HELLY MEETS GARSIDE AND ARTIN

JINGYIN HUANG AND DAMIAN OSAJDA

Abstract

A graph is Helly if every family of pairwise intersecting combinatorial balls has a nonempty intersection. We show that weak Garside groups of finite type and FC-type Artin groups are Helly, that is, they act geometrically on Helly graphs. In particular, such groups act geometrically on spaces with convex geodesic bicombing, equipping them with a nonpositive-curvature-like structure. That structure has many properties of a CAT(0) structure and, additionally, it has a combinatorial flavor implying biautomaticity. As immediate consequences we obtain new results for FC-type Artin groups (in particular braid groups and spherical Artin groups) and weak Garside groups, including e.g. fundamental groups of the complements of complexified finite simplicial arrangements of hyperplanes, braid groups of well-generated complex reflection groups, and one-relator groups with non-trivial center. Among the results are: biautomaticity, existence of EZ and Tits boundaries, the Farrell-Jones conjecture, the coarse Baum-Connes conjecture, and a description of higher order homological and homotopical Dehn functions. As a means of proving the Helly property we introduce and use the notion of a (generalized) cell Helly complex.

Contents

1. Introduction 2]
1.1. Main result 2
1.2. Consequences of the Main Theorem 3
1.3. Details and comments on items in Corollary 4
1.4. Sketch of the proof of the main result 7
1.5. Organization of the paper 7
1.6. Acknowledgments 7
2. Preliminaries 8
2.1. Lattices 8
2.2. Artin groups and Coxeter groups 8
2.3. Davis complexes and oriented Coxeter cells 9
2.4. Salvetti complexes 11
3. Helly graphs and cell-Helly complexes 13
4. Weak Garside groups act on Helly graphs 17
4.1. Basic properties of Garside categories 17
4.2. Garside groups are Helly 20

[^0]5. Artin groups and Helly graphs 23
5.1. Helly property for cells in X_{Γ}
5.2. Artin groups of type FC act on Helly graphs 25

References 26

1. Introduction

1.1. Main result. In this article we design geometric models for Artin groups and Garside groups, which are two generalizations of braid groups.

Among the vast literature on these two classes of groups, we are particularly inspired by the results concerning the Garside structure, rooted in Gar69, Del72, BS72, and the small cancellation structure for certain Artin groups, exhibited in AS83, App84, Pri86. These two aspects actually have interesting interactions, yielding connections with injective metric spaces and Helly graphs.

For geodesic metric spaces, being injective (or, in other words, hyperconvex or having the binary intersection property) can be characterized as follows: any collection of pairwise intersecting closed metric balls has a nonempty intersection. The graph-theoretic analogues of injective metric spaces are called Helly graphs (Definition 3.1). Groups acting on injective metric spaces were studied in Lan13, DL16], leading to a number of results parallel to the CAT(0) setting DL15, Des16, Mie17]. The article [CCG ${ }^{+} 20$ initiates the studies of Helly groups, that is, groups acting properly and cocompactly by graph automorphisms (i.e., geometrically) on Helly graphs.

Main Theorem. Weak Garside groups of finite type and Artin groups of type FC are Helly.

The Main Theorem should be seen as providing geometric models for groups in question with nonpositive-curvature-like structure. Consequences of this theorem are explained in Section 1.2.

See Section 4.1 and Section 2.2 for the definitions of weak Garside groups and Artin groups. Examples of (weak) Garside groups of finite type include:
(1) fundamental groups of the complements of complexified finite simplicial arrangements of hyperplanes (Del72;
(2) spherical Artin groups Del72 BS72;
(3) braid groups of well-generated complex reflection groups Bes15;
(4) structure groups of non-degenerate, involutive and braided set-theoretical solutions of the quantum Yang-Baxter equation Cho10;
(5) one-relator groups with non-trivial center and tree products of cyclic groups Pic13.
It is known that Garside groups are biautomatic Cha92, Deh02]. This suggests the non-positively curved (NPC) geometry of these groups. However, it is natural to ask for other notions of NPC for Garside groups in
order to understand problems of coarse or continuous nature and to provide more convexity than the Garside normal form does.

A few classes of Artin groups are known to be CAT(0) CD95a, BM00, Bra00, BC02, Bel05, BM10, HKS16, Hae19. This leads to the speculation that all Artin groups should be NPC. However, due to the difficulty of verifying the $\mathrm{CAT}(0)$ condition in higher dimensional situations, it is not even known whether all braid groups are $\operatorname{CAT}(0)$, though some evidences are presented in DMW18. In particular, it is widely open whether Artin groups of type FC are CAT(0).

The Main Theorem applies to a large class of Artin groups and all finite type weak Garside groups (in particular all braid groups). Though the formulation is combinatorial, it has a continuous counterpart which is very similar to CAT(0). All Helly groups act geometrically on injective metric spaces $\mathrm{CCG}^{+} 20$, which in particular have convex geodesic bicombings. The convexity one obtains here is much stronger than biautomaticity and is weaker than CAT(0). See Subsection 1.2 for details.

On the other hand the Main Theorem equips the groups with a robust combinatorial structure - the one of Helly graphs. By a result from $\left[\mathrm{CCG}^{+} 20\right]$ it implies e.g. biautomaticity - an important algorithmic property not implied by CAT(0) (see $[\mathrm{LM}]$). While allowing to deduce 'CAT(0)like' behavior as in the previous paragraph, the property of being Helly can be checked by local combinatorial conditions via a local-to-global characterization from CCHO20, see Theorem 3.2 below.

The Main Theorem also provides a higher dimensional generalization of an old result of Pride Pri86 saying that 2-dimensional Artin groups of type FC are $\mathrm{C}(4)-\mathrm{T}(4)$. The notion of cell Helly introduced in Section 3 serves as a higher dimensional counterpart of the $\mathrm{C}(4)-\mathrm{T}(4)$ small cancellation condition in the sense of Lemma 3.8 . We prove that the universal covers of the Salvetti complexes of higher dimensional Artin groups of type FC are cell Helly.

Let us note that 2-dimensional Artin groups of type FC are known to satisfy several different versions of NPC: small cancellation [Pri86], CAT(0) [BM00], systolic [HO20, HO19], quadric [Hod20, and Helly.
1.2. Consequences of the Main Theorem. In the Corollary below we list immediate consequences of being Helly, for groups as in the Main Theorem. In $\mathrm{CCG}^{+} 20$ it is shown that the class of Helly groups is closed under operations of free products with amalgamations over finite subgroups, graph products (in particular, direct products), quotients by finite normal subgroups, and (as an immediate consequence of the definition) taking finite index subgroups. Moreover, it is shown there that e.g. (Gromov) hyperbolic groups, CAT(0) cubical groups, uniform lattices in buildings of type \widetilde{C}_{n}, and graphical $\mathrm{C}(4)-\mathrm{T}(4)$ small cancellation groups are all Helly. Therefore, the results listed below in the Corollary apply to various combinations of all those classes of groups.

Except item (6) below (biautomaticity) all other results (1)-(5) are rather direct consequences of well known facts concerning injective metric spaces - see explanations in Subsection 1.3 below, and $\left[\mathrm{CCG}^{+} 20\right]$ for more details. Biautomaticity of Helly groups is one of the main results of the paper [CCG $\left.{ }^{+} 20\right]$.

Corollary. Suppose that a group G is either a weak Garside group of finite type or an Artin group of type FC. Then the following hold.
(1) G acts geometrically on an injective metric space X_{G}, and hence on a metric space with a convex geodesic bicombing. Moreover, X_{G} is a piecewise ℓ^{∞}-polyhedron complex.
(2) G admits an EZ-boundary and a Tits boundary.
(3) The Farrell-Jones conjecture with finite wreath products holds for G.
(4) The coarse Baum-Connes conjecture holds for G.
(5) The k-th order homological Dehn function and homotopical Dehn function of G are Euclidean, i.e. $f(l) \preceq l^{\frac{k+1}{k}}$.
(6) G is biautomatic.

The recent work of Kleiner and Lang KL20 provides many new insights into the asymptotic geometry of injective metric spaces. Together with (1) of the above corollary, it opens up the possibility of studying Gromov's program of quasi-isometric classification and rigidity for higher dimensional Artin groups which are not right-angled. This actually serves as one of our motivations to look for good geometric models for such groups. Previous works in this direction concern mainly the right-angled or the 2-dimensional case BN08, BJN10, Hua17, Hua16, HO, Mar.

We also present an alternative proof of the fact that the Salvetti complex for Artin groups of type FC is aspherical (see Theorem 5.8), which implies the $K(\pi, 1)$-conjecture for such groups. This has been previously established by Charney and Davis [CD95b by showing contractibility of the associated Deligne complex. Our proof does not rely on the Deligne complex.

1.3. Details and comments on items in Corollary.

(1) Injective metric spaces also known as hyperconvex metric spaces or absolute retracts (in the category of metric spaces with 1-Lipschitz maps) form an important class of metric spaces rediscovered several times in history [AP56. Isb64, Dre84] and studied thoroughly. One important feature of injective metric spaces of finite dimension is that they admit a unique convex, consistent, reversible geodesic bicombing [D15, Theorems 1.1\&1.2]. Recall that a geodesic bicombing on a metric space (X, d) is a map

$$
\sigma: X \times X \times[0,1] \rightarrow X,
$$

such that for every pair $(x, y) \in X \times X$ the function $\sigma_{x y}:=\sigma(x, y, \cdot)$ is a constant speed geodesic from x to y. We call σ convex if the function $t \mapsto d\left(\sigma_{x y}(t), \sigma_{x^{\prime} y^{\prime}}(t)\right)$ is convex for all $x, y, x^{\prime}, y^{\prime} \in X$. The bicombing σ is consistent if $\sigma_{p q}(\lambda)=\sigma_{x y}((1-\lambda) s+\lambda t)$, for all $x, y \in X, 0 \leq s \leq t \leq 1$,
$p:=\sigma_{x y}(s), q:=\sigma_{x y}(t)$, and $\lambda \in[0,1]$. It is called reversible if $\sigma_{x y}(t)=$ $\sigma_{y x}(1-t)$ for all $x, y \in X$ and $t \in[0,1]$.

It is shown in $\left[\mathrm{CCG}^{+} 20\right]$ that if a group G acts geometrically on a Helly graph Γ then it acts geometrically on an injective hull of $V(\Gamma)$ (set of vertices of Γ equipped with a path metric) - the smallest injective metric space containing isometrically $V(\Gamma)$. The proof is a straightforward consequence of the fact that the injective hull can be defined as a space of real-valued functions, the so-called metric forms Isb64, Dre84, Lan13, and similarly the smallest Helly graph containing isometrically a given graph the Helly hull - can be defined analogously using integer metric forms (see e.g. [JPM86, Section II.3]). It follows that G acts on a space with convex geodesic bicombing. Another example of a space with convex geodesic bicombing is a CAT(0) space with a combing consisting of all (unit speed) geodesics. As noted in Subsection 1.1 only in very particular cases it is possible to construct a CAT(0) space acted upon geometrically by an Artin group. We establish the existence of a slightly weaker structure in much greater generality.

Holt [Hol10] proves falsification by fellow traveller for Garside groups. It follows then from [Lan13] that such groups act properly (not necessarily cocompactly) on injective metric spaces. Garside groups have Garside normal forms, which can be thought as a combinatorial combing (not in the sense above). However, even coarsely this combing is not convex - see some further discussion in (4) below.

The properties considered in (2)-(5) below are immediate consequences of acting geometrically on a space with convex geodesic bicombing.
(2) Similarly to a CAT(0) space, an injective metric space (or, more generally, a space with convex geodesic bicombing) has a boundary at infinity, with two different topologies: the cone topology and the Tits topology [DL15, KL20]. The former gives rise to an EZ-boundary (cf. [Bes99, FL05]) of G [DL15]. The topology of an EZ-boundary reflects some algebraic properties of the group, and its existence implies e.g. the Novikov conjecture. The Tits topology is finer and provides subtle quasi-isometric invariants of G KL20. It is observed in $\mathrm{CCG}^{+} 20$ that Helly groups admit EZ-boundaries.
(3) For a discrete group G the Farrell-Jones conjecture asserts that the K-theoretic (or L-theoretic) assembly map, that is a homomorphism from a homology group of the classifying space $E_{\mathcal{V C Y}}(G)$ to a K-group (or L-group) of a group ring, is an isomorphism (see e.g. |FR00, BL12, KR17, Rou20] for details). We say that G satisfies the Farrell-Jones conjecture with finite wreath products if for any finite group F the wreath product $G \imath F$ satisfies the Farrell-Jones conjecture. It is proved in [KR17] that groups acting on spaces with convex geodesic bicombing satisfy the Farrell-Jones conjecture with finite wreath products.

The Farrell-Jones conjecture implies, for example, the Novikov Conjecture, and the Borel Conjecture in high dimensions. Farrell-Roushon FR00
established the Farrell-Jones conjecture for braid groups, Bartels-Lück [BL12] and Wegner [Weg12] proved it for CAT(0) groups (see Subsection 1.1 for examples of CAT(0) Artin groups). Recently, Roushon Rou20 established the Farrell-Jones conjecture for some (but not all) spherical and Euclidean Artin groups. His proof relies on observing that some Artin groups fit into appropriate exact sequences. After completion of the first version of the current paper Brück-Kielak-Wu BKW$]$ presented another proof of the Farrell-Jones conjecture with finite wreath products for a subclass of the class of FC type Artin groups - for even Artin groups of type FC.
(4) For a metric space X the coarse assembly map is a homomorphism from the coarse K-homology of X to the K-theory of the Roe-algebra of X. The space X satisfies the coarse Baum-Connes conjecture if the coarse assembly map is an isomorphism. A finitely generated group Γ satisfies the coarse Baum-Connes conjecture if the conjecture holds for Γ seen as a metric space with the word metric given by a finite generating set. Equivalently, the conjecture holds for Γ if a metric space (equivalently: every metric space) acted geometrically upon by Γ satisfies the conjecture. As observed in $\mathrm{CCG}^{+} 20$, it follows from the work of Fukaya-Oguni [FO20] that Helly groups satisfy the coarse Baum-Connes conjecture.

