets P , Q (as long as the kernel used
is characteristic [54], a slight restriction of being positive definite [1, 57], this includes the
Gaussian and Laplace kernels). Define a similarity between the two point sets as

κ(P,Q) = 1
|P |

1
|Q|

∑
p∈P

∑
q∈Q

K(p, q).

Then the kernel distance between two point sets is defined as

DK(P,Q) =
√
κ(P, P ) + κ(Q,Q)− 2κ(P,Q).

When we let point set Q be a single point x, then κ(P, x) = kdeP (x).
Kernel density estimates applies to any measure µ (on Rd) as kdeµ(x) =

∫
p∈Rd K(p, x)dµ(p).

The similarity between two measures is κ(µ, ν) =
∫

(p,q)∈Rd×Rd K(p, q)dmµ,ν(p, q), where mµ,ν

is the product measure of µ and ν (mµ,ν := µ⊗ ν), and then the kernel distance between
two measures µ and ν is still a metric, defined as DK(µ, ν) =

√
κ(µ, µ) + κ(ν, ν)− 2κ(µ, ν).

When the measure ν is a Dirac measure at x (ν(q) = 0 for x 6= q, but integrates to
1), then κ(µ, x) = kdeµ(x). Given a finite point set P ⊂ Rd, we can work with the
empirical measure µP defined as µP = 1

|P |
∑
p∈P δp, where δp is the Dirac measure on p, and

DK(µP , µQ) = DK(P,Q).
If K is positive definite, it is said to have the reproducing property [1, 57]. This implies

that K(p, x) is an inner product in some reproducing kernel Hilbert space (RKHS) HK .
Specifically, there is a lifting map φ : Rd → HK so that K(p, x) = 〈φ(p), φ(x)〉HK

, and
moreover the entire set P can be represented as Φ(P ) =

∑
p∈P φ(p), which is a single element

of HK and has a norm ‖Φ(P )‖HK
=
√
κ(P, P ). A single point x ∈ Rd also has a norm

‖φ(x)‖HK
=
√
K(x, x) in this space.

1.2 Geometric Inference and Distance to a Measure: A Review
Given an unknown compact set S ⊂ Rd and a finite point cloud P ⊂ Rd that comes from S

under some process, geometric inference aims to recover topological and geometric properties
of S from P . The offset-based (and more generally, the distance function-based) approach for
geometric inference reconstructs a geometric and topological approximation of S by offsets
from P (e.g. [10, 11, 12, 17, 18]).

Given a compact set S ⊂ Rd, we can define a distance function fS to S; a common
example is fS(x) = infy∈S ‖x − y‖. The offsets of S are the sublevel sets of fS , denoted
(S)r = f−1

S ([0, r]). Now an approximation of S by another compact set P ⊂ Rd (e.g. a

1 The choice of coefficient σ2 is not the standard normalization, but it is perfectly valid as it scales
everything by a constant. It has the property that σ2 −K(p, x) ≈ ‖p− x‖2/2 for ‖p− x‖ small.
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finite point cloud) can be quantified by the Hausdorff distance dH(S, P ) := ‖fS − fP ‖∞ =
infx∈Rd |fS(x) − fP (x)| of their distance functions. The intuition behind the inference of
topology is that if dH(S, P ) is small, thus fS and fP are close, and subsequently, S, (S)r

and (P )r carry the same topology for an appropriate scale r. In other words, to compare
the topology of offsets (S)r and (P )r, we require Hausdorff stability with respect to their
distance functions fS and fP . An example of an offset-based topological inference result is
formally stated as follows (as a particular version of the reconstruction Theorem 4.6 in [11]),
where the reach of a compact set S, reach(S), is defined as the minimum distance between S
and its medial axis [42].

I Theorem 1 (Reconstruction from fP [11]). Let S, P ⊂ Rd be compact sets such that
reach(S) > R and ε := dH(S, P ) < R/17. Then (S)η and (P )r are homotopy equivalent for
sufficiently small η (e.g., 0 < η < R) if 4ε ≤ r < R− 3ε.

Here η < R ensures that the topological properties of (S)η and (S)r are the same, and
the ε parameter ensures (S)r and (P )r are close. Typically ε is tied to the density with
which a point cloud P is sampled from S.

For function φ : Rd → R+ to be distance-like it should satisfy the following properties:
(D1) φ is 1-Lipschitz: For all x, y ∈ Rd, |φ(x)− φ(y)| ≤ ‖x− y‖.
(D2) φ2 is 1-semiconcave: The map x ∈ Rd 7→ (φ(x))2 − ‖x‖2 is concave.
(D3) φ is proper: φ(x) tends to the infimum of its domain (e.g., ∞) as x tends to infinity.

