1,815 research outputs found

    Algebraic construction of a coboundary of a given cycle

    Get PDF
    We present an algebraic construction of the coboundary of a given cycle as a simpler alternative to the geometric one introduced in [M. Allili, T. Kaczyński, Geometric construction of a coboundary of a cycle, Discrete Comput. Geom. 25 (2001), 125–140, T. Kaczyński, Recursive coboundary formula for cycles in acyclic chain complexes, Topol. Methods Nonlinear Anal. 18 (2001), 351–371]

    Finite Volume Spaces and Sparsification

    Full text link
    We introduce and study finite dd-volumes - the high dimensional generalization of finite metric spaces. Having developed a suitable combinatorial machinery, we define 1\ell_1-volumes and show that they contain Euclidean volumes and hypertree volumes. We show that they can approximate any dd-volume with O(nd)O(n^d) multiplicative distortion. On the other hand, contrary to Bourgain's theorem for d=1d=1, there exists a 22-volume that on nn vertices that cannot be approximated by any 1\ell_1-volume with distortion smaller than Ω~(n1/5)\tilde{\Omega}(n^{1/5}). We further address the problem of 1\ell_1-dimension reduction in the context of 1\ell_1 volumes, and show that this phenomenon does occur, although not to the same striking degree as it does for Euclidean metrics and volumes. In particular, we show that any 1\ell_1 metric on nn points can be (1+ϵ)(1+ \epsilon)-approximated by a sum of O(n/ϵ2)O(n/\epsilon^2) cut metrics, improving over the best previously known bound of O(nlogn)O(n \log n) due to Schechtman. In order to deal with dimension reduction, we extend the techniques and ideas introduced by Karger and Bencz{\'u}r, and Spielman et al.~in the context of graph Sparsification, and develop general methods with a wide range of applications.Comment: previous revision was the wrong file: the new revision: changed (extended considerably) the treatment of finite volumes (see revised abstract). Inserted new applications for the sparsification technique

    Coboundary expanders

    Full text link
    We describe a natural topological generalization of edge expansion for graphs to regular CW complexes and prove that this property holds with high probability for certain random complexes.Comment: Version 2: significant rewrite. 18 pages, title changed, and main theorem extended to more general random complexe

    Configuration spaces and Vassiliev classes in any dimension

    Full text link
    The real cohomology of the space of imbeddings of S^1 into R^n, n>3, is studied by using configuration space integrals. Nontrivial classes are explicitly constructed. As a by-product, we prove the nontriviality of certain cycles of imbeddings obtained by blowing up transversal double points in immersions. These cohomology classes generalize in a nontrivial way the Vassiliev knot invariants. Other nontrivial classes are constructed by considering the restriction of classes defined on the corresponding spaces of immersions.Comment: Published by Algebraic and Geometric Topology at http://www.maths.warwick.ac.uk/agt/AGTVol2/agt-2-39.abs.htm

    Generating Functional in CFT on Riemann Surfaces II: Homological Aspects

    Full text link
    We revisit and generalize our previous algebraic construction of the chiral effective action for Conformal Field Theory on higher genus Riemann surfaces. We show that the action functional can be obtained by evaluating a certain Deligne cohomology class over the fundamental class of the underlying topological surface. This Deligne class is constructed by applying a descent procedure with respect to a \v{C}ech resolution of any covering map of a Riemann surface. Detailed calculations are presented in the two cases of an ordinary \v{C}ech cover, and of the universal covering map, which was used in our previous approach. We also establish a dictionary that allows to use the same formalism for different covering morphisms. The Deligne cohomology class we obtain depends on a point in the Earle-Eells fibration over the Teichm\"uller space, and on a smooth coboundary for the Schwarzian cocycle associated to the base-point Riemann surface. From it, we obtain a variational characterization of Hubbard's universal family of projective structures, showing that the locus of critical points for the chiral action under fiberwise variation along the Earle-Eells fibration is naturally identified with the universal projective structure.Comment: Latex, xypic, and AMS packages. 53 pages, 1 figur

    Ramanujan Complexes and bounded degree topological expanders

    Full text link
    Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.Comment: To appear in FOCS 201
    corecore