For $\mathrm{CAT}(0)$ groups the coarse Baum-Connes conjecture holds by [HR95]. Groups with finite asymptotic dimension satisfy the coarse Baum-Connes conjecture. It is shown in BF08] that braid groups as well as spherical Artin groups A_{n}, C_{n}, and Artin groups of affine type $\widetilde{A}_{n}, \widetilde{C}_{n}$ have finite asymptotic dimension.

For proving the coarse Baum-Connes conjecture in FO20 a coarse version of a convex bicombing is used. Essential there is that two geodesics in the combing with common endpoints 'converge' at least linearly. This is not true for the usual combing in Garside groups. For example, such a combing for \mathbb{Z}^{2} between points (n, n) and $(0,0)$ follows roughly the diagonal. Similarly the combing line between $(n+k, n)$ and $(0,0)$ follows roughly a diagonal for $n \gg k$. Hence, for large n, the two lines stay at roughly constant distance for a long time - this behavior is different from what is required.
(5) Higher order homological (resp. homotopical) Dehn functions measure the difficulty of filling higher dimensional cycles (resp. spheres) by chains (resp. balls), see $\mathrm{ABD}^{+} 13$, Section 2; BD19 for backgrounds. The homological case of (5) is a consequence of (1) and Wen05, see the discussion in $\mathrm{ABD}^{+} 13$, Section 2] for more details. The homotopical case of (5) follows from (1) and BD 19$]$. The Garside case of (5) has been known before as it can be deduced from the biautomaticity and [Wen05, BD19]. The Artin case of (5) is new.
(6) Biautomaticity is an important algorithmic property of a group. It implies, among others, that the Dehn function is at most quadratic, and
that the Word Problem and the Conjugacy Problem are solvable; see e.g. $\left[\mathrm{ECH}^{+} 92\right]$. It is proved in $\left[\mathrm{CCG}^{+} 20\right]$ that all Helly groups are biautomatic.

Biautomaticity of all FC-type Artin groups is new (and so is the solution of the Conjugacy Problem and bounding the Dehn function for these Artin groups). Altobelli (Alt98] showed that FC-type Artin groups are asynchronously automatic, and hence have solvable Word Problem. Biautomaticity for few classes of Artin groups was shown before by: Pride together with Gersten-Short (triangle-free Artin groups) Pri86, GS90], Charney [Cha92 (spherical), Peifer Pei96] (extra-large type), Brady-McCammond BM00 (three-generator large-type Artin groups and some generalizations), HuangOsajda HO20 (almost large-type). Weak Garside groups of finite type are biautomatic by Cha92, Deh02.
1.4. Sketch of the proof of the main result. Here we only discuss the special case of braid groups. Each braid group is the fundamental group of its Salvetti complex X. The universal cover \widetilde{X} admits a natural cellulation by Coxeter cells. The key point is that the combinatorics of how these Coxeter cells in \widetilde{X} intersect each other follows a special pattern which is a reminiscent of $\operatorname{CAT}(0)$ cube complexes (but much more general). We formulate such pattern as the definition of cell Helly complex, see Definition 3.5 and Remark 3.7. By the local-to-global characterization of Helly graphs established in [CCHO20], the proof of the main theorem reduces to showing that \widetilde{X} is cell Helly, and showing that the cell Hellyness can be further reduced to a calculation using Garside theory.
1.5. Organization of the paper. In Section 2, we provide some background on Coxeter groups and Artin groups. In Section 3, we discuss Helly graphs, introduce the notion of cell Helly complex, and present some natural examples. In Section 4, we prove the Garside case of the Main Theorem and in Section 5 we deal with the Artin group case.
1.6. Acknowledgments. J.H. thanks the Max-Planck Institute of Mathematics (Bonn), where part of this work was done, for its hospitality. J.H. also thanks R. Charney for helpful discussions on Garside groups. We would like to thank V. Chepoi, T. Fukaya, and U. Lang for comments on earlier versions of the paper. Part of the work on the paper was carried out while D.O. was visiting McGill University. We would like to thank the Department of Mathematics and Statistics of McGill University for its hospitality during that stay. D.O. was partially supported by (Polish) Narodowe Centrum Nauki, UMO-2017/25/B/ST1/01335. We thank the organizers of the conference "Nonpositively Curved Groups in the Mediterranean", Nahsholim 2017, for inviting us. A part of the work on the paper was carried out there. This work was partially supported by the grant 346300 for IMPAN from the Simons Foundation and the matching 2015-2019 Polish MNiSW fund.

2. Preliminaries

All graphs in this article are simplicial, that is, they do not contain loops or multiple edges. For a connected graph we equip the set of its vertices with a path metric: the distance of two vertices is the length (the number of edges) of the shortest edge-path between those vertices. A full subgraph of a graph Γ is a subgraph Γ^{\prime} such that two vertices are adjacent in Γ^{\prime} if and only if they are adjacent in Γ.
2.1. Lattices. A standard reference for the lattice theory is Bir67. Let (P, \leq) be a partially ordered set (poset), and let L be an arbitrary subset. An element $u \in P$ is an upper bound of L if $s \leq u$ for each $s \in L$. An upper bound u of L is its least upper bound, denoted by $\bigvee L$, if $u \leq x$ for each upper bound x of L. Similarly, $v \in P$ is a lower bound of L if $v \leq s$ for each $s \in L$. A lower bound v of L is its greatest lower bound, denoted by $\bigwedge L$, if $x \leq v$ for each lower bound x of L. Given $a, b \in P$, the interval between a and b, denoted $[a, b]$, is the collection of all elements $x \in P$ satisfying $a \leq x \leq b$.

A poset (P, \leq) is a lattice if each two-element subset $\{a, b\} \subset P$ has a least upper bound - join, denoted by $a \vee b$ - and a greatest lower bound - meet, denoted by $a \wedge b$.

Lemma 2.1 (Bir67, Theorem IV.8.15]). Suppose (P, \leq) is a lattice. Then
(1) if two intervals $[a, b]$ and $[c, d]$ of P have nonempty intersection, then $[a, b] \cap[c, d]=[a \vee c, b \wedge d] ;$
(2) if elements of a finite collection $\left\{\left[a_{i}, b_{i}\right]\right\}_{i=1}^{n}$ of intervals in P pairwise intersect, then the intersection of all members in the collection is a non-empty interval $\bigcap_{i=1}^{n}\left[a_{i}, b_{1}\right]=\left[\bigvee\left\{a_{i}\right\}, \bigwedge\left\{b_{i}\right\}\right]$.
2.2. Artin groups and Coxeter groups. Let Γ be a finite simple graph with each of its edges labeled by an integer ≥ 2. Let $V \Gamma$ be the vertex set of Γ. The Artin group with defining graph Γ, denoted A_{Γ}, is given by the following presentation:

$$
\left\langle s_{i} \in V \Gamma\right| \underbrace{s_{i} s_{j} s_{i} \cdots}_{m_{i j}}=\underbrace{s_{j} s_{i} s_{j} \cdots}_{\substack{\left.m_{i j} \\ \text { labeled by } m_{i j}\right\rangle .}} \text { for each } s_{i} \text { and } s_{j} \text { spanning an edge }
$$

The Artin monoid with defining graph Γ, denoted A_{Γ}^{+}is the monoid with the same presentation. The natural map $A_{\Gamma}^{+} \rightarrow A_{\Gamma}$ is injective Par02].

The Coxeter group with defining graph Γ, denoted W_{Γ}, is given by the following presentation:

$$
\begin{aligned}
\left\langle s_{i} \in V \Gamma\right| s_{i}^{2}= & 1 \text { for any } s_{i} \in V \Gamma,\left(s_{i} s_{j}\right)^{m_{i j}}=1 \text { for each } s_{i} \text { and } s_{j} \\
& \text { spanning an edge labeled by } \left.m_{i j}\right\rangle .
\end{aligned}
$$

Note that there is a quotient map $A_{\Gamma} \rightarrow W_{\Gamma}$ whose kernel is normally generated by the squares of generators of A_{Γ}.

Theorem 2.2. Let Γ_{1} and Γ_{2} be full subgraphs of Γ with the induced edge labelings. Then
(1) the natural homomorphisms $A_{\Gamma_{1}} \rightarrow A_{\Gamma}$ and $W_{\Gamma_{1}} \rightarrow W_{\Gamma}$ are injective;
(2) $A_{\Gamma_{1}} \cap A_{\Gamma_{2}}=A_{\Gamma_{1} \cap \Gamma_{2}}$ and $W_{\Gamma_{1}} \cap W_{\Gamma_{2}}=W_{\Gamma_{1} \cap \Gamma_{2}}$.

The Coxeter case of this theorem is standard, see e.g. Bou02 or Dav08, the Artin case of this theorem is proved in vdL83.

A standard parabolic subgroup of an Artin group or a Coxeter group is a subgroup generated by a subset of its generating set.
Theorem 2.3. $\mathrm{CP14}$ Let $\Gamma^{\prime} \subset \Gamma$ be a full subgraph. Let $X^{\prime} \rightarrow X$ be the embedding from the Cayley graph of $A_{\Gamma^{\prime}}$ (with respect to the standard presentation) to the Cayley graph of A_{Γ} induced by the monomorphism $A_{\Gamma^{\prime}} \rightarrow A_{\Gamma}$. Then X^{\prime} is convex in X, i.e. any geodesic of X between two vertices of X^{\prime} is contained in X^{\prime}.

Given $x, y \in A_{\Gamma}$, we define $x \preccurlyeq y$ (resp. $y \succcurlyeq x$) if $y=x z$ (resp. $y=z x$) for some z in the Artin monoid A_{Γ}^{+}. By considering the length homomorphism $A_{\Gamma} \rightarrow \mathbb{Z}$ which sends each generator of A_{Γ} to 1 , one deduces that \preccurlyeq and \succcurlyeq are both partial orders on A_{Γ}. They are called the prefix order and the suffix order, respectively. The prefix order is invariant under left action of A_{Γ} on itself.

Now we recall the weak order on a Coxeter group W_{Γ}. Each element $w \in W_{\Gamma}$ can be expressed as a word in the free monoid on the generating set of W_{Γ}. One shortest such expression (with respect to the word norm) is called a reduced expression of w. Given $x, y \in W_{\Gamma}$, define $x \preccurlyeq y$ (resp. $y \succcurlyeq x$), if some reduced expression of y has its prefix (resp. suffix) being a reduced expression of x. Note that \preccurlyeq and \succcurlyeq give two partial orders on W_{Γ}, called the right weak order and the left weak order, respectively.

The defining graph Γ is spherical if W_{Γ} is a finite group, in this case, we also say the Artin group A_{Γ} is spherical. An Artin group is of type $F C$ if any complete subgraph $\Gamma^{\prime} \subset \Gamma$ is spherical.
Theorem 2.4. Suppose Γ is spherical. Then
(1) $\left(W_{\Gamma}, \preccurlyeq\right)$ and $\left(W_{\Gamma}, \succcurlyeq\right)$ are both lattices;
(2) $\left(A_{\Gamma}, \preccurlyeq\right)$ and $\left(A_{\Gamma}, \succcurlyeq\right)$ are both lattices.

The first assertion is standard, see e.g. BB05. The second assertion follows from BS72 Del72.
2.3. Davis complexes and oriented Coxeter cells. By a cell, we always mean a closed cell unless otherwise specified.

Definition 2.5 (Davis complex). Given a Coxeter group W_{Γ}, let \mathcal{P} be the poset of left cosets of spherical standard parabolic subgroups in W_{Γ} (with respect to inclusion) and let Δ_{Γ} be the geometric realization of this poset (i.e. Δ_{Γ} is a simplicial complex whose simplices correspond to chains in \mathcal{P}). Now we modify the cell structure on Δ_{Γ} to define a new complex D_{Γ}, called
the Davis complex. The cells in D_{Γ} are full subcomplexes of Δ_{Γ} spanned by a given vertex v and all other vertices which are $\leq v$ (note that vertices of Δ_{Γ} correspond to elements in \mathcal{P}, hence inherit the partial order).

Suppose W_{Γ} is finite with n generators. Then there is a canonical faithful orthogonal action of W_{Γ} on the Euclidean space \mathbb{E}^{n}. Take a point in \mathbb{E}^{n} with trivial stabilizer, then the convex hull of the orbit of this point under the W_{Γ} action (with its natural cell structure) is isomorphic to D_{Γ}. In such case, we call D_{Γ} a Coxeter cell.

In general, the 1-skeleton of D_{Γ} is the unoriented Cayley graph of W_{Γ} (i.e. we start with the usual Cayley graph and identify the double edges arising from s_{i}^{2} as single edges), and D_{Γ} can be constructed from the unoriented Cayley graph by filling Coxeter cells in a natural way. Each edge of D_{Γ} is labeled by a generator of W_{Γ}. We endow $D_{\Gamma}^{(1)}$ with the path metric.

We can identify the unoriented Cayley graph of W_{Γ} with the Hasse diagram of W_{Γ} with respect to right weak order. Thus we can orient each edge of D_{Γ} from its smaller vertex to its larger vertex. When W_{Γ} is finite, D_{Γ} with such edge orientation is called an oriented Coxeter cell. Note that there is a unique source vertex (resp. sink vertex) of D_{Γ} corresponding to the identity element (resp. longest element) of W_{Γ}, where each edge containing this vertex is oriented away from (resp. oriented towards) this vertex. The source and sink vertices are called tips of D_{Γ}.