In addition to the Hausdorff stability property stated above, as explained in [12], fS is
distance-like. These three properties are paramount for geometric inference (e.g. [11, 41]).

(D1) ensures that fS is differentiable almost everywhere and the medial axis of S has
zero d-volume [12]; and (D2) is a crucial technical tool, e.g., in proving the existence of the
flow of the gradient of the distance function for topological inference [11].

Distance to a measure. Given a probability measure µ on Rd and a parameter m0 > 0
smaller than the total mass of µ, the distance to a measure dccm

µ,m0
: Rn → R+ [12] is defined

for any point x ∈ Rd as

dccm
µ,m0

(x) =
(

1
m0

∫ m0

m=0
(δµ,m(x))2dm

)1/2
, where δµ,m(x) = inf

{
r > 0 : µ(B̄r(x)) ≥ m

}
,

and where Br(x) is a ball of radius r centered at x and B̄r(x) is its closure. It has been
shown in [12] that dccm

µ,m0
is a distance-like function (satisfying (D1), (D2), and (D3)), and:

(M4) [Stability] For probability measures µ and ν on Rd and m0 > 0, then ‖dccm
µ,m0

−
dccm
ν,m0
‖∞ ≤ 1√

m0
W2(µ, ν), where W2 is the Wasserstein distance [56].

Given a point set P , the sublevel sets of dccm
µP ,m0

can be described as the union of balls
[35], and then one can algorithmically estimate the topology (e.g., persistence diagram) with
weighted alpha-shapes [35] and weighted Rips complexes [7].

1.3 Our Results
We show how to estimate the topology (e.g., approximate persistence diagrams, infer homotopy
of compact sets) using superlevel sets of the kernel density estimate of a point set P . We
accomplish this by showing that a similar set of properties hold for the kernel distance with
respect to a measure µ, (in place of distance to a measure dccm

µ,m0
), defined as

dKµ (x) = DK(µ, x) =
√
κ(µ, µ) + κ(x, x)− 2κ(µ, x).
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This treats x as a probability measure represented by a Dirac mass at x. Specifically, we
show dKµ is distance-like (it satisfies (D1), (D2), and (D3)), so it inherits reconstruction
properties of dccm

µ,m0
. Moreover, it is stable with respect to the kernel distance:

(K4) [Stability] If µ and ν are two measures on Rd, then ‖dKµ − dKν ‖∞ ≤ DK(µ, ν).

In addition, we show how to construct these topological estimates for dKµ using weighted
Rips complexes, following power distance machinery introduced in [7].

We also describe further advantages of the kernel distance. (i) Its sublevel sets conveniently
map to the superlevel sets of a kernel density estimate. (ii) It is Lipschitz with respect
to the smoothing parameter σ when the input x is fixed. (iii) As σ tends to ∞ for any
two probability measures µ, ν, the kernel distance is bounded by the Wasserstein distance:
limσ→∞DK(µ, ν) ≤ W2(µ, ν). (iv) It has a small coreset representation, which allows
for sparse representation and efficient, scalable computation. In particular, an ε-kernel
sample [38, 45, 58] Q of µ is a finite point set whose size only depends on ε > 0 and such that
maxx∈Rd |kdeµ(x)− kdeµQ

(x)| = maxx∈Rd |κ(µ, x)− κ(µQ, x)| ≤ ε. These coresets preserve
inference results and persistence diagrams.

2 Kernel Distance is Distance-Like

We prove dKµ satisfies (D1), (D2), and (D3); hence it is distance-like. Recall we use the
σ2-normalized Gaussian kernel Kσ(p, x) = σ2 exp(−‖p− x‖2/2σ2). For ease of exposition,
unless otherwise noted, we will assume σ is fixed and write K instead of Kσ.

2.1 Semiconcave Property for dKµ
I Lemma 2 (D2). (dKµ )2 is 1-semiconcave: the map x 7→ (dKµ (x))2 − ‖x‖2 is concave.

Proof. Let T (x) = (dKµ (x))2 − ‖x‖2. The proof will show that the second derivative of T
along any direction is nonpositive. We can rewrite

T (x) = κ(µ, µ) + κ(x, x)− 2κ(µ, x)− ‖x‖2

= κ(µ, µ) + κ(x, x)−
∫
p∈Rd

(2K(p, x) + ‖x‖2)dµ(p).

Note that both κ(µ, µ) and κ(x, x) are absolute constants, so we can ignore them in the
second derivative. Furthermore, by setting t(p, x) = −2K(p, x)− ‖x‖2, the second derivative
of T (x) is nonpositive if the second derivative of t(p, x) is nonpositive for all p, x ∈ Rd. First
note that the second derivative of −‖x‖2 is a constant −2 in every direction. The second
derivative of K(p, x) is symmetric about p, so we can consider the second derivative along
any vector u = x− p,

d2

du2 t(p, x) = 2
(
‖u‖2

σ2 − 1
)

exp
(
−‖u‖

2

2σ2

)
− 2.

