2,796 research outputs found

    The Complexity of Simultaneous Geometric Graph Embedding

    Full text link
    Given a collection of planar graphs G1,,GkG_1,\dots,G_k on the same set VV of nn vertices, the simultaneous geometric embedding (with mapping) problem, or simply kk-SGE, is to find a set PP of nn points in the plane and a bijection ϕ:VP\phi: V \to P such that the induced straight-line drawings of G1,,GkG_1,\dots,G_k under ϕ\phi are all plane. This problem is polynomial-time equivalent to weak rectilinear realizability of abstract topological graphs, which Kyn\v{c}l (doi:10.1007/s00454-010-9320-x) proved to be complete for R\exists\mathbb{R}, the existential theory of the reals. Hence the problem kk-SGE is polynomial-time equivalent to several other problems in computational geometry, such as recognizing intersection graphs of line segments or finding the rectilinear crossing number of a graph. We give an elementary reduction from the pseudoline stretchability problem to kk-SGE, with the property that both numbers kk and nn are linear in the number of pseudolines. This implies not only the R\exists\mathbb{R}-hardness result, but also a 22Ω(n)2^{2^{\Omega (n)}} lower bound on the minimum size of a grid on which any such simultaneous embedding can be drawn. This bound is tight. Hence there exists such collections of graphs that can be simultaneously embedded, but every simultaneous drawing requires an exponential number of bits per coordinates. The best value that can be extracted from Kyn\v{c}l's proof is only 22Ω(n)2^{2^{\Omega (\sqrt{n})}}

    Combinatorial geometry of neural codes, neural data analysis, and neural networks

    Full text link
    This dissertation explores applications of discrete geometry in mathematical neuroscience. We begin with convex neural codes, which model the activity of hippocampal place cells and other neurons with convex receptive fields. In Chapter 4, we introduce order-forcing, a tool for constraining convex realizations of codes, and use it to construct new examples of non-convex codes with no local obstructions. In Chapter 5, we relate oriented matroids to convex neural codes, showing that a code has a realization with convex polytopes iff it is the image of a representable oriented matroid under a neural code morphism. We also show that determining whether a code is convex is at least as difficult as determining whether an oriented matroid is representable, implying that the problem of determining whether a code is convex is NP-hard. Next, we turn to the problem of the underlying rank of a matrix. This problem is motivated by the problem of determining the dimensionality of (neural) data which has been corrupted by an unknown monotone transformation. In Chapter 6, we introduce two tools for computing underlying rank, the minimal nodes and the Radon rank. We apply these to analyze calcium imaging data from a larval zebrafish. In Chapter 7, we explore the underlying rank in more detail, establish connections to oriented matroid theory, and show that computing underlying rank is also NP-hard. Finally, we study the dynamics of threshold-linear networks (TLNs), a simple model of the activity of neural circuits. In Chapter 9, we describe the nullcline arrangement of a threshold linear network, and show that a subset of its chambers are an attracting set. In Chapter 10, we focus on combinatorial threshold linear networks (CTLNs), which are TLNs defined from a directed graph. We prove that if the graph of a CTLN is a directed acyclic graph, then all trajectories of the CTLN approach a fixed point.Comment: 193 pages, 69 figure

    Packing Plane Perfect Matchings into a Point Set

    Full text link
    Given a set PP of nn points in the plane, where nn is even, we consider the following question: How many plane perfect matchings can be packed into PP? We prove that at least log2n2\lceil\log_2{n}\rceil-2 plane perfect matchings can be packed into any point set PP. For some special configurations of point sets, we give the exact answer. We also consider some extensions of this problem

    Helly meets Garside and Artin

    Get PDF
    A graph is Helly if every family of pairwise intersecting combinatorial balls has a nonempty intersection. We show that weak Garside groups of finite type and FC-type Artin groups are Helly, that is, they act geometrically on Helly graphs. In particular, such groups act geometrically on spaces with convex geodesic bicombing, equipping them with a nonpositive-curvature-like structure. That structure has many properties of a CAT(0) structure and, additionally, it has a combinatorial flavor implying biautomaticity. As immediate consequences we obtain new results for FC-type Artin groups (in particular braid groups and spherical Artin groups) and weak Garside groups, including e.g.\ fundamental groups of the complements of complexified finite simplicial arrangements of hyperplanes, braid groups of well-generated complex reflection groups, and one-relator groups with non-trivial center. Among the results are: biautomaticity, existence of EZ and Tits boundaries, the Farrell-Jones conjecture, the coarse Baum-Connes conjecture, and a description of higher order homological and homotopical Dehn functions. As a mean of proving the Helly property we introduce and use the notion of a (generalized) cell Helly complex.Comment: Small modifications according to the referee report, updated references. Final accepted versio
    corecore