The following fact is standard, see e.g. Bou02.
Theorem 2.6. Let \mathcal{R} be a left coset of a standard parabolic subgroup, and let $v \in W_{\Gamma}$ be an arbitrary element. Then the following hold.
(1) \mathcal{R} is convex in the sense that for two vertices $v_{1}, v_{2} \in \mathcal{R}$, the vertex set of any geodesic in $D_{\Gamma}^{(1)}$ joining v_{1} and v_{2} is inside \mathcal{R}.
(2) There is a unique vertex $u \in \mathcal{R}$ such that $d(v, u)=d(v, \mathcal{R})$, where d denotes the path metric on the 1-skeleton of D_{Γ}.
(3) Pick $v_{1} \in \mathcal{R}$. Then $d\left(v, v_{1}\right)=d(v, u)+d\left(u, v_{1}\right)$.

Theorem 2.6 implies that the face of an oriented Coxeter cell C, with its edge labeling and orientation from C, can be identified with a lower dimensional Coxeter cell in a way which preserves edge labeling and orientation.

The following lemma is well-known. For example, it follows from BC13, Lemma 3.4.9 and Corollary 5.5.16]. From another perspective, Theorem 2.6 (2) \& (3) says that left cosets are the so-called gated subgraphs of $D_{\Gamma}^{(1)}$. It is a well-known fact (see e.g. vdV93, Proposition I.5.12(2)]) that any family of gated subgraphs has the finite Helly property. In fact, the proof provided below (for the convenience of the reader), is the proof of this feature for families of gated subgraphs.

Lemma 2.7. Let $\left\{R_{i}\right\}_{i=1}^{n}$ be a finite collection of left cosets of standard parabolic subgroups of W_{Γ}. Then $\cap_{i=1}^{n} R_{i} \neq \emptyset$ given $\left\{R_{i}\right\}_{i=1}^{n}$ pairwise intersect.

Proof. We first look at the case $n=3$. Pick $x \in R_{2} \cap R_{3}$. Let y be the unique point in R_{1} closest to x (Theorem 2.6(2)). For $i=2,3$, let y_{i} be the unique point in $R_{1} \cap R_{i}$ closest to x. By Theorem $2.6(3), d\left(x, y_{2}\right)=d(x, y)+d\left(y, y_{2}\right)$. Thus $y \in R_{2}$ by the convexity of R_{2} (Theorem 2.6(1)). Thus $y=y_{2}$. Similarly, $y=y_{3}$. Hence $y \in \cap_{i=1}^{3} R_{i}$. For $n>3$, we induct on n. For $2 \leq i \leq n$, let $\tau_{i}=R_{1} \cap R_{i}$. Then each τ_{i} is a left coset of a standard subgroup by Theorem 2.2. Moreover, $\left\{\tau_{i}\right\}_{i=2}^{n}$ pairwise intersect by the $n=3$ case. Thus $\cap_{i=2}^{n} \tau_{i} \neq \emptyset$ by induction, and the lemma follows.

2.4. Salvetti complexes.

Definition 2.8 (Salvetti complex). Given an Artin group S_{Γ}, we define a cell complex, called the Salvetti complex and denoted by S_{Γ}, as follows. The 1 -skeleton of S_{Γ} is a wedge sum of circles, one circle for each generator. We label each circle by its associated generators and choose an orientation for each circle. Suppose the $(n-1)$-skeleton of S_{Γ} has been defined. Now for each spherical subgraph $\Gamma^{\prime} \subset \Gamma$ with n vertices, we attach an oriented Coxeter cell $D_{\Gamma^{\prime}}$ with the attaching map being a cellular map whose restriction to each face of the boundary of $D_{\Gamma^{\prime}}$ coincides with the attaching map of a lower dimensional oriented Coxeter cell (when $n=2$, we require the attaching map preserves the orientation and the labeling of edges).

The 2 -skeleton of S_{Γ} is the presentation complex of A_{Γ}. Hence $\pi_{1}\left(S_{\Gamma}\right)=$ A_{Γ}. Let X_{Γ} be the universal cover of S_{Γ}. The 1-skeleton of X_{Γ} is the Cayley graph of A_{Γ}, and it is endowed with the path metric with each edge having length $=1$. We pull back labeling and orientation of edges in S_{Γ} to X_{Γ}. A positive path in $X_{\Gamma}^{(1)}$ from a vertex $x \in X_{\Gamma}$ to another vertex y is an edge path such that one reads of a word in the Artin monoid by following this path. By considering the length homomorphism $A_{\Gamma} \rightarrow \mathbb{Z}$, we know each positive path is geodesic.

We identify $X_{\Gamma}^{(0)}$ with elements in A_{Γ}. Hence $X_{\Gamma}^{(0)}$ inherits the prefix order \preccurlyeq and the suffix order \succcurlyeq. Then $x \preccurlyeq y$ if and only if there is a positive path in $X_{\Gamma}^{(1)}$ from x to y.

The quotient homomorphism $A_{\Gamma} \rightarrow W_{\Gamma}$ induces a graph morphism $X_{\Gamma}^{(1)} \rightarrow$ $D_{\Gamma}^{(1)}$ which preserves labeling of edges. Take a cell of S_{Γ} represented by its attaching map $q: D_{\Gamma^{\prime}} \rightarrow S_{\Gamma}$ with $D_{\Gamma^{\prime}}$ being an oriented Coxeter cell. Let $\tilde{q}: D_{\Gamma^{\prime}} \rightarrow X_{\Gamma}$ be a lift of q. Note that \tilde{q} respects orientation and labeling of edges. It follows from definition that $D_{\Gamma^{\prime}}^{(1)} \rightarrow X_{\Gamma}^{(1)} \rightarrow D_{\Gamma}^{(1)}$ is an embedding, hence $D_{\Gamma^{\prime}}^{(1)} \rightarrow X_{\Gamma}^{(1)}$ is an embedding. By induction on dimension, we know \tilde{q} is an embedding. Hence each cell in X_{Γ} is embedded. Given a vertex $x \in X_{\Gamma}$, there is a one to one correspondence between cells of X_{Γ} whose source vertex is x and spherical subgraphs of Γ. Then $X_{\Gamma}^{(1)} \rightarrow D_{\Gamma}^{(1)}$ extends naturally to a cellular map $\pi: X_{\Gamma} \rightarrow D_{\Gamma}$ which is a homeomorphism on each closed cell.

Lemma 2.9. Let $q: C \rightarrow X_{\Gamma}$ be the attaching map from an oriented Coxeter cell C to X_{Γ}. Let a and b be the source vertex and the sink vertex of C. Let $\preccurlyeq C$ be the right weak order on $C^{(0)}$. Then the following hold (we use d to denote the path metric on the 1-skeleton).
(1) the map $\left(C^{(1)}, d\right) \rightarrow\left(X_{\Gamma}^{(1)}, d\right)$ is an isometric embedding;
(2) for any two vertices $x, y \in C, x \preccurlyeq_{C} y$ if and only if $q(x) \preccurlyeq q(y)$, moreover, $[q(x), q(y)]_{\preccurlyeq}=q\left([a, b]_{\preccurlyeq C}\right)$ where $[q(x), q(y)]_{\preccurlyeq}$ denotes the interval between two elements with respect to the order $\preccurlyeq ;$
(3) for two cells C_{1} and C_{2} in X_{Γ}, if $C_{1}^{(0)} \subset C_{2}^{(0)}$, then there exists a cell $C_{3} \subset C_{2}$ such that $C_{3}^{(0)}=C_{1}^{(0)}$.

Proof. Assertion (1) follows from that the map $X_{\Gamma}^{(1)} \rightarrow D_{\Gamma}^{(1)}$ is 1-Lipschitz. Now we prove (2). The only if direction follows from that q preserves orientation of edges. Now assume $q(x) \preccurlyeq q(y)$. Since $q(a) \preccurlyeq q(x) \preccurlyeq q(y) \preccurlyeq q(b)$, there is a positive path ω from $q(a)$ to $q(b)$ passing through $q(x)$ and $q(y)$. Let $\bar{C}^{(1)}, \bar{\omega}, \bar{a}$ and \bar{b} be the images of $q\left(C^{(1)}\right), \omega, q(a)$ and $q(b)$ un$\operatorname{der} X_{\Gamma}^{(1)} \rightarrow D_{\Gamma}^{(1)}$. Then $d(a, b)=d(\bar{a}, \bar{b})$, which also equals to the length of ω (recall each positive path is geodesic). Thus length $(\omega)=$ length $(\bar{\omega})$. By Theorem 2.6, $\bar{\omega} \subset \bar{C}^{(1)}$. Then $\bar{\omega}$ (hence ω) corresponds to the longest word in the finite Coxeter group associated C. Thus $\omega \subset q(C)$. It follows that $x \preccurlyeq y$. The proof of the moreover statement in (2) is similar.

For (3), there is a positive path ω from the source of C_{1} to the sink of C_{1} corresponding to the longest word of some finite Coxeter group. The proof of (2) implies that $\omega \subset C_{2}$. Then ω determines $C_{3} \subset C_{2}$ as required.

Lemma 2.10. Let C_{1} and C_{2} be two cells of X_{Γ}. Then the following are equivalent:
(1) $C_{1}=C_{2}$;
(2) $C_{1}^{(0)}=C_{2}^{(0)}$;
(3) C_{1} and C_{2} have the same sink.

Proof. (1) $\Rightarrow(2)$ is trivial. $(3) \Rightarrow(1)$ follows from the definition of cells. Now we prove $(2) \Rightarrow(3)$. First assume C_{1} and C_{2} are two edges. By considering the label preserving map $X_{\Gamma}^{(1)} \rightarrow D_{\Gamma}^{(1)}$, we know C_{1} and C_{2} have the same label. On the other hand, Theorem 2.2 (1) implies that map from the circle associated with a generator in S_{Γ} to S_{Γ} is π_{1}-injective. Thus $C_{1}=C_{2}$. Now we look at the general case. By Lemma 2.9 (3), two vertices are adjacent in C_{1} if and only if they are adjacent in C_{2}. Then $(2) \Rightarrow(3)$ follows from the 1-dimensional case by considering the orientation of edges on the cells.

A full subcomplex $K \subset X_{\Gamma}$ is a subcomplex such that if a cell of X_{Γ} has vertex set contained in K, then the cell is contained in K. It is clear that intersection of two full subcomplexes is also a full subcomplex. The following is a consequence of Lemma 2.9 (2) and Lemma 2.10 .
Lemma 2.11. Any cell in X_{Γ} is a full subcomplex.

Take a full subgraph $\Gamma^{\prime} \subset \Gamma$, then there is an embedding $S_{\Gamma^{\prime}} \rightarrow S_{\Gamma}$ which is π_{1}-injective (Theorem 2.2 (1)). A standard subcomplex of type Γ^{\prime} of X_{Γ} is a connected component of the preimage of $S_{\Gamma^{\prime}}$ under the covering map $X_{\Gamma} \rightarrow S_{\Gamma}$. Each such standard subcomplex can be naturally identified with the universal cover $X_{\Gamma^{\prime}}$ of $S_{\Gamma^{\prime}}$. A standard subcomplex is spherical if its type is spherical. We define the type of a cell in X_{Γ} to be the type of the smallest standard subcomplex that contains this cell.
Lemma 2.12. Any standard subcomplex of X_{Γ} is a full subcomplex.
Proof. Let $X \subset X_{\Gamma}$ be a standard subcomplex of type Γ^{\prime}. Let $C \subset X_{\Gamma}$ be a cell such that $C^{(0)} \subset X$. By considering the map $X_{\Gamma}^{(1)} \rightarrow D_{\Gamma}^{(1)}$, we know each edge of C is labeled by a vertex of Γ^{\prime}. Thus C is of type $\Gamma^{\prime \prime}$ for $\Gamma^{\prime \prime} \subset \Gamma^{\prime}$. Hence C is mapped to $S_{\Gamma^{\prime \prime}}$ under $X_{\Gamma} \rightarrow S_{\Gamma}$. Since $C \cup X$ is connected, $C \subset X$. Then the lemma follows.

Lemma 2.13. Let $X_{1}, X_{2} \subset X_{\Gamma}$ be standard subcomplexes of type Γ_{1}, Γ_{2}.
(1) Suppose $X_{1} \cap X_{2} \neq \emptyset$. Then $X_{1} \cap X_{2}$ is a standard subcomplex of type $\Gamma_{1} \cap \Gamma_{2}$.
(2) Let $C \subset X_{\Gamma}$ be a cell of type Γ_{1} such that $C \cap X_{2} \neq \emptyset$. Then $C \cap X_{2}$ is a cell of type $\Gamma_{1} \cap \Gamma_{2}$.
(3) For elements $a, b \in X_{1}^{(0)}$, the interval between a and b with respect to $\left(X_{\Gamma}^{(0)}, \preccurlyeq\right)$ is contained in $X_{1}^{(0)}$.
(4) We identify $X_{1}^{(0)}$ with $A_{\Gamma_{1}}$, hence $X_{1}^{(0)}$ inherits a prefix order $\preccurlyeq \Gamma_{1}$ from $A_{\Gamma_{1}}$. Then $\preccurlyeq \Gamma_{1}$ coincides with the restriction of $\left(A_{\Gamma}, \preccurlyeq\right)$ to $X_{1}^{(0)}$.

Proof. By Theorem 2.2, there exists a standard subcomplex $X_{0} \subset X_{\Gamma}$ such that $X_{0}^{(0)}=X_{1}^{(0)} \cap X_{2}^{(0)}$. Then (1) follows from Lemma 2.12. Now we prove (2). Let X_{1} be the standard subcomplex of type Γ_{1} containing C. Then $C \cap X_{2}$ is contained in $X_{1} \cap X_{2}$, which is a standard subcomplex of type $\Gamma_{1} \cap \Gamma_{2}$. This together with Lemma 2.12 imply that $C \cap X_{2}$ is a disjoint union of faces of C of type $\Gamma_{1} \cap \Gamma_{2}$. It remains to show $C \cap X_{2}$ is connected. Suppose the contrary holds. Pick a shortest geodesic edge path $\omega \subset C$ (with respect to the path metric on $\left.C^{(1)}\right)$ traveling from a vertex in one component of $C \cap X_{2}$ to another component. Then ω is also a geodesic path in $X_{\Gamma}^{(1)}$ by Lemma 2.9. Since two end points of ω are in X_{2}, we have $\omega \subset X_{2}$ by Theorem 2.3, which yields a contradiction. Assertion (3) and (4) follow from Theorem 2.3.