This reaches its maximum value at ‖u‖ = ‖x− p‖ =
√

3σ where it is 4 exp(−3/2)− 2 ≈ −1.1;
this follows by setting the derivative of s(y) = 2(y − 1) exp(−y/2) − 2 to 0, ( d

dy s(y) =
(1/2)(3− y) exp(−y/2)), substituting y = ‖u‖2/σ2. J

2.2 Lipschitz Property for dKµ
We generalize a (folklore, see [12]) relation between semiconcave and Lipschitz functions. A
function f is `-semiconcave if the function T (x) = (f(x))2 − `‖x‖2 is concave.

SoCG’15



862 Geometric Inference on Kernel Density Estimates

I Lemma 3. Consider a twice-differentiable function g and a parameter ` ≥ 1. If (g(x))2 is
`-semiconcave, then g(x) is `-Lipschitz.

We can now state the following lemma as a corollary of Lemma 2 and Lemma 3.

I Lemma 4 (D1). dKµ is 1-Lipschitz on its input.

2.3 Properness of dKµ
Finally, for dKµ to be distance-like, we need to show it is proper when its range is restricted
to be less than cµ :=

√
κ(µ, µ) + κ(x, x). This is required for a distance-like version ([12],

Proposition 4.2) of the Isotopy Lemma ([34], Proposition 1.8). Here, the value of cµ depends
on µ not on x since κ(x, x) = K(x, x) = σ2.

I Lemma 5 (D3). dKµ is proper.

We delay the proof to the full version [47]. The main technical difficulty comes in
mapping standard definitions and approaches for distance functions to our function dKµ with
a restricted range. We use two more general, but equivalent definitions of a proper map and
the notion of escape to infinity. Specifically, a sequence {pi} in X escapes to infinity if for
every compact set G ⊂ X, there are at most finitely many values of i for which pi ∈ G ([39],
page 46).

By the definition of properness, Lemma 5 implies that it is a closed map and its levelset
at any value a ∈ [0, cµ) is compact. This also means that the sublevel set of dKµ (for ranges
[0, a) ⊂ [0, cµ)) is compact. Since the levelset (sublevel set) of dKµ corresponds to the levelset
(superlevel set) of kdeµ, we have the following corollary.

I Corollary 6. The superlevel sets of kdeµ for all ranges with threshold a > 0, are compact.

The result in [25] shows that given a measure µP defined by a point set P of size n, the
kdeµP

has polynomial in n modes; hence the superlevel sets of kdeµP
are compact in this

setting. The above corollary is a more general statement as it holds for any measure.

3 Power Distance using Kernel Distance

A power distance using dKµ is defined with a point set P ⊂ Rd and a metric d(·, ·) on Rd,

fP (µ, x) =
√

min
p∈P

(
d(p, x)2 + dKµ (p)2

)
.

A point x ∈ Rd takes the distance under d(p, x) to the closest p ∈ P , plus a weight from
dKµ (p); thus a sublevel set of fP (µ, ·) is defined by a union of balls. We consider a particular
choice of the distance d(p, x) := DK(p, x) which leads to a kernel version of power distance

fk
P (µ, x) =

√
min
p∈P

(
DK(p, x)2 + dKµ (p)2

)
.

In Section 4.2 we use fk
P (µ, x) to adapt the construction introduced in [7] to approximate

the persistence diagram of the sublevel sets of dKµ , using a weighted Rips filtration of fk
P (µ, x).

Given a measure µ, let p+ = arg maxq∈Rd κ(µ, q), and let P+ ⊂ Rd be a point set that
contains p+. We show below, in Theorem 11 and Theorem 8, that 1√

2d
K
µ (x) ≤ fk

P+
(µ, x) ≤

√
14dKµ (x). However, constructing p+ exactly seems quite difficult.
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Now consider an empirical measure µP defined by a point set P . We show (in the full
version [47]) how to construct a point p̂+ (that approximates p+) such that DK(P, p̂+) ≤
(1 + δ)DK(P, p+) for any δ > 0. For a point set P , the median concentration ΛP is a radius
such that no point p ∈ P has more than half of the points of P within ΛP , and the spread βP
is the ratio between the longest and shortest pairwise distances. The runtime is polynomial
in n and 1/δ assuming βP is bounded, and that σ/ΛP and d are constants.

Then we consider P̂+ = P ∪ {p̂+}, where p̂+ is found with δ = 1/2 in the above
construction. Then we can provide the following multiplicative bound, proven in Theorem
12. The lower bound holds independent of the choice of P as shown in Theorem 8.

