30,888 research outputs found

    Geometric Distance Between Positive Definite Matrices of Different Dimensions

    Get PDF
    We show how the Riemannian distance on n++, the cone of n×n real symmetric or complex Hermitian positive definite matrices, may be used to naturally define a distance between two such matrices of different dimensions. Given that n++ also parameterizes n-dimensional ellipsoids, and inner products on ℝn, n×n covariance matrices of nondegenerate probability distributions, this gives us a natural way to define a geometric distance between a pair of such objects of different dimensions.ER

    Positivity, entanglement entropy, and minimal surfaces

    Full text link
    The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n1n\rightarrow 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n1n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Comment: 36 pages, 10 figures. Changes in presentation and discussion of Wilson loops. Conclusions regarding entanglement entropy unchange

    Including parameter dependence in the data and covariance for cosmological inference

    Full text link
    The final step of most large-scale structure analyses involves the comparison of power spectra or correlation functions to theoretical models. It is clear that the theoretical models have parameter dependence, but frequently the measurements and the covariance matrix depend upon some of the parameters as well. We show that a very simple interpolation scheme from an unstructured mesh allows for an efficient way to include this parameter dependence self-consistently in the analysis at modest computational expense. We describe two schemes for covariance matrices. The scheme which uses the geometric structure of such matrices performs roughly twice as well as the simplest scheme, though both perform very well.Comment: 17 pages, 4 figures, matches version published in JCA

    Manifold interpolation and model reduction

    Full text link
    One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.Comment: 37 pages, 4 figures, featured chapter of upcoming "Handbook on Model Order Reduction
    corecore