3. Helly graphs and cell-Helly complexes

See the beginning of Section 2 for our convention on graphs. A clique of a graph is a complete subgraph. A maximal clique is a clique not properly contained in another clique. Each graph is endowed with the path metric such that each edge has length 1. A ball centered at x with radius r in a
graph Γ is the full subgraph spanned by all vertices at distance $\leq r$ from x. As for Helly graphs we follow usually the notation from [CCHO20, $\mathrm{CCG}^{+} 20$.

Definition 3.1. A family \mathcal{F} of subsets of a set satisfies the (finite) Helly property if for any (finite) subfamily $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ of pairwise intersecting subsets the intersection $\bigcap \mathcal{F}^{\prime}$ is nonempty.

A graph is (finitely) clique Helly if the family of all maximal cliques, as subsets of the vertex sets of the graph, satisfies the (finite) Helly property.

A graph is (finitely) Helly if the family of all balls, as subsets of the vertex sets of the graph, satisfies the (finite) Helly property.

The notion of clique Helly is local and the notion of Helly is global. Our main tool for proving Hellyness of some graphs is the following local-toglobal characterization.

The clique complex of a graph Γ is the flag completion of Γ. The triangle complex of Γ is the 2-skeleton of the clique complex, that is, the 2 -dimensional simplicial complex obtained by spanning 2 -simplices (that is, triangles) on all 3 -cycles (that is, 3 -cliques) of Γ.

Theorem 3.2. (i) ([CCHO20, Theorem 3.5]) Let Γ be a simplicial graph. Suppose that Γ is finitely clique Helly, and that the clique complex of Γ is simply-connected. Then Γ is finitely Helly.
(ii) (Pol01, Proposition 3.1.2]) If in addition Γ does not have infinite cliques, then Γ is Helly.

Parallel to this theorem, a local-to-global result for injective metric spaces is obtained in (Mie17).

Lemma 3.3. Let X be a set and let $\left\{X_{i}\right\}_{i \in I}$ be a family of subsets of X. Define a simplicial graph Y whose vertex set is X, and two points are adjacent if there exists i such that they are contained in X_{i}. Suppose that
(1) there are no infinite cliques in Y;
(2) $\left\{X_{i}\right\}_{i \in I}$ has finite Helly property, i.e. any finite family of pairwise intersecting elements in $\left\{X_{i}\right\}_{i \in I}$ has nonempty intersection;
(3) for any triple $X_{i_{1}}, X_{i_{2}}, X_{i_{3}}$ of pairwise intersecting subsets in $\left\{X_{i}\right\}_{i \in I}$, there exists $i_{0} \in I$ such that

$$
\left(X_{i_{1}} \cap X_{i_{2}}\right) \cup\left(X_{i_{2}} \cap X_{i_{3}}\right) \cup\left(X_{i_{3}} \cap X_{i_{1}}\right) \subseteq X_{i_{0}} .
$$

Then Y is finitely clique Helly.
Proof. Let $S \subset X$ be a subset. We claim if S is the vertex set of a clique in Y, then there exists $i \in I$ such that $S \subset X_{i}$. We prove it by induction on $|S|$. Note that $|S|<\infty$ by assumption (1), and the case $|S|=2$ is trivial. Suppose $|S|=n \geq 3$. Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be three pairwise distinct vertices in S and let $S_{i}=S \backslash\left\{x_{i}\right\}$. It follows from induction assumption that there exists X_{i} such that $S_{i} \subset X_{i}$. Note that $\left\{X_{i_{1}}, X_{i_{2}}, X_{i_{3}}\right\}$ pairwise intersect. Thus by assumption (3), there exists $X_{i_{0}} \in\left\{X_{i}\right\}_{i \in I}$ such that $S \subset\left(X_{i_{1}} \cap X_{i_{2}}\right) \cup\left(X_{i_{2}} \cap X_{i_{3}}\right) \cup\left(X_{i_{3}} \cap X_{i_{1}}\right) \subset X_{i_{0}}$. Hence the claim follows.

The claim implies that if S is the vertex set of a maximal clique in Y, then $S=X_{i}$ for some $i \in I$. Now the lemma follows from assumption (2).

The lemma above justifies the following definition that will be our main tool for showing that some groups act nicely on Helly graphs. A subcomplex of X is finite it has only finitely many cells.
Definition 3.4. Let X be a combinatorial complex (cf. BH99, Chapter I.8.A]) and let $\left\{X_{i}\right\}_{i \in I}$ be a family of finite full subcomplexes covering X. We call $\left(X,\left\{X_{i}\right\}\right)$ (or simply X, when the family $\left\{X_{i}\right\}$ is evident) a generalized cell Helly complex if the following conditions are satisfied:
(1) each intersection $X_{i_{1}} \cap X_{i_{2}} \cap \cdots \cap X_{i_{k}}$ is either empty or connected and simply connected (in particular, all members of $\left\{X_{i}\right\}$ are connected and simply connected);
(2) the family $\left\{X_{i}\right\}_{i \in I}$ has finite Helly property, i.e. any finite family of pairwise intersecting elements in $\left\{X_{i}\right\}_{i \in I}$ has nonempty intersection;
(3) for any triple $X_{i_{1}}, X_{i_{2}}, X_{i_{3}}$ of pairwise intersecting subcomplexes in $\left\{X_{i}\right\}_{i \in I}$, there exists $i_{0} \in I$ such that

$$
\left(X_{i_{1}} \cap X_{i_{2}}\right) \cup\left(X_{i_{2}} \cap X_{i_{3}}\right) \cup\left(X_{i_{3}} \cap X_{i_{1}}\right) \subseteq X_{i_{0}} .
$$

The subcomplexes X_{i} are called generalized cells of X.
In this article we will only deal with the following special case of generalized cell Helly complex.
Definition 3.5. Suppose X is a combinatorial complex such that each of its closed cell is embedded and each closed cell is a full subcomplex of X. Let $\left\{X_{i}\right\}_{i \in I}$ be the collection of all closed cells in X. We say X is cell Helly if $\left(X,\left\{X_{i}\right\}\right)$ satisfies Definition 3.4.

A natural class of cell Helly complexes is described in the lemma below, whose proof is left to the reader.
Lemma 3.6. Suppose X is a simply-connected cube complex such that each cube in X is embedded and any intersection of two cubes of X is a sub-cube. Then X is cell Helly if and only if X is a CAT(0) cube complex.
Remark 3.7. It can be seen here that the condition (3) from Definition 3.4 plays a role of Gromov's flagness condition. Intuitively, it tells that all the corners (of possible positive curvature) are "filled" (and hence curvature around them is nonpositive).

Pride $\widehat{\text { Pri86 }}$ showed that 2-dimensional Artin groups of type FC are $\mathrm{C}(4)-\mathrm{T}(4)$ small cancellation groups. The following lemma together with Theorem 5.8 can be seen as an extension of Pride's result to higher dimensions. We refer to [Pri86,Hod20] for the definition of C(4)-T(4) small cancellation conditions. Here, we assume that cells are determined by their attaching maps (this corresponds to the usual small cancellation theory, for groups without torsion). In particular, by Hod20, Proposition 3.5] it means that the intersection of two cells is either empty or a vertex or an interval.

Lemma 3.8. Suppose X is a 2-dimensional simply-connected combinatorial complex such that each closed cell is embedded. Then X is cell Helly if and only if X satisfies the $C(4)-T(4)$ small cancellation conditions.

Proof. If X is a $\mathrm{C}(4)-\mathrm{T}(4)$ complex then, by [Hod20, Proposition 3.8], for any pairwise intersecting cells C_{0}, C_{1}, C_{2} we have $C_{i} \cap C_{j} \subseteq C_{k}$, for $\{i, j, k\}=$ $\{0,1,2\}$. It follows that X is cell Helly.

Now suppose X is cell Helly. Since nonempty intersections of cells are connected and simply connected, such intersections must be vertices or intervals.

We check the $\mathrm{C}(4)$ condition. First suppose there is a cell C with the boundary covered by two intervals $C \cap C_{0}$ and $C \cap C_{1}$ being intersections with cells C_{0}, C_{1}. Since, by Definition 3.4(1), the intersection $C_{0} \cap C_{1}$ has to be a nontrivial interval. But then the union $\left(C \cap C_{0}\right) \cup\left(C_{0} \cap C_{1}\right) \cup$ $\left(C_{1} \cap C\right)$ is a graph being a union of three intervals along their endpoints, contradicting Definition 3.4(3). Now, suppose there are cells C, C_{0}, C_{1}, C_{2} such that $C \cap C_{i} \neq \emptyset$ and $C_{i} \cap C_{i+1(\bmod 3)} \neq \emptyset$. It follows that there is a common intersection $C \cap C_{0} \cap C_{1} \cap C_{2}$. This brings us to the previous case.

For the $\mathrm{T}(4)$ condition let suppose there are cells C_{0}, C_{1}, C_{2} with $C_{i} \cap$ $C_{i+1(\bmod 3)}$ being a nontrivial interval containing a vertex v, for all i. Then $\left(C_{0} \cap C_{1}\right) \cup\left(C_{1} \cap C_{2}\right) \cup\left(C_{2} \cap C_{0}\right)$ cannot be contained in a single cell, contradicting Definition 3.4(3).

Definition 3.4 generalizes Definition 3.5 in the same way as the graphical small cancellation theory generalizes the classical small cancellation theory, another example to consider is X being a $\mathrm{C}(4)-\mathrm{T}(4)$ graphical small cancellation complex. Defining $\left\{X_{i}\right\}$ as the family of simplicial cones over relators, we obtain a generalized cell Helly complex (proved in $\left[\mathrm{CCG}^{+} 20 \mid\right.$).

Later we will see more examples of cell Helly complexes whose cells are zonotopes (Corollary 4.11) or Coxeter cells (Theorem 5.8).

For a pair $\left(X,\left\{X_{i}\right\}_{i \in I}\right)$ as above, we define its thickening Y to be the following simplicial complex. The 0 -skeleton of Y is $X^{(0)}$, and two vertices of $Y^{(0)}$ are adjacent if they are contained in the same generalized cell of X. Then Y is defined to be the flag complex of $Y^{(1)}$. We call $\left(X,\left\{X_{i}\right\}_{i \in I}\right)$ locally bounded if there does not exist an infinite strictly increasing sequence of vertex sets $A_{1} \subsetneq A_{2} \subsetneq A_{3} \subsetneq \cdots$ such that for every j there exists i_{j} with $A_{j} \subseteq X_{i_{j}}$.

Theorem 3.9. The thickening of a locally bounded generalized cell Helly complex is clique Helly. The thickening of a simply connected locally bounded generalized cell Helly complex is Helly.

Proof. Let $\left(X,\left\{X_{i}\right\}_{i \in I}\right)$ be a locally bounded generalized cell Helly complex and let Y be its thickening. It follows from the proof of Lemma 3.3 that the vertex set of each finite clique of Y is contained in some $X_{i_{j}}$ (this does not use assumption (1) of Lemma 3.3). This together with local boundedness imply that there are no infinite cliques in Y. The first statement follows
from Lemma 3.3. By the Nerve Theorem [Bjö03, Theorem 6] applied to the covering of X by generalized cells $\left\{X_{i}\right\}$, and the covering of Y by simplices corresponding to generalized cells we get that X and Y are have the same connectivity and isomorphic fundamental groups. If X is simply connected then so is Y and hence, by Theorem 3.2, the thickening is Helly.

We say that a group G acts on a generalized cell Helly complex $\left(X,\left\{X_{i}\right\}_{i \in I}\right)$ if it acts by automorphisms on X and preserves the family $\left\{X_{i}\right\}_{i \in I}$. For such an action clearly G acts by automorphisms on the thickening of $\left(X,\left\{X_{i}\right\}_{i \in I}\right)$. Moreover, we have the following.

Proposition 3.10. If a group G acts geometrically on a simply connected locally bounded generalized cell Helly complex $\left(X,\left\{X_{i}\right\}_{i \in I}\right)$ then G acts geometrically on the Helly graph being the 1-skeleton $Y^{(1)}$ of the thickening Y. In particular, G is Helly.

Proof. We first show that each vertex v in $Y^{(1)}$ is adjacent to finitely many other vertices. Suppose v is adjacent to infinitely many different vertices $\left\{v_{i}\right\}_{i=1}^{\infty}$. Take X_{i} which contains both v and v_{i}. As X is uniformly locally finite, we can assume $\lim _{i \rightarrow \infty} d_{X^{(1)}}\left(v, v_{i}\right)=\infty$ where $d_{X^{(1)}}$ denotes the path metric on $X^{(1)}$. Let P_{i} be a shortest edge path in X_{i} connecting v and v_{i}. Then P_{i} subconverges to an infinite path as $i \rightarrow \infty$, which contradicts the local boundedness assumption.

Since the G-action on X is cocompact, the quotient $Y^{(0)} / G$ of the vertex set is finite. Since ($X,\left\{X_{i}\right\}$) is locally bounded there are no infinite cliques (see the proof of Theorem 3.9) and hence the quotient $Y^{(1)} / G$ is finite.

To prove properness it remains to show that, for the G-action on $Y^{(1)}$, stabilizers of cliques are finite. Such stabilizers correspond to stabilizers of finite vertex sets for the G-action on X, which are finite by the properness of the G-action on X.

We close the section with a simple but useful observation, that will allow us to reprove contractibility of the universal cover of the Salvetti complex of an FC-type Artin group in Section 5 .

Proposition 3.11. Let $\left(X,\left\{X_{i}\right\}_{i \in I}\right)$ be a simply connected locally bounded generalized cell Helly complex such that the intersection of any collection of generalized cells is either empty or contractible. Then X is contractible.