I Theorem 7. For any point set P ⊂ Rd and point x ∈ Rd, with empirical measure µP
defined by P , then 1√

2
dKµP

(x) ≤ fk
P̂+

(µP , x) ≤
√

71dKµP
(x).

3.1 Kernel Power Distance for a Measure µ
First consider the case for a kernel power distance fk

P (µ, x) where µ is an arbitrary measure.

I Theorem 8. For measure µ, point set P ⊂ Rd, and x ∈ Rd, DK(µ, x) ≤
√

2fk
P (µ, x).

Proof. Let p = arg minq∈P
(
DK(q, x)2 +DK(µ, q)2). Then we can use the triangle inequality

and (DK(µ, p)−DK(p, x))2 ≥ 0 to show

DK(µ, x)2 ≤ (DK(µ, p) +DK(p, x))2 ≤ 2(DK(µ, p)2 +DK(p, x)2) = 2fk
P (µ, x)2. J

I Lemma 9. For measure µ, point set P ⊂ Rd, point p ∈ P , and point x ∈ Rd then
fk
P (µ, x)2 ≤ 2DK(µ, x)2 + 3DK(p, x)2.

Proof. Again, we can reach this result with the triangle inequality.

fk
P (µ, x)2 ≤ DK(µ, p)2 +DK(p, x)2

≤ (DK(µ, x) +DK(p, x))2 +DK(p, x)2

≤ 2DK(µ, x)2 + 3DK(p, x)2. J

Recall the definition of a point p+ = arg maxq∈Rd κ(µ, q).

I Lemma 10. For any measure µ and point x, p+ ∈ Rd we have DK(p+, x) ≤ 2DK(µ, x).

Proof. Since x is a point in Rd, κ(µ, x) ≤ κ(µ, p+) and thus DK(µ, x) ≥ DK(µ, p+). Then by
triangle inequality of DK to see that DK(p+, x) ≤ DK(µ, x) +DK(µ, p+) ≤ 2DK(µ, x). J

I Theorem 11. For any measure µ in Rd and any point x ∈ Rd, using the point p+ =
arg maxq∈Rd κ(µ, q) then fk

{p+}(µ, x) ≤
√

14DK(µ, x).

Proof. Combine Lemma 9 and Lemma 10 as

fk
{p+}(µ, x)2 ≤ 2DK(µ, x)2 +3DK(p+, x)2 ≤ 2DK(µ, x)2 +3(4DK(µ, x)2) = 14DK(µ, x)2.J

We now need two properties of the point set P to reach our bound, namely, the spread
βP and the median concentration ΛP . Typically log(βP ) is not too large, and it makes sense
to choose σ so σ/ΛP ≤ 1, or at least σ/ΛP = O(1).

I Theorem 12. Consider any point set P ⊂ Rd of size n, with measure µP , spread βP , and
median concentration ΛP . We can construct a point set P̂+ = P ∪ p̂+ in O(n2((σ/ΛP δ)d +
log(β)) time such that for any point x, fk

P̂+
(µP , x) ≤

√
71DK(µP , x).

SoCG’15



864 Geometric Inference on Kernel Density Estimates

Proof. We use a result from the full version [47] to find a point p̂+ such that DK(P, p̂+) ≤
(3/2)DK(P, p+) in the stated runtime. Thus for any x ∈ Rd, using the triangle inequality

DK(p̂+, x) ≤ DK(p̂+, p+) +DK(p+, x) ≤ DK(µP , p̂+) +DK(µP , p+) +DK(p+, x)
≤ (5/2)DK(µP , p+) +DK(p+, x).

Now combine this with Lemma 9 and Lemma 10 as

fk
P̂+

(µP , x)2 ≤ 2DK(µP , x)2 + 3DK(p̂+, x)2

≤ 2DK(µP , x)2 + 3((5/2)DK(µP , x) +DK(p+, x))2

≤ 2DK(µP , x)2 + 3((25/4) + (5/2))DK(µP , x)2 + (1 + 5/2)DK(p+, x)2)
= (113/4)DK(µP , x)2 + (21/2)DK(p+, x)2

≤ (113/4)DK(µP , x)2 + (21/2)(4DK(µP , x)2) < 71DK(µP , x)2. J

4 Reconstruction and Topological Estimation using Kernel Distance

Now applying distance-like properties from Section 2 and the power distance properties of
Section 3 we can apply known reconstruction results to the kernel distance.

4.1 Homotopy Equivalent Reconstruction using dKµ
We have shown that the kernel distance function dKµ is a distance-like function. Therefore
the reconstruction theory for a distance-like function [12] holds in the setting of dKµ . We
state the following two corollaries for completeness, whose proofs follow from the proofs
of Proposition 4.2 and Theorem 4.6 in [12]. Before their formal statement, we need some
notation adapted from [12] to make these statements precise. Let φ : Rd → R+ be a distance-
like function. A point x ∈ Rd is an α-critical point if φ2(x+ h) ≤ φ2(x) + 2α‖h‖φ(x) + ‖h‖2
with α ∈ [0, 1], ∀h ∈ Rd. Let (φ)r = {x ∈ Rd | φ(x) ≤ r} denote the sublevel set of φ, and
let (φ)[r1,r2] = {x ∈ Rd | r1 ≤ φ(x) ≤ r2} denote all points at levels in the range [r1, r2]. For
α ∈ [0, 1], the α-reach of φ is the maximum r such that (φ)r has no α-critical point, denoted
as reachα(φ). When α = 1, reach1 coincides with reach introduced in [31].

I Theorem 13 (Isotopy lemma on dKµ ). Let r1 < r2 be two positive numbers such that dKµ has
no critical points in (dKµ )[r1,r2]. Then all the sublevel sets (dKµ )r are isotopic for r ∈ [r1, r2].

I Theorem 14 (Reconstruction on dKµ ). Let dKµ and dKν be two kernel distance functions
such that ‖dKµ − dKν ‖∞ ≤ ε. Suppose reachα(dKµ ) ≥ R for some α > 0. Then ∀r ∈
[4ε/α2, R− 3ε], and ∀η ∈ (0, R), the sublevel sets (dKµ )η and (dKν )r are homotopy equivalent
for ε ≤ R/(5 + 4/α2).

4.2 Constructing Topological Estimates using dKµ
In order to actually construct a topological estimate using the kernel distance dKµ , one needs
to be able to compute quantities related to its sublevel sets, in particular, to compute the
persistence diagram of the sub-level sets filtration of dKµ . Now we describe such tools needed
for the kernel distance based on machinery recently developed by Buchet et al. [7], which
shows how to approximate the persistent homology of distance-to-a-measure for any metric
space via a power distance construction. Then using similar constructions, we can use the
weighted Rips filtration to approximate the persistence diagram of the kernel distance.
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To state our results, first we require some technical notions and assume basic knowledge
on persistent homology (see [26, 27] for a readable background). Given a metric space X with
the distance dX(·, ·), a set P ⊆ X and a function w : P → R, the (general) power distance f
associated with (P,w) is defined as f(x) =

√
minp∈P (dX(p, x)2 + w(p)2). Now given the set

(P,w) and its corresponding power distance f , one could use the weighted Rips filtration
to approximate the persistence diagram of w. Consider the sublevel set of f , f−1((−∞, α]).
It is the union of balls centered at points p ∈ P with radius rp(α) =

√
α2 − w(p)2 for each

p. The weighted Čech complex Cα(P,w) for parameter α is the union of simplices s such
that

⋂
p∈sB(p, rp(α)) 6= 0. The weighted Rips complex Rα(P,w) for parameter α is the

maximal complex whose 1-skeleton is the same as Cα(P,w). The corresponding weighted
Rips filtration is denoted as {Rα(P,w)}.

Setting w := dKµP
and given point set P̂+ described in Section 3, consider the weighted Rips

filtration {Rα(P̂+, d
K
µ )} based on the kernel power distance, fk

P̂+
. We view the persistence

diagrams on a logarithmic scale, that is, we change coordinates of points following the
mapping (x, y) 7→ (ln x, ln y). dln

B denotes the corresponding bottleneck distance between
persistence diagrams. We show in the full version [47] that persistence diagrams Dgm(dKµP

)
and Dgm({Rα(P̂+, d

K
µP

)})) follow technical tameness conditions and are well-defined. We
now state a corollary of Theorem 7.

I Corollary 15. The weighted Rips filtration {Rα(P̂+, d
K
µP

)} can be used to approximate the
persistence diagram of dKµP

such that dln
B(Dgm(dKµP

),Dgm({Rα(P̂+, d
K
µP

)})) ≤ ln(2
√

71).

Proof. To prove that two persistence diagrams are close, one could prove that their filtration
are interleaved [9], that is, two filtrations {Uα} and {Vα} are ε-interleaved if for any α,
Uα ⊆ Vα+ε ⊆ Uα+2ε. The results of Theorem 7 implies an

√
71 multiplicative interleaving.

Therefore for any α ∈ R,

(dKµP
)−1((−∞, α]) ⊂ (fk

P̂+
)−1((−∞,

√
2α) ⊂ (dKµP

)−1((−∞,
√

71
√

2α]).

On a logarithmic scale (by taking the natural log of both sides), such interleaving becomes
addictive,

ln dKµP
−
√

2 ≤ ln fk
P̂+
≤ ln dKµP

+
√

71.

Theorem 4 of [13] implies

dln
B(Dgm(dKµP

),Dgm(fk
P̂+

)) ≤
√

71.