Proof. By Borsuk's Nerve Theorem [Bor48] applied to the covering of X by generalized cells $\left\{X_{i}\right\}$, and the covering of Y by simplices corresponding to generalized cells, we have that X is homotopically equivalent to its thickening. The latter is contractible as a Helly complex by Theorem 3.9.

4. Weak Garside groups act on Helly graphs

4.1. Basic properties of Garside categories. We follow the treatment of Garside categories in (Bes06, Kra08].

Let \mathcal{C} be a small category. One may think of \mathcal{C} as of an oriented graph, whose vertices are objects in \mathcal{C} and oriented edges are morphisms of \mathcal{C}. Arrows in \mathcal{C} compose like paths: $x \xrightarrow{f} y \xrightarrow{g} z$ is composed into $x \xrightarrow{f g} z$. For objects $x, y \in \mathcal{C}$, let $\mathcal{C}_{x \rightarrow}$ denote the collection of morphisms whose source object is x. Similarly we define $\mathcal{C}_{\rightarrow y}$ and $\mathcal{C}_{x \rightarrow y}$.

For two morphisms f and g, we define $f \preccurlyeq g$ if there exists a morphism h such that $g=f h$. Define $g \succcurlyeq f$ if there exists a morphism h such that $g=h f$. Then $\left(\mathcal{C}_{x \rightarrow}, \preccurlyeq\right)$ and $\left(\mathcal{C}_{\rightarrow y}, \succcurlyeq\right)$ are posets. A nontrivial morphism f which cannot be factorized into two nontrivial factors is an atom.

The category \mathcal{C} is cancellative if, whenever a relation $a f b=a g b$ holds between composed morphisms, it implies $f=g . \mathcal{C}$ is homogeneous if there exists a length function l from the set of \mathcal{C}-morphisms to $\mathbb{Z}_{\geq 0}$ such that $l(f g)=l(f)+l(g)$ and $(l(f)=0) \Leftrightarrow(f$ is a unit $)$.

We consider the triple $\left(\mathcal{C}, \mathcal{C} \xrightarrow{\phi} \mathcal{C}, 1_{\mathcal{C}} \stackrel{\Delta}{\Rightarrow}\right)$ where ϕ is an automorphism of \mathcal{C} and Δ is a natural transformation from the identity function to ϕ. For an object $x \in \mathcal{C}, \Delta$ gives morphisms $x \xrightarrow{\Delta(x)} \phi(x)$ and $\phi^{-1}(x) \xrightarrow{\Delta\left(\phi^{-1}(x)\right)} x$. We denote the first morphism by Δ_{x} and the second morphism by Δ^{x}. A morphism $x \xrightarrow{f} y$ is simple if there exists a morphism $y \xrightarrow{f^{*}} \phi(x)$ such that $f f^{*}=\Delta_{x}$. When \mathcal{C} is cancellative, such f^{*} is unique.
Definition 4.1. A homogeneous categorical Garside structure is a triple $\left(\mathcal{C}, \mathcal{C} \xrightarrow{\phi} \mathcal{C}, 1_{\mathcal{C}} \stackrel{ }{\Rightarrow} \phi\right)$ such that:
(1) ϕ is an automorphism of \mathcal{C} and Δ is a natural transformation from the identity function to ϕ;
(2) \mathcal{C} is homogeneous and cancellative;
(3) all atoms of \mathcal{C} are simple;
(4) for any object $x, \mathcal{C}_{x \rightarrow}$ and $\mathcal{C}_{\rightarrow x}$ are lattices.

It has finite type if the collection of simple morphisms of \mathcal{C} is finite.
Definition 4.2. A Garside category is a category \mathcal{C} that can be equipped with ϕ and Δ to obtain a homogeneous categorical Garside structure. A Garside groupoid is the enveloping groupoid of a Garside category. See $\mathrm{DDG}^{+} 15$, Section 3.1] for a detailed definition of enveloping groupoid. Informally speaking, it is a groupoid obtained by adding formal inverses to all morphisms in a Garside category.

Let x be an object in a groupoid \mathcal{G}. The isotropy group \mathcal{G}_{x} at x is the group of morphisms from x to itself. A weak Garside group is a group isomorphic to the isotropy group of an object in a Garside groupoid. A weak Garside group has finite type if its associated Garside category has finite type.

A Garside monoid is a Garside category with a single object and a Garside group is a Garside groupoid with a single object.

It follows from $\mathrm{DDG}^{+} 15$, Proposition 3.11] that if \mathcal{G} is a Garside groupoid, then the natural functor $\mathcal{C} \rightarrow \mathcal{G}$ is injective. Moreover, by $\mathrm{DDG}^{+} 15$,
lemma 3.13], the triple $\left(\mathcal{C}, \mathcal{C} \xrightarrow{\phi} \mathcal{C}, 1_{\mathcal{C}} \stackrel{\Delta}{\Rightarrow}\right.$) naturally extends to ($\mathcal{G}, \mathcal{G} \xrightarrow{\phi}$ $\mathcal{G}, 1_{\mathcal{G}} \triangleq \phi$) (we denote the extensions of ϕ and Δ by ϕ and Δ as well).

Define $\mathcal{G}_{x \rightarrow}$ and $\mathcal{G}_{\rightarrow x}$ in a similar way to $\mathcal{C}_{x \rightarrow}$ and $\mathcal{C}_{\rightarrow x}$. For two morphisms x and y of \mathcal{G}, define $x \preccurlyeq y$ if there exists a morphism z of \mathcal{C} such that $y=x z$. Define $y \succcurlyeq x$ analogously. The following Lemma 4.3 is well-known for inclusion from a Garside monoid to its associated Garside group. The more general case concerning Garside category can be proved similarly.
Lemma 4.3. For each object x of $\mathcal{G}, \mathcal{G}_{x \rightarrow}$ and $\mathcal{G}_{\rightarrow x}$ are lattices. Moreover, the natural inclusions $\mathcal{C}_{x \rightarrow} \rightarrow \mathcal{G}_{x \rightarrow}$ and $\mathcal{C}_{\rightarrow x} \rightarrow \mathcal{G}_{\rightarrow x}$ are homomorphisms between lattices.

For morphisms $f_{1}, f_{2} \in \mathcal{G}_{x \rightarrow}$ (resp. $\mathcal{G}_{\rightarrow x}$), we use $f_{1} \wedge_{p} f_{2}\left(\right.$ resp. $\left.f_{1} \wedge_{s} f_{2}\right)$ to denote the greatest lower bound of f_{1} and f_{2} with respect to $\preccurlyeq ~(r e s p . ~ \succcurlyeq), ~$ where p (resp. s) stands for prefix (resp. suffix) order. Similarly, we define $f_{1} \vee_{p} f_{2}$ and $f_{1} \vee_{s} f_{2}$.

Lemma 4.4. Let \mathcal{G} be a Garside groupoid and let $f: x \rightarrow y$ be a morphism of \mathcal{G}. Then
(1) the map $\left(\mathcal{G}_{y \rightarrow}, \preccurlyeq\right) \rightarrow\left(\mathcal{G}_{x \rightarrow}, \preccurlyeq\right)$ mapping $h \in \mathcal{G}_{y}$ to $f h$ is a lattice monomorphism;
(2) the bijection $\left(\mathcal{G}_{x \rightarrow}, \preccurlyeq\right) \rightarrow\left(\mathcal{G}_{\rightarrow x}, \succcurlyeq\right)$ mapping $h \in \mathcal{G}_{x}$ to h^{-1} is orderrevering, i.e. $h_{1} \preccurlyeq h_{2}$ if and only if $h_{1}^{-1} \succcurlyeq h_{2}^{-1}$;
(3) choose elements $\left\{a_{i}\right\}_{i=1}^{n} \subset \mathcal{G}_{\rightarrow x}$, then $a_{1}^{-1} \vee_{p} a_{2}^{-1} \vee_{p} \cdots \vee_{p} a_{n}^{-1}=\left(a_{1} \wedge_{s}\right.$ $\left.a_{2} \wedge_{s} \cdots \wedge_{s} a_{n}\right)^{-1}$ and $a_{1}^{-1} \wedge_{p} a_{2}^{-1} \wedge_{p} \cdots \wedge_{p} a_{n}^{-1}=\left(a_{1} \vee_{s} a_{2} \vee_{s} \cdots \vee_{s} a_{n}\right)^{-1}$.

Proof. Assertion (1) follows from the definition. To see (2), note that if $h_{1} \preccurlyeq h_{2}$, then there exists a morphism k of \mathcal{C} such that $h_{2}=h_{1} k$. Thus $h_{1}^{-1}=k h_{2}^{-1}$. Hence $h_{1}^{-1} \succcurlyeq h_{2}^{-1}$. The other direction is similar. (3) follows from (2).

Lemma 4.5. Let \mathcal{G} be a Garside groupoid. Let $\left\{a_{i}\right\}_{i=1}^{n}$ and c be morphisms in \mathcal{G}. Let $\left\{b_{i}\right\}_{i=1}^{n}$ be morphisms in \mathcal{C}.
(1) Suppose $a_{i} b_{i}=c$ for $1 \leq i \leq n$. Let $a=a_{1} \vee_{p} a_{2} \vee_{p} \cdots \vee_{p} a_{n}$ and $b=b_{1} \wedge_{s} b_{2} \wedge_{s} \cdots \wedge_{s} b_{n}$. Then $a b=c$.
(2) Suppose $a_{i} b_{i}=c$ for $1 \leq i \leq n$. Let $a=a_{1} \wedge_{p} a_{2} \wedge_{p} \cdots \wedge_{p} a_{n}$ and $b=b_{1} \vee_{s} b_{2} \vee_{s} \cdots \vee_{s} b_{n}$. Then $a b=c$.
(3) $\left(c b_{1}\right) \wedge_{p}\left(c b_{2}\right) \wedge_{p} \cdots \wedge_{p}\left(c b_{n}\right)=c\left(b_{1} \wedge_{p} \cdots \wedge_{p} b_{n}\right)$.
(4) $\left(c b_{1}\right) \vee_{p}\left(c b_{2}\right) \vee_{p} \cdots \vee_{p}\left(c b_{n}\right)=c\left(b_{1} \vee_{p} \cdots \vee_{p} b_{n}\right)$.

Proof. For (1), note that all the a_{i} have the same source object and all the b_{i} have the same target object. Thus a and b are well-defined. It follows from Lemma 4.4 (1) that $c^{-1} a=\left(c^{-1} a_{1}\right) \vee_{p}\left(c^{-1} a_{2}\right) \vee_{p} \cdots \vee_{p}\left(c^{-1} a_{n}\right)=b_{1}^{-1} \vee_{p} b_{2}^{-1} \vee_{p}$ $\cdots \vee_{p} b_{n}^{-1}$. By Lemma4.4 (3), $b_{1}^{-1} \vee_{p} \cdots \vee_{p} b_{n}^{-1}=\left(b_{1} \wedge_{s} b_{2} \wedge_{s} \cdots \wedge_{s} b_{n}\right)^{-1}=b^{-1}$. Thus (1) follows. Assertion (2) can be proved similarly. (3) and (4) follow from Lemma 4.4 (1).

For a morphism f of \mathcal{G}, denote the source object and the target object of f by $s(f)$ and $t(f)$.

Lemma 4.6. Suppose f is a morphism of \mathcal{G}. Then $f \preccurlyeq \Delta_{s(f)}$ if and only if $\Delta^{t(f)} \succcurlyeq f$.

Proof. If $f \preccurlyeq \Delta_{s(f)}$, then $\Delta_{s(f)}=f g$ for g in \mathcal{C}. Let h be the unique morphism such that $g=\phi(h)$. By the definition of ϕ, we know h is in \mathcal{C}. Moreover, h fits into the following commuting diagram:

Thus $h \Delta_{s(f)}=\Delta^{t(f)} g$, which implies that $h(f g)=\Delta^{t(f)} g$. Hence $h f=\Delta^{t(f)}$ and $\Delta^{t(f)} \succcurlyeq f$. The other direction is similar.

Lemma 4.7. Let x be an object of \mathcal{G}. Let Φ_{1} be the collection of simple morphisms of \mathcal{G} with target object x and let Φ_{2} be the collection of simple morphisms with source object x. For $a \in \Phi_{1}$, we define a^{*} to be the morphism such that $a a^{*}=\Delta_{s(a)}$. Then
(1) the map $a \rightarrow a^{*}$ gives a bijection $\Phi_{1} \rightarrow \Phi_{2}$;
(2) for $a, b \in \Phi_{1}$, we have $b \succcurlyeq a$ if and only if $b^{*} \preccurlyeq a^{*}$;
(3) for $a, b \in \Phi_{1}$, we have $\left(a \wedge_{s} b\right)^{*}=a^{*} \vee_{p} b^{*}$ and $\left(a \vee_{s} b\right)^{*}=a^{*} \wedge_{p} b^{*}$.

Proof. For (1), since $\Delta^{t\left(a^{*}\right)}=\Delta_{s(a)} \succcurlyeq a^{*}$, we have $a^{*} \preccurlyeq \Delta_{s\left(a^{*}\right)}$ by Lemma 4.6. Thus $a^{*} \in \Phi_{2}$. The map is clearly injective and surjectivity follows from Lemma 4.6. For (2), $b \succcurlyeq a$ implies $b=k a$ for a morphism k of \mathcal{C}. From $\Delta_{s(b)}=b b^{*}=k a b^{*}$, we know $\Delta^{t\left(b^{*}\right)}=\Delta_{s(b)} \succcurlyeq a b^{*}$, hence $a b^{*} \preccurlyeq \Delta_{s(a)}$ by Lemma 4.6. Then there is a morphism h of \mathcal{C} such that $a b^{*} h=\Delta_{s(a)}=a a^{*}$, hence $b^{*} h=a^{*}$ and $b^{*} \preccurlyeq a^{*}$. The other direction is similar. For (3), note that elements in $\Phi_{1}\left(\right.$ resp. $\left.\Phi_{2}\right)$ are closed under \wedge_{s} and $\vee_{s}\left(\right.$ resp. \wedge_{p} and $\left.\vee_{p}\right)$, so ϕ_{1} and Φ_{2} are lattices. Now assertion (3) follows from (2) and (1).
4.2. Garside groups are Helly. Let \mathcal{G} be a Garside groupoid and let x be an object of \mathcal{G}. A cell of $\mathcal{G}_{x \rightarrow \text { is }}$ is interval of the form $\left[f, f \Delta_{t(f)}\right]$ with respect to the order \preccurlyeq.