In addition, by the Persistent Nerve Lemma ([19], Theorem 6 of [51], an extension of the
Nerve Theorem [36]), the sublevel sets filtration of dKµ , which correspond to unions of balls
of increasing radius, has the same persistent homology as the nerve filtration of these balls
(which, by definition, is the Čech filtration). Finally, there exists a multiplicative interleaving
between weighted Rips and Čech complexes (Proposition 31 of [13]), Cα ⊆ Rα ⊆ C2α. We
then obtain the following bounds on persistence diagrams,

dln
B(Dgm(fk

P+
),Dgm({Rα(P+, d

K
µP

)})) ≤ ln(2).

We use triangle inequality to obtain the final result:

dln
B(Dgm(dKµP

),Dgm({Rα(P+, d
K
µP

)})) ≤ ln(2
√

71). J

Based on Corollary 15, we have an algorithm that approximates the persistent homology
of the sublevel set filtration of dKµ by constructing the weighted Rips filtration corresponding
to the kernel-based power distance and computing its persistent homology.

SoCG’15
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4.3 Distance to the Support of a Measure vs. Kernel Distance
Suppose µ is a uniform measure on a compact set S in Rd. We now compare the kernel distance
dKµ with the distance function fS to the support S of µ. We show how dKµ approximates fS ,
and thus allows one to infer geometric properties of S from samples from µ.

A generalized gradient and its corresponding flow associated with a distance function are
described in [11] and later adapted for distance-like functions in [12]. Let fS : Rd → R be
a distance function associated with a compact set S of Rd. It is not differentiable on the
medial axis of S. A generalized gradient function ∇S : Rd → Rd coincides with the usual
gradient of fS where fS is differentiable, and is defined everywhere and can be integrated
into a continuous flow Φt : Rd → Rd that points away from S. Let γ be an integral (flow)
line. The following technical lemma is proved in the full version [47].

I Lemma 16. Given any flow line γ associated with the generalized gradient function ∇S,
dKµ (x) is strictly monotonically increasing along γ for x sufficiently far away from the medial
axis of S, for σ ≤ R

6∆G
and fS(x) ∈ (0.014R, 2σ). Here B(σ/2) denotes a ball of radius σ/2,

G := Vol(B(σ/2))
Vol(S) , ∆G :=

√
12 + 3 ln(4/G) and suppose R := min(reach(S), reach(Rd\S)) > 0.

The strict monotonicity of dKµ along the flow line under the conditions in Lemma 16
makes it possible to define a deformation retract of the sublevel sets of dKµ onto sublevel sets
of fS . Such a deformation retract defines a special case of homotopy equivalence between
the sublevel sets of dKµ and sublevel sets of fS . Consider a sufficiently large point set P ∈ Rd
sampled from µ, and its induced measure µP . We can then also invoke Theorem 14 and a
sampling bound (see Section 6) to show homotopy equivalence between the sublevel sets of
fS and dKµP

.

5 Stability Properties for the Kernel Distance to a Measure

I Lemma 17 (K4). For two measures µ and ν on Rd we have ‖dKµ − dKν ‖∞ ≤ DK(µ, ν).

Proof. Since DK(·, ·) is a metric, then by triangle inequality, for any x ∈ Rd we have
DK(µ, x) ≤ DK(µ, ν) +DK(ν, x) and DK(ν, x) ≤ DK(ν, µ) +DK(µ, x). Therefore for any
x ∈ Rd we have |DK(µ, x)−DK(ν, x)| ≤ DK(µ, ν), proving the claim. J

Both the Wasserstein and kernel distance are integral probability metrics [54], so (M4)
and (K4) are both interesting, but not easily comparable. We now attempt to reconcile this.

5.1 Comparing DK to W2

I Lemma 18. There is no Lipschitz constant γ such that for any two probability measures µ
and ν we have W2(µ, ν) ≤ γDK(µ, ν).

Proof. Consider two measures µ and ν which are almost identical: the only difference is some
mass of measure τ is moved from its location in µ a distance n in ν. The Wasserstein distance
requires a transportation plan that moves this τ mass in ν back to where it was in µ with
cost τ · Ω(n) in W2(µ, ν). On the other hand, DK(µ, ν) =

√
κ(µ, µ) + κ(ν, ν)− 2κ(µ, ν) ≤√

σ2 + σ2 − 2 · 0 =
√

2σ is bounded. J

We conjecture for any two probability measures µ and ν that DK(µ, ν) ≤W2(µ, ν). This
would show that dKµ is at least as stable as dccm

µ,m0
since a bound on W2(µ, ν) would also
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bound DK(µ, ν), but not vice versa. We leave much of the technical details from this section
to the full version [47]. We start with a special case.

I Lemma 19. Consider two probability measures µ and ν on Rd where ν is represented by a
Dirac mass at a point x ∈ Rd. Then dKµ (x) = DK(µ, ν) ≤W2(µ, ν) for any σ > 0, where the
equality only holds when µ is also a Dirac mass at x.

Next we show that if ν is not a unit Dirac, then this inequality holds in the limit as σ
goes to infinity. The technical work is making precise how σ2 −K(p, x) ≤ ‖x− p‖2/2 and
how this compares to bounds on DK(µ, ν) and W2(µ, ν).

I Lemma 20. For any p, q ∈ Rd we have K(p, q) = σ2 − ‖p− q‖
2

2 +
∞∑
i=2

(−‖p− q‖2)i

2i+1σ2i−2i! .

Proof. We use the Taylor expansion of ex =
∑∞
i=0 x

i/i! = 1 + x +
∑∞
i=2 x

i/i!. Then it is
easy to see

K(p, q) = σ2 exp
(
−‖p− q‖

2

2σ2

)
= σ2 − ‖p− q‖

2

2 +
∞∑
i=2

(−‖p− q‖2)i

2iσ2i−2i! . J

This lemma illustrates why the choice of coefficient of σ2 is convenient. Since then
σ2 −K(p, q) acts like 1

2‖p− q‖
2, and becomes closer as σ increases. Define µ̄ =

∫
p
p · dµ(p)

to represent the mean point of measure µ.

I Theorem 21. For any two probability measures µ and ν defined on Rd lim
σ→∞

DK(µ, ν) =
‖µ̄− ν̄‖ and ‖µ̄− ν̄‖ ≤W2(µ, ν). Thus limσ→∞DK(µ, ν) ≤W2(µ, ν).

5.2 Kernel Distance Stability with Respect to σ
We now explore the Lipschitz properties of dKµ with respect to the noise parameter σ. We
argue any distance function that is robust to noise needs some parameter to address how
many outliers to ignore or how far away a point is to be considered as an outlier. Such a
parameter in dccm

µ,m0
is m0 which controls the amount of measure µ to be used in the distance.

Here we show that dKµ has a particularly nice property, that it is Lipschitz with respect
to the choice of σ for any fixed x. Many details are deferred to the full version [47].

I Lemma 22. Let h(σ, z) = exp(−z2/2σ2). We can bound h(σ, z) ≤ 1, d
dσh(σ, z) ≤ (2/e)/σ

and d2

dσ2h(σ, z) ≤ (18/e3)/σ2 over any choice of z > 0.

I Theorem 23. For any measure µ defined on Rd and x ∈ Rd, dKµ (x) is `-Lipschitz with
respect to σ, for ` = 18/e3 + 8/e+ 2 < 6.

Proof. (Sketch) Recall that mµ,ν is the product measure of any µ and ν. Define Mµ,ν as
Mµ,ν(p, q) = mµ,µ(p, q) + mν,ν(p, q)− 2mµ,ν(p, q). It is useful to define a function fx(σ) as

fx(σ) =
∫

(p,q)
exp

(
−‖p− q‖2

2σ2

)
dMµ,δx

(p, q)

F (σ) = (dKµ (x))2 − `‖σ‖2 = σ2fx(σ)− `σ2.

Now dKµ (x) = σ
√
fx(σ). Now to prove dKµ (x) is `-Lipschitz, we can show that (dKµ )2 is

`-semiconcave with respect to σ, and apply Lemma 3. This boils down to showing the second
derivative of F (σ) is always non-positive.

d2

dσ2F (σ) = σ2 d2

dσ2 fx(σ) + 4σ d
dσfx(σ) + 2fx(σ)− 2`.

SoCG’15



868 Geometric Inference on Kernel Density Estimates

First we note that for any distribution µ and Dirac delta that
∫

(p,q) c · dMµ,δx(p, q) ≤ 2c.

Thus since exp
(
−‖p−q‖2

2σ2

)
is in [0, 1] for all choices of p, q, and σ > 0, then 0 ≤ fx(σ) ≤ 2

and 2fx(σ) ≤ 4. This bounds the third term in d2

dσ2F (σ), we now need to use a similar
approach to bound the first and second terms. Using Lemma 22 to obtain

d2

dσ2F (σ) ≤ 36/e3 + 16/e+ 4− 2(18/e3 + 8/e+ 2) = 0. J

Lipschitz in m0 for dccmµ,m0
. There is no Lipschitz property for dccm

µ,m0
, with respect to m0,

independent of µ. Consider a measure µP for point set P ⊂ R consisting of two points at
a = 0 and at b = ∆. When m0 = 1/2 + α for α > 0, then dccm

µP ,m0
(a) = α∆/(1/2 + α) and

d
dm0

dccm
µP ,m0

(a) = d
dαd

ccm
µP ,

1
2 +α(a) = (1/2+2α)∆

(1/2+α)2 , which is maximized as α approaches 0 with an
infimum of 2∆. Hence the Lipschitz constant for dccm

µP ,m0
with respect to m0 is 2∆P where

∆P = maxp,p′∈P ‖p− p′‖.