Lemma 4.8. Let C_{1}, C_{2} and C_{3} be pairwise intersecting cells of $\mathcal{G}_{x \rightarrow}$. Then there is a cell C of $\mathcal{G}_{x \rightarrow \text { such that }} D=\left(C_{1} \cap C_{2}\right) \cup\left(C_{2} \cap C_{3}\right) \cup\left(C_{3} \cap C_{1}\right)$ is contained in C.

Proof. Since each C_{i} is an interval in $\left(\mathcal{G}_{x \rightarrow}, \preccurlyeq\right)$, we write $C_{i}=\left[f_{i}, g_{i}\right]$. Let $C_{i j}=C_{i} \cap C_{j}$. Then each $C_{i j}$ is also an interval (Lemma 2.1(1)). We write $C_{i j}=\left[f_{i j}, g_{i j}\right]$. Then $f_{i j}=f_{i} \vee_{p} f_{j}$ and $g_{i j}=g_{i} \wedge_{p} g_{j}$. Choose a morphism h in $\cap_{i=1}^{3} C_{i}$ (Lemma 2.1 (2)). Since $f_{i} \preccurlyeq h \preccurlyeq g_{i}$, there are morphisms w_{i}
and w_{i}^{*} in \mathcal{C} such that $h=f_{i} w_{i}$ and $g_{i}=h w_{i}^{*}$. Note that $w_{i} w_{i}^{*}=\Delta_{s\left(f_{i}\right)}$. Moreover, by Lemma 4.5 (1) and (3), we have

$$
\begin{equation*}
f_{i j} \cdot\left(w_{i} \wedge_{s} w_{j}\right)=h \text { and } h \cdot\left(w_{i}^{*} \wedge_{p} w_{j}^{*}\right)=g_{i j} . \tag{1}
\end{equation*}
$$

Let f (resp. g) be the greatest lower bound (resp. least upper bound) over all elements in D with respect to the prefix order \preccurlyeq. Since D is a union of three intervals, we have $f=f_{12} \wedge_{p} f_{23} \wedge_{p} f_{31}$ and $g=g_{12} \vee_{p} g_{23} \vee_{p} g_{31}$. Define $a=\left(w_{1} \wedge_{s} w_{2}\right) \vee_{s}\left(w_{2} \wedge_{s} w_{3}\right) \vee_{s}\left(w_{3} \wedge_{s} w_{1}\right)$ and $b=\left(w_{1}^{*} \wedge_{p} w_{2}^{*}\right) \vee_{p}$ $\left(w_{2}^{*} \wedge_{p} w_{3}^{*}\right) \vee_{p}\left(w_{3}^{*} \wedge_{p} w_{1}^{*}\right)$. Then by the formula (1) above and Lemma 4.5 (2) and (4), we have $f a=h$ and $h b=g$.

We claim $a b \preccurlyeq \Delta_{s(a)}$. This claim implies that the cell $\left[f, f \Delta_{s(a)}\right]$ contains the interval $[f, g]$, hence contains D. Thus the lemma follows from the claim.

Now we prove the claim. Since $w_{i} \preccurlyeq \Delta_{s\left(w_{i}\right)}$ for $1 \leq i \leq 3$, by Lemma 4.6. $\Delta_{t\left(w_{i}\right)} \succcurlyeq w_{i}$. Then $\Delta_{t\left(w_{i}\right)} \succcurlyeq a$. By Lemma 4.6 again, $a \preccurlyeq \Delta_{s(a)}$. Let a^{*} be a morphism in \mathcal{C} such that $a a^{*}=\Delta_{s(a)}$. It suffices to show $b \preccurlyeq a^{*}$. By repeatedly applying Lemma 4.7 (3), we have $a^{*}=\left(w_{1} \wedge_{s} w_{2}\right)^{*} \wedge_{p}\left(w_{2} \wedge_{s}\right.$ $\left.w_{3}\right)^{*} \wedge_{p}\left(w_{3} \wedge_{s} w_{1}\right)^{*}=\left(w_{1}^{*} \vee_{p} w_{2}^{*}\right) \wedge_{p}\left(w_{2}^{*} \vee_{p} w_{3}^{*}\right) \wedge_{p}\left(w_{3}^{*} \vee_{p} w_{1}^{*}\right)$. Note that b is the least upper bound of three terms, however, each of these terms is \preccurlyeq every term of a^{*}, so each of these terms is $\preccurlyeq a^{*}$, hence $b \preccurlyeq a^{*}$.

Theorem 4.9. Let G be a weak Garside group of finite type associated with a Garside groupoid \mathcal{G}. Then G acts geometrically on a Helly graph.

Proof. Let x be an object of \mathcal{G}. Suppose $G=\mathcal{G}_{x}$. Let Y be a simplicial graph whose vertex set is $\mathcal{G}_{x \rightarrow}$ and two vertices are adjacent if they are in the same cell of $\mathcal{G}_{x \rightarrow}$. The left action $\mathcal{G}_{x} \curvearrowright \mathcal{G}_{x \rightarrow}$ preserves the collection of cells, hence induces an action $\mathcal{G}_{x} \curvearrowright Y$.

Note that Y is uniformly locally finite. Indeed, given $f \in \mathcal{G}_{x \rightarrow, g}$ is adjacent to f if and only if $g=f a^{-1} b$ for some simple morphisms a and b of \mathcal{C}. Since the collection of simple morphisms is finite, there are finitely many possibilities for such g. Thus Y satisfies assumption (1) of Lemma 3.3 with $\left\{X_{i}\right\}_{i \in I}$ being cells of $\mathcal{G}_{x \rightarrow \text {. Assumption (2) of Lemma } 3.3 \text { follows from }}$ Lemma 2.1 (2), as each cell is an interval in the lattice $\mathcal{G}_{x \rightarrow \text {. }}$ Assumption (3) of Lemma 3.3 follows from Lemma 4.8. Thus Y is finitely clique Helly by Lemma 3.3. By Theorem 3.2, it remains to show that the flag complex $F(Y)$ of Y is simply connected.

Let Z be the cover graph of the poset $\left(\mathcal{G}_{x \rightarrow}, \preccurlyeq\right)$, i.e. two vertices f and h are adjacent if $f=h k$ or $h=f k$ for some atom k. Since all atoms are simple, Z is a subgraph of Y. As every morphism in \mathcal{C} can be decomposed into a product of finitely many atoms by Definition 4.1 (2), each edge of Y is homotopic rel its ends points in $F(Y)$ to an edge path in Z. Let $\omega \subset Y$ be an edge loop. We may assume $\omega \subset Z$ up to homotopy in $F(Y)$. Let $f \in \mathcal{G}_{x \rightarrow}$ be a common lower bound for the collection of vertices of ω. We denote consecutive vertices of ω by $\left\{f f_{i}\right\}_{i=1}^{n}$ where each f_{i} is a morphism of \mathcal{C}. We define the complexity $\tau(\omega)$ of ω to be $\max _{1 \leq i \leq n}\left\{l\left(f_{i}\right)\right\}$, where l is the length function from Section 4.1. Suppose $l\left(f_{i_{0}}\right)=\tau(\omega)$. Then, by definition
of l, we have $l\left(f_{i_{0}-1}\right)<l\left(f_{i_{0}}\right)$ and $l\left(f_{i_{0}+1}\right)<l\left(f_{i_{0}}\right)$. Thus $f_{i_{0}}=f_{i_{0}-1} a_{1}$ and $f_{i_{0}}=f_{i_{0}+1} a_{2}$ for atoms a_{1} and a_{2} of \mathcal{C}. Let $f_{i_{0}}^{\prime}=f_{i_{0}-1} \wedge_{p} f_{i_{0}+1}$. Let ω_{1} (resp. ω_{2}) be the edge path in Z from $f_{i_{0}}^{\prime}$ to $f_{i_{0}-1}$ (resp. $f_{i_{0}+1}$) corresponding to a decomposition of $\left(f_{i_{0}}^{\prime}\right)^{-1} f_{i_{0}-1}$ (resp. $\left.\left(f_{i_{0}}^{\prime}\right)^{-1} f_{i_{0}+1}\right)$ into atoms $\left(\omega_{i}\right.$ might be a point). We replace the sub-path $\overline{f_{i_{0}-1} f_{i_{0}}} \cup \overline{f_{i_{0}+1} f_{i_{0}}}$ of ω by $\omega_{1} \cup \omega_{2}$ to obtain a new edge loop $\omega^{\prime} \subset Z$. Clearly $\tau\left(\omega^{\prime}\right)<\tau(\omega)$. Moreover, since $f_{i_{0}}^{\prime}\left(a_{1} \vee_{s} a_{2}\right)=f_{i_{0}}$ (Lemma 4.5) and $a_{1} \vee_{s} a_{2}$ is simple, by Lemma 4.6 $\overline{f_{i_{0}-1} f_{i_{0}}} \cup \overline{f_{i_{0}+1} f_{i_{0}}} \cup \omega_{1} \cup \omega_{2}$ is contained in a simplex of $F(Y)$. Thus ω and ω^{\prime} are homotopic in $F(Y)$. By repeating this process, we can homotop ω to a constant path, which finishes the proof.
Remark 4.10. The simple connectedness of $F(Y)$ above be can alternatively deduced from Bes06, Corollary 7.6], where Bessis considers a graph Γ on $\mathcal{G}_{x \rightarrow}$ such that two vertices are adjacent if they differ by a simple morphism in \mathcal{C}. It is proved that the flag complex $F(\Gamma)$ is contractible. As Γ is a proper subgraph of Y, it is not hard to deduce the simply-connectedness of $F(Y)$. The definition of Γ goes back to work of Bestvina Bes99 in the case of spherical Artin groups, and Charney-Meier-Whittlesey [CMW04] in the case of Garside group.

For a braid group G, Theorem 4.9 gives rise to many different Helly graphs (hence injective metric spaces) upon which G acts geometrically. One can choose different Garside structures on G : either we use the interval $\left[1, \Delta^{k}\right]$ as a cell, or we use the dual Garside structure BKL98, Bes03. One can also apply some combinatorial operations to a Helly graph - e.g. taking the Rips complex or the face complex - in order to obtain a new Helly graph (see $\left.\mathrm{CCG}^{+} 20\right]$).
Corollary 4.11. Let \mathcal{A} be a finite simplicial central arrangement of hyperplanes in a finite dimensional real vector space V. Let $\operatorname{Sal}(\mathcal{A})$ be its Salvetti
 Helly.

Proof. We refer to [Sal87, Par93] for relevant definitions and background. Let $M(\mathcal{A})=V_{\mathbb{C}}-\left(\bigcup_{H \in \mathcal{A}} H_{\mathbb{C}}\right)$ and $G=\pi_{1}(M(\mathcal{A}))$. Then G is a weak Garside group Del72]. G can be identified as vertices of $\widetilde{\operatorname{Sal}(\mathcal{A}) \text {, and a }}$ cell of G in the sense of Lemma 4.8 can be identified with the vertex set of a top dimensional cell in $\widetilde{\operatorname{Sal}}(\mathcal{A})$, moreover, the vertex set of each cell of $\widetilde{\mathrm{Sal}}(\mathcal{A})$ can be identified with an interval in G. Thus Definition 3.4 (2) holds. Similarly to Lemma 2.11 , one can prove that any closed cell in $\operatorname{Sal}(\mathcal{A})$ is a full subcomplex. Hence any intersection of cells is a full subcomplex spanned by vertices in an interval of one cell. Hence Definition 3.4 (3) holds. Moreover, the fact that cells are full together with Lemma 4.8 imply that the collection of top dimensional cells in $\operatorname{Sal}(\mathcal{A})$ satisfies Definition 3.4 (3). Therefore, the same holds for the collection of cells in $\widetilde{\operatorname{Sal}}(\mathcal{A})$ as every cell is contained in a top dimensional cell.

5. Artin groups and Helly graphs

5.1. Helly property for cells in X_{Γ}. Recall that $X_{\Gamma}^{(0)}$ is endowed with the prefix order \preccurlyeq. For a cell $C \in X_{\Gamma}$, we use \preccurlyeq_{C} to denote the right weak order on $C^{(0)}$ (we view C as an oriented Coxeter cell). And for a standard subcomplex $X_{1} \subset X_{\Gamma}$ of type Γ_{1}, we use $\preccurlyeq_{\Gamma_{1}}$ to denote the prefix order on $X_{1}^{(0)}$ coming from $A_{\Gamma_{1}}$.
Lemma 5.1. Let $C_{1}, C_{2} \subset X_{\Gamma}$ be two cells with non-empty intersection. Then the vertex set of $C_{1} \cap C_{2}$ is an interval in $\left(X_{\Gamma}^{(0)}, \preccurlyeq\right)$.