6 Algorithmic and Approximation Observations

Kernel coresets. The kernel distance is robust under random samples [38]. Specifically, if Q
is a point set randomly chosen from µ of size O((1/ε2)(d+log(1/δ)) then ‖kdeµ−kdeQ‖∞ ≤ ε
with probability at least 1 − δ. We call such a subset Q and ε-kernel sample of (µ,K).
Furthermore, it is also possible to construct ε-kernel samples Q with even smaller size
of |Q| = O(((1/ε)

√
log(1/εδ))2d/(d+2)) [45]; in particular in R2 the required size is |Q| =

O((1/ε)
√

log(1/εδ)). Exploiting the above constructions, recent work [58] builds a data
structure to allow for efficient approximate evaluations of kdeP where |P | = 100,000,000.

These constructions of Q also immediately imply that ‖(dKµ )2 − (dKQ )2‖∞ ≤ 4ε since
(dKµ (x))2 = κ(µ, µ) + κ(x, x)− 2kdeµ(x), and both the first and third term incur at most 2ε
error in converting to κ(Q,Q) and 2kdeQ(x), respectively. Thus, an (ε2/4)-kernel sample Q
of (µ,K) implies that ‖dKµ − dKQ‖∞ ≤ ε.

This implies algorithms for geometric inference on enormous noisy data sets, or when
input Q is assumed to be drawn iid from an unknown distribution µ.

I Corollary 24. Consider a measure µ defined on Rd, a kernel K, and a parameter ε ≤
R(5 + 4/α2). We can create a coreset Q of size |Q| = O(((1/ε2)

√
log(1/εδ))2d/(d+2)) or

randomly sample |Q| = O((1/ε4)(d+ log(1/δ))) points so, with probability at least 1− δ, any
sublevel set (dKµ )η is homotopy equivalent to (dKQ )r for r ∈ [4ε/α2, R− 3ε] and η ∈ (0, R).

Stability of persistence diagrams. Furthermore, the stability results on persistence dia-
grams [20] hold for kernel density estimates and kernel distance of µ and Q (where Q is a core-
set of µ with the same size bounds as above). If ‖f−g‖∞ ≤ ε, then dB(Dgm(f),Dgm(g)) ≤ ε,
where dB is the bottleneck distance between persistence diagrams.

I Corollary 25. Consider a measure µ defined on Rd and a kernel K. We can create a core
set Q of size |Q| = O(((1/ε)

√
log(1/εδ))2d/(d+2)) or randomly sample |Q| = O((1/ε2)(d +

log(1/δ))) points which will have the following properties with probability at least 1− δ.
dB(Dgm(kdeµ),Dgm(kdeQ)) ≤ ε.
dB(Dgm((dKµ )2),Dgm((dKQ )2)) ≤ ε.

I Corollary 26. Consider a measure µ defined on Rd and a kernel K. We can create a core
set Q of size |Q| = O(((1/ε2)

√
log(1/εδ))2d/(d+2)) or randomly sample |Q| = O((1/ε4)(d+

log(1/δ))) points which will have the following property with probability at least 1− δ.
dB(Dgm(dKµ ),Dgm(dKQ )) ≤ ε.
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Another bound was independently derived to show an upper bound on the size of a
random sample Q such that dB(Dgm(kdeµP

),Dgm(kdeQ)) ≤ ε in [2]; this can, as above, also
be translated into bounds for Dgm((dKQ )2) and Dgm(dKQ ). This result assumes P ⊂ [−C,C]d
and is parametrized by a bandwidth parameter h that retains that

∫
x∈Rd Kh(x, p)dx = 1 for

all p using that K1(‖x− p‖) = K(x, p) and Kh(‖x− p‖) = 1
hdK1(‖x− p‖2/h). This ensures

that K(·, p) is (1/hd)-Lipschitz and that K(x, x) = Θ(1/hd) for any x. Then their bound
requires |Q| = O( d

ε2hd log( Cdεδh )) random samples.
To compare directly against the random sampling result we derive from Joshi et al. [38],

for kernel Kh(x, p) then ‖kdeµP
−kdeQ‖∞ ≤ εKh(x, x) = ε/hd. Hence, our analysis requires

|Q| = O((1/ε2h2d)(d+ log(1/δ))), and is an improvement when h = Ω(1) or C is not known
or bounded, as well as in some other cases as a function of ε, h, δ, and d.
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