Proof. For $i=1,2$, suppose C_{i} is of type Γ_{i} and let X_{i} be the standard subcomplex of type Γ_{i} containing C_{i}. Let $X_{0}=X_{1} \cap X_{2}$, which is a standard subcomplex of type $\Gamma_{0}=\Gamma_{1} \cap \Gamma_{2}$. Let $D_{i}=C_{i} \cap X_{0}$. Then D_{i} is a cell by Lemma 2.13. Moreover, $D_{1}^{(0)}$ and $D_{2}^{(0)}$ are intervals in $\left(X_{0}^{(0)},{\left.\preccurlyeq \Gamma_{0}\right)}\right.$) by Lemma 2.9. As $\left(X_{0}^{(0)}, \preccurlyeq_{\Gamma_{0}}\right)$ is a lattice (Theorem 2.4, $\left(C_{1} \cap C_{2}\right)^{(0)}=$ $\left(D_{1} \cap D_{2}\right)^{(0)}$ is an interval in $\left(X_{0}^{(0)}, \preccurlyeq \Gamma_{0}\right)$ (Lemma 2.1), hence it is also an interval in $\left(X_{\Gamma}^{(0)}, \preccurlyeq\right)$ by Lemma 2.13 (3) and (4).
Lemma 5.2. Let C be an oriented Coxeter cell. Let K be the full subcomplex of C spanned by vertices in an interval of $C^{(0)}$. Then K is contractible.
Proof. Let $[x, y]$ be an interval of $C^{(0)}$. By BB05, Proposition 3.1.6], we can assume x is the source of C. Let $\ell: C^{(0)} \rightarrow \mathbb{Z}$ be the function measuring the combinatorial distance from x to a given point in $C^{(0)}$. We extend ℓ to $C \rightarrow \mathbb{R}$ such that ℓ is affine when restricted to each cell. Note that ℓ is non-constant on each cell with dimension >0. Then $\left.\ell\right|_{K}$ is a Morse function in the sense of BB97, Definition 2.2]. Moreover, it follows from Bou02, Chapter IV, Exercise 22] that the descending link (BB97, Definition 2.4]) of each vertex for $\left.\ell\right|_{K}$ is a simplex, hence contractible. Thus K is contractible by BB97, Lemma 2.5].

Lemma 5.3. Suppose Γ is spherical. Let C_{1} and C_{2} be two cells in X_{Γ}, and let X_{0} be a standard subcomplex of X_{Γ} of type Γ_{0}. Suppose that C_{1}, C_{2}, and X_{0} pairwise intersect. Then their triple intersection is nonempty.

Proof. For $i=1,2$, let v_{i} be a vertex of $C_{i} \cap X_{0}$. Since $\left(X^{(0)}, \preccurlyeq \Gamma_{0}\right)$ is a lattice by Theorem 2.4, we can find $a, b \in X^{(0)}$ such that $a \preccurlyeq \Gamma_{0} v_{i} \preccurlyeq \Gamma_{0} b$ for $i=1,2$. Let I be the interval between a and b with respect to the prefix order on $X_{\Gamma}^{(0)}$. Then $I \subset X_{0}$ by Lemma 2.13 (3). Note that C_{1}, C_{2} and I pairwise intersect by construction. Since $C_{i}^{(0)}$ is an interval in $\left(X_{\Gamma}^{(0)}, \preccurlyeq\right)$ for $i=1,2$ (Lemma $2.9(2)$), and $\left(X_{\Gamma}^{(0)}, \preccurlyeq\right)$ is a lattice (recall that Γ is spherical), we have $C_{1} \cap C_{2} \cap I \neq \emptyset$ by Lemma 2.1 (2). Since $I \subset X_{0}$, the lemma follows.

Lemma 5.4. Let C_{1}, C_{2}, C_{3} be three cells in X_{Γ}. Suppose they pairwise intersect. Then $C_{1} \cap C_{2} \cap C_{3} \neq \emptyset$.

Proof. Let Γ_{i} be the type of C_{i} and let X_{i} be the standard subcomplex of type Γ_{i} containing C_{i}. Let $\Gamma_{0}=\cap_{i=1}^{3} \Gamma_{i}$.

Case 1: $\Gamma_{1}=\Gamma_{2}=\Gamma_{3}$. Then $X_{1}=X_{2}=X_{3}$. Since each $C_{i}^{(0)}$ is an interval in $\left(X_{1}^{(0)}, \preccurlyeq_{\Gamma_{1}}\right)$ (Lemma 2.9) and $\left(X_{1}^{(0)},{\left.\preccurlyeq \Gamma_{1}\right) \text { is a lattice (Theorem 2.4), }}_{\text {, }}\right.$ the lemma follows from Lemma 2.1.

Case 2: only two of the Γ_{i} are equal. We suppose without loss of generality that $\Gamma_{1}=\Gamma_{2} \neq \Gamma_{3}$. Let $C_{3}^{\prime}=C_{3} \cap X_{1}$. Then C_{3}^{\prime} is a cell by Lemma 2.13. Moreover, C_{1}, C_{2} and C_{3}^{\prime} pairwise intersect. As the previous case, we know $C_{1} \cap C_{2} \cap C_{3}^{\prime} \neq \emptyset$, hence the lemma follows.

Case 3: the Γ_{i} are pairwise distinct. For $1 \leq i \neq j \leq 3$, let $C_{i j}=C_{i} \cap X_{j}$ (see Figure 1). We claim $C_{12} \cap C_{13}$ is a cell of type Γ_{0} (when $\Gamma_{0}=\emptyset$, the intersection is a vertex). Consider the cellular map $\pi: X_{\Gamma} \rightarrow D_{\Gamma}$ defined just before Lemma 2.9. Let \bar{C}_{i} be the image of C_{i}. Note that C_{12} is a cell of type $\Gamma_{1} \cap \Gamma_{2}$ (Lemma 2.13), and $\bar{C}_{1} \cap \bar{C}_{2}$ is a cell of type $\Gamma_{1} \cap \Gamma_{2}$ (Theorem 2.2), hence $\pi\left(C_{12}\right)=C_{1} \cap \bar{C}_{2}$. Similarly, $\pi\left(C_{13}\right)=\bar{C}_{1} \cap \bar{C}_{3}$. Since $\left\{\bar{C}_{i}\right\}_{i=1}^{3}$ pairwise intersect, their triple intersection is nonempty by Lemma 2.7. Thus $\pi\left(C_{12}\right) \cap \pi\left(C_{13}\right) \neq \emptyset$. Hence $\pi\left(C_{12}\right) \cap \pi\left(C_{13}\right)$ is a cell of type Γ_{0}. Now, the claim follows from the fact that π restricted to C_{1} is an embedding.

Figure 1.
For $i=1,2,3$, let $\tau_{i}=C_{i, i+1} \cap C_{i, i+2}($ indices are taken mod 3). By the previous paragraph, each τ_{i} is a cell of type Γ_{0}. Let $X_{0}=\cap_{i=1}^{3} X_{i}$. Then $\tau_{i} \subset X_{0}$ for $1 \leq i \leq 3$. In particular X_{0} is nonempty, hence is a standard subcomplex of type Γ_{0} by Lemma 2.13 (1). Now we claim $\cap_{i=1}^{3} \tau_{i} \neq \emptyset$. Note that the lemma follows from this claim since $\tau_{i} \subset C_{i}$ for $1 \leq i \leq 3$.

Since each $\tau_{i}^{(0)}$ is an interval in the lattice $\left(X_{0}^{(0)}, \preccurlyeq \Gamma_{0}\right)$, it suffices to show that τ_{i} pairwise intersect. We only prove $\tau_{1} \cap \tau_{2} \neq \emptyset$, as the other pairs are similar. Now, consider the triple $\left\{C_{12}, C_{21}, X_{0}\right\}$. Note that $\tau_{1} \subset C_{12}$, $\tau_{2} \subset C_{21}$ and $\tau_{i} \subset X_{0}$ for $i=1,2$. Therefore $\tau_{1} \cap \tau_{2} \subset C_{12} \cap C_{21} \cap X_{0}$. On the other hand, since C_{12} is a cell of type $\Gamma_{1} \cap \Gamma_{2}$ and $C_{12} \cap X_{0} \supset \tau_{1} \neq \emptyset$, we have that $C_{12} \cap X_{0}$ is a cell of type Γ_{0} from Lemma 2.13, hence $C_{12} \cap X_{0}=\tau_{1}$. Similarly $C_{21} \cap X_{0}=\tau_{2}$. Thus actually $\tau_{1} \cap \tau_{2}=C_{12} \cap C_{21} \cap X_{0}$. It remains to
show that $C_{12} \cap C_{21} \cap X_{0} \neq \emptyset$ This follows from Lemma 5.3, since C_{12}, C_{21}, X_{0} are contained in $X_{1} \cap X_{2}$, which is a spherical standard subcomplex.

Proposition 5.5. Let $\left\{C_{i}\right\}_{i=1}^{n}$ be a finite collection of cells in X_{Γ}. Suppose they pairwise intersect. Then $\cap_{i=1}^{n} C_{i}$ is a nonempty contractible subcomplex of X_{Γ}.

Proof. For $2 \leq i \leq n$, let $\tau_{i}=C_{1} \cap C_{i}$. Then $\tau_{i}^{(0)}$ is an interval in $\left(X_{\Gamma}^{(0)}, \preccurlyeq\right)$, hence it is also an interval in $\left(C_{1}^{(0)}, \preccurlyeq C^{\prime}\right)$ by Lemma 2.9 (2). Moreover, it follows from Lemma 5.4 that $\left\{\tau_{i}\right\}_{i=2}^{n}$ pairwise intersect. Since $\left(C_{1}^{(0)}, \preccurlyeq C\right)$ is a lattice (Theorem 2.4 (1)), we have that $\cap_{i=2}^{n} \tau_{i}^{(0)}$ is a nonempty interval in $\left(C_{1}^{(0)}, \preccurlyeq C\right)$ by Lemma 2.1, hence $\cap_{i=1}^{n} C_{i} \neq \emptyset$. Since each C_{i} is a full subcomplex of X_{Γ} (Lemma 2.11), $\cap_{i=1}^{n} C_{i}$ is full in X_{Γ} (hence is full in C_{1}). Now, contractibility of $\cap_{i=1}^{n} C_{i}$ follows from Lemma 5.2 .

5.2. Artin groups of type FC act on Helly graphs.

Lemma 5.6. Suppose Γ is spherical. Let C_{1}, C_{2} and C_{3} be pairwise intersecting cells in X_{Γ}. Then there is a cell $C \subset X_{\Gamma}$ such that $\left(C_{1} \cap C_{2}\right) \cup\left(C_{2} \cap\right.$ $\left.C_{3}\right) \cup\left(C_{3} \cap C_{1}\right) \subseteq C$.
Proof. It suffices to consider the special case when each C_{i} is a maximal cell of X_{Γ}. Consider the cell C of type Γ in X_{Γ} with the source vertex being the identity. Let Δ be the sink vertex of C. Then by BS72, Del72, A_{Γ} is a Garside group with A_{Γ}^{+}being its Garside monoid and Δ being its Garside element (the ϕ in Definition 4.1 corresponds to conjugating by Δ). Moreover, cells in the sense of Lemma 4.8 correspond to vertices of maximal cells of X_{Γ}. Thus the lemma follows from Lemma 4.8 and Lemma 2.11.

Proposition 5.7. Suppose that Γ is of type FC. Let C_{1}, C_{2} and C_{3} be maximal pairwise intersecting cells in X_{Γ}. Then there is a maximal cell $C \subset X_{\Gamma}$ such that $D=\left(C_{1} \cap C_{2}\right) \cup\left(C_{2} \cap C_{3}\right) \cup\left(C_{3} \cap C_{1}\right) \subseteq C$.

Proof. For $1 \leq i \leq 3$, suppose C_{i} is of type Γ_{i} and let X_{i} be the standard spherical subcomplex of type Γ_{i}. If $X_{1}=X_{2}=X_{3}$, then the proposition follows from Lemma 5.6

Suppose two of the X_{i} are the same. We assume without loss of generality that $X_{1}=X_{2} \neq X_{3}$. Let $C_{3}^{\prime}=C_{3} \cap X_{1}$. Then $C_{i} \cap C_{3}=C_{i} \cap C_{3}^{\prime}$ for $i=1,2$. Hence $D \subset\left(C_{1} \cap C_{2}\right) \cup\left(C_{2} \cap C_{3}^{\prime}\right) \cup\left(C_{3}^{\prime} \cap C_{1}\right)$. By Lemma 2.13 (2), C_{3}^{\prime} is a cell in X_{1}. Then we are done by Lemma 5.6 .

It remains to consider the case when X_{1}, X_{2}, and X_{3} are mutually distinct. By Proposition 5.5, there is a vertex p in $\cap_{i=1}^{3} C_{i}$. Let $C_{i j}=C_{i} \cap C_{j}$ and $X_{i j}=$ $X_{i} \cap X_{j}$. Then $X_{i j}$ is a spherical standard subcomplex of type $\Gamma_{i j}=\Gamma_{i} \cap \Gamma_{j}$ by Lemma 2.13 (1) (but $C_{i j} \subset X_{i j}$ might not be a cell in general). Since Γ is of type FC, there is a spherical full subgraph $\Gamma_{0} \subset \Gamma$ such that Γ_{0} contains $\Gamma_{12} \cup \Gamma_{23} \cup \Gamma_{31}$. Let X_{0} be the spherical standard subcomplex of X_{Γ} of type Γ_{0} that contains p. Then for $1 \leq i \neq j \leq 3$, we have $p \in C_{i} \cap C_{j} \subset X_{i j} \subset X_{0}$.

It follows that $D \subset\left(C_{1}^{\prime} \cap C_{2}^{\prime}\right) \cup\left(C_{2}^{\prime} \cap C_{3}^{\prime}\right) \cup\left(C_{3}^{\prime} \cap C_{1}^{\prime}\right)$ where $C_{i}^{\prime}=C_{i} \cap X_{0}$. Since each C_{i}^{\prime} is a cell (Lemma 2.13 (2)) and X_{0} is spherical, the proposition follows from Lemma 5.6

Theorem 5.8. Suppose Γ is of type $F C$. Then $\left(X_{\Gamma},\left\{C_{i}\right\}\right)$ is a locally bounded cell Helly complex and, consequently, A_{Γ} acts geometrically on a Helly graph being the 1-skeleton of the thickening of $\left(X_{\Gamma},\left\{C_{i}\right\}\right)$. Moreover, $X(\Gamma)$ is contractible.

Proof. The conditions (1) and (2) of Definition 3.4 are satisfied by Proposition 5.5. The condition (3) holds by Proposition [5.7. Since X_{Γ} is simply connected, the theorem holds by Theorem 3.9 and Proposition 3.10. Contractibility follows from Proposition 5.5 and Proposition 3.11.

References

$\left[\mathrm{ABD}^{+} 13\right]$ Aaron Abrams, Noel Brady, Pallavi Dani, Moon Duchin, and Robert Young, Pushing fillings in right-angled Artin groups, J. Lond. Math. Soc. (2) 87 (2013), no. 3, 663-688. MR3073670
[Alt98] Joseph A. Altobelli, The word problem for Artin groups of FC type, J. Pure Appl. Algebra 129 (1998), no. 1, 1-22. MR1626651
[AP56] Nachman Aronszajn and Prom Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. MR0084762
[App84] Kenneth I. Appel, On Artin groups and Coxeter groups of large type, Contributions to group theory, 1984, pp. 50-78. MR767099
[AS83] Kenneth I. Appel and Paul E. Schupp, Artin groups and infinite Coxeter groups, Invent. Math. 72 (1983), no. 2, 201-220. MR700768
[BB05] Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR2133266
[BB97] Mladen Bestvina and Noel Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445-470. MR1465330
[BC02] Noel Brady and John Crisp, Two-dimensional Artin groups with CAT(0) dimension three, Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), 2002, pp. 185-214. MR1950878
[BC13] Francis Buekenhout and Arjeh M. Cohen, Diagram geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 57, Springer, Heidelberg, 2013. Related to classical groups and buildings. MR3014979
[BD19] Jason Behrstock and Cornelia Druţu, Combinatorial higher dimensional isoperimetry and divergence, Journal of Topology and Analysis 11 (2019), no. 03, 499-534.
[Bel05] Robert W. Bell, Three-dimensional FC Artin groups are CAT(0), Geom. Dedicata 113 (2005), 21-53. MR2171297
[Bes03] David Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, 647-683. MR2032983
[Bes06] , Garside categories, periodic loops and cyclic sets (2006), available at arXiv:math/0610778
[Bes15] , Finite complex reflection arrangements are $K(\pi, 1)$, Ann. of Math. (2) 181 (2015), no. 3, 809-904. MR3296817
[Bes99] Mladen Bestvina, Non-positively curved aspects of Artin groups of finite type, Geom. Topol. 3 (1999), 269-302 (electronic). MR1714913
[BF08] Gregory C. Bell and Koji Fujiwara, The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2) 77 (2008), no. 1, 33-50. MR2389915
[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR1744486
[Bir67] Garrett Birkhoff, Lattice theory, Third edition. American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR0227053
[Bjö03] Anders Björner, Nerves, fibers and homotopy groups, J. Combin. Theory Ser. A 102 (2003), no. 1, 88-93. MR1970978
[BJN10] Jason A. Behrstock, Tadeusz Januszkiewicz, and Walter D. Neumann, Quasiisometric classification of some high dimensional right-angled Artin groups, Groups Geom. Dyn. 4 (2010), no. 4, 681-692. MR2727658
[BKL98] Joan Birman, Ki Hyoung Ko, and Sang Jin Lee, A new approach to the word and conjugacy problems in the braid groups, Advances in Mathematics 139 (1998), no. 2, 322-353.
[BKW] Benjamin Brück, Dawid Kielak, and Xiaolei Wu, The Farrell-Jones conjecture for normally poly-free groups, Proc. Amer. Math. Soc. to appear.
[BL12] Arthur Bartels and Wolfgang Lück, The Borel conjecture for hyperbolic and CAT(0)-groups, Ann. of Math. (2) 175 (2012), no. 2, 631-689. MR2993750
[BM00] Thomas Brady and Jonathan P. McCammond, Three-generator Artin groups of large type are biautomatic, J. Pure Appl. Algebra 151 (2000), no. 1, 1-9. MR1770639
[BM10] , Braids, posets and orthoschemes, Algebr. Geom. Topol. 10 (2010), no. 4, 2277-2314. MR2745672
[BN08] Jason A. Behrstock and Walter D. Neumann, Quasi-isometric classification of graph manifold groups, Duke Math. J. 141 (2008), no. 2, 217-240. MR2376814
[Bor48] Karol Borsuk, On the imbedding of systems of compacta in simplicial complexes, Fund. Math. 35 (1948), 217-234. MR0028019
[Bou02] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR1890629
[Bra00] Thomas Brady, Artin groups of finite type with three generators, Michigan Math. J. 47 (2000), no. 2, 313-324. MR1793627
[BS72] Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245-271. MR0323910
$\left[\mathrm{CCG}^{+} 20\right]$ Jérémie Chalopin, Victor Chepoi, Anthony Genevois, Hiroshi Hirai, and Damian Osajda, Helly groups (2020), available at arXiv:2002.06895.
[CCHO20] Jérémie Chalopin, Victor Chepoi, Hiroshi Hirai, and Damian Osajda, Weakly modular graphs and nonpositive curvature, Mem. Amer. Math. Soc 268 (2020), no. 1309.
[CD95a] Ruth Charney and Michael W. Davis, Finite $K(\pi, 1)$ s for Artin groups, Prospects in topology (Princeton, NJ, 1994), 1995, pp. 110-124. MR1368655
[CD95b] , The $K(\pi, 1)$-problem for hyperplane complements associated to infinite reflection groups, J. Amer. Math. Soc. 8 (1995), no. 3, 597-627. MR1303028
[Cha92] Ruth Charney, Artin groups of finite type are biautomatic, Math. Ann. 292 (1992), no. 4, 671-683. MR1157320
[Cho10] Fabienne Chouraqui, Garside groups and Yang-Baxter equation, Comm. Algebra 38 (2010), no. 12, 4441-4460. MR2764830
[CMW04] Ruth Charney, John Meier, and Kim Whittlesey, Bestvina's normal form complex and the homology of Garside groups, Geom. Dedicata 105 (2004), 171188. MR2057250
[CP14] Ruth Charney and Luis Paris, Convexity of parabolic subgroups in Artin groups, Bull. Lond. Math. Soc. 46 (2014), no. 6, 1248-1255. MR3291260
[Dav08] Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR2360474
[DDG $\left.{ }^{+} 15\right]$ Patrick Dehornoy, François Digne, Eddy Godelle, Daan Krammer, and Jean Michel, Foundations of Garside theory, EMS Tracts in Mathematics, vol. 22, European Mathematical Society (EMS), Zürich, 2015. Author name on title page: Daan Kramer. MR3362691
[Deh02] Patrick Dehornoy, Groupes de Garside, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 2, 267-306. MR1914933
[Del72] Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302. MR0422673
[Des16] Dominic Descombes, Asymptotic rank of spaces with bicombings, Math. Z. 284 (2016), no. 3-4, 947-960. MR3563261
[DL15] Dominic Descombes and Urs Lang, Convex geodesic bicombings and hyperbolicity, Geom. Dedicata 177 (2015), 367-384. MR3370039
[DL16] , Flats in spaces with convex geodesic bicombings, Anal. Geom. Metr. Spaces 4 (2016), no. 1, 68-84. MR3483604
[DMW18] Michael Dougherty, Jon McCammond, and Stefan Witzel, Boundary braids (2018), available at arXiv:1811.05603
[Dre84] Andreas W. M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), no. 3, 321-402. MR753872
$[E C H+92]$ David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. MR1161694
[FL05] F. Thomas Farrell and Jean-François Lafont, EZ-structures and topological applications, Comment. Math. Helv. 80 (2005), no. 1, 103-121. MR2130569
[FO20] Tomohiro Fukaya and Shin-ichi Oguni, A coarse Cartan-Hadamard theorem with application to the coarse Baum-Connes conjecture, J. Topol. Anal. 12 (2020), no. 3, 857-895. MR4139217
[FR00] F. Thomas Farrell and Sayed K. Roushon, The Whitehead groups of braid groups vanish, Internat. Math. Res. Notices 10 (2000), 515-526. MR1759505
[Gar69] Frank A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254. MR0248801
[GS90] Stephen M. Gersten and Hamish B. Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990), no. 2, 305-334. MR1074477
[Hae19] Thomas Haettel, XXL type Artin groups are CAT(0) and acylindrically hyperbolic (2019), available at arXiv:1905.11032v3
[HKS16] Thomas Haettel, Dawid Kielak, and Petra Schwer, The 6 -strand braid group is CAT(0), Geom. Dedicata 182 (2016), 263-286. MR3500387
[HO19] Jingyin Huang and Damian Osajda, Metric systolicity and two-dimensional Artin groups, Math. Ann. 374 (2019), no. 3-4, 1311-1352. MR3985112
[HO20] , Large-type Artin groups are systolic, Proc. Lond. Math. Soc. 120 (2020), no. 1, 95-123.
[Hod20] Nima Hoda, Quadric complexes, Michigan Math. J. 69 (2020), no. 2, 241-271. MR4104372
[HO] Jingyin Huang and Damian Osajda, Quasi-Euclidean tilings over 2dimensional Artin groups and their applications, Mem. Amer. Math. Soc., to appear.
[Hol10] Derek F. Holt, Garside groups have the falsification by fellow-traveller property, Groups Geom. Dyn. 4 (2010), no. 4, 777-784. MR2727663
[HR95] Nigel Higson and John Roe, On the coarse Baum-Connes conjecture, Novikov conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), 1995, pp. 227-254. MR1388312
[Hua16] Jingyin Huang, Quasi-isometric classification of right-angled Artin groups II: several infinite out cases (2016), available at arXiv:1603.02372
[Hua17] , Quasi-isometric classification of right-angled Artin groups, I: The finite out case, Geom. Topol. 21 (2017), no. 6, 3467-3537. MR3692971
[Isb64] John R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65-76. MR0182949
[JPM86] El Mostapha Jawhari, Maurice Pouzet, and Driss Misane, Retracts: graphs and ordered sets from the metric point of view, Combinatorics and ordered sets (Arcata, Calif., 1985), 1986, pp. 175-226. MR856237
[KL20] Bruce Kleiner and Urs Lang, Higher rank hyperbolicity, Invent. Math. 221 (2020), no. 2, 597-664. MR4121159
[KR17] Daniel Kasprowski and Henrik Rüping, The Farrell-Jones conjecture for hyperbolic and CAT(0)-groups revisited, J. Topol. Anal. 9 (2017), no. 4, 551-569. MR3684616
[Kra08] Daan Krammer, A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math. Soc. 360 (2008), no. 8, 4029-4061. MR2395163
[Lan13] Urs Lang, Injective hulls of certain discrete metric spaces and groups, J. Topol. Anal. 5 (2013), no. 3, 297-331. MR3096307
[LM] Ian Leary and Ashot Minasyan, Commensurating HNN-extensions: nonpositive curvature and biautomaticity, Geom. Topol. to appear.
[Mar] Alexander Margolis, Quasi-isometry classification of RAAGs that split over cyclic subgroups, Groups Geom. Dyn. to appear.
[Mie17] Benjamin Miesch, The Cartan-Hadamard theorem for metric spaces with local geodesic bicombings, Enseign. Math. 63 (2017), no. 1-2, 233-247. MR3777137
[Par02] Luis Paris, Artin monoids inject in their groups, Comment. Math. Helv. 77 (2002), no. 3, 609-637. MR1933791
[Par93] , Universal cover of Salvetti's complex and topology of simplicial arrangements of hyperplanes, Trans. Amer. Math. Soc. 340 (1993), no. 1, 149178. MR1148044
[Pei96] David Peifer, Artin groups of extra-large type are biautomatic, J. Pure Appl. Algebra 110 (1996), no. 1, 15-56. MR1390670
[Pic13] Matthieu Picantin, Tree products of cyclic groups and HNN extensions (2013), available at arXiv:1306.5724
[Pol01] Norbert Polat, Convexity and fixed-point properties in Helly graphs, Discrete Math. 229 (2001), no. 1-3, 197-211. Combinatorics, graph theory, algorithms and applications. MR1815607
[Pri86] Stephen J. Pride, On Tits' conjecture and other questions concerning Artin and generalized Artin groups, Invent. Math. 86 (1986), no. 2, 347-356. MR856848
[Rou20] Sayed K. Roushon, A certain structure of artin groups and the isomorphism conjecture, Canad. J. Math. (2020), 1-18.
[Sal87] Mario Salvetti, Topology of the complement of real hyperplanes in \mathbf{C}^{N}, Invent. Math. 88 (1987), no. 3, 603-618. MR884802
[vdL83] Harm van der Lek, The homotopy type of complex hyperplane complements, PhD thesis, Katholieke Universiteit te Nijmegen, 1983.
[vdV93] Marcel L. J. van de Vel, Theory of convex structures, North-Holland Mathematical Library, vol. 50, North-Holland Publishing Co., Amsterdam, 1993. MR1234493
[Weg12] Christian Wegner, The K-theoretic Farrell-Jones conjecture for CAT(0)groups, Proc. Amer. Math. Soc. 140 (2012), no. 3, 779-793. MR2869063
[Wen05] Stefan Wenger, Isoperimetric inequalities of Euclidean type in metric spaces, Geom. Funct. Anal. 15 (2005), no. 2, 534-554. MR2153909

Department of Mathematics, The Ohio State University, 100 Math Tower, 231 W 18th Ave, Columbus, OH 43210, U.S.

Email address: huang.929@osu.edu
Instytut Matematyczny, Uniwersytet Wroceawski, pl. Grunwaldzki 2/4, 50-384 Wroceaw, Poland

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00656 Warszawa, Poland

Email address: dosaj@math.uni.wroc.pl

[^0]: 2010 Mathematics Subject Classification. 20F65, 20F36, 20F67.
 Key words and phrases. Helly graph, Helly group, Garside structure, Artin group.

