3,308 research outputs found

    Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images

    Full text link
    We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image. Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores. Our software---CHUNKYEuler---is available as open source on Bitbucket. Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams

    Algebraic Topology

    Full text link
    The chapter provides an introduction to the basic concepts of Algebraic Topology with an emphasis on motivation from applications in the physical sciences. It finishes with a brief review of computational work in algebraic topology, including persistent homology.Comment: This manuscript will be published as Chapter 5 in Wiley's textbook \emph{Mathematical Tools for Physicists}, 2nd edition, edited by Michael Grinfeld from the University of Strathclyd

    Hexagonal structure for intelligent vision

    Full text link
    Using hexagonal grids to represent digital images have been studied for more than 40 years. Increased processing capabilities of graphic devices and recent improvements in CCD technology have made hexagonal sampling attractive for practical applications and brought new interests on this topic. The hexagonal structure is considered to be preferable to the rectangular structure due to its higher sampling efficiency, consistent connectivity and higher angular resolution and is even proved to be superior to square structure in many applications. Since there is no mature hardware for hexagonal-based image capture and display, square to hexagonal image conversion has to be done before hexagonal-based image processing. Although hexagonal image representation and storage has not yet come to a standard, experiments based on existing hexagonal coordinate systems have never ceased. In this paper, we firstly introduced general reasons that hexagonally sampled images are chosen for research. Then, typical hexagonal coordinates and addressing schemes, as well as hexagonal based image processing and applications, are fully reviewed. © 2005 IEEE

    Compact union of disjoint boxes: An efficient decomposition model for binary volumes

    Get PDF
    This paper presents in detail the CompactUnion of Disjoint Boxes (CUDB), a decomposition modelfor binary volumes that has been recently but brieflyintroduced. This model is an improved version of aprevious model called Ordered Union of Disjoint Boxes(OUDB). We show here, several desirable features thatthis model has versus OUDB, such as less unitary basicelements (boxes) and thus, a better efficiency in someneighborhood operations. We present algorithms forconversion to and from other models, and for basiccomputations as area (2D) or volume (3D). We alsopresent an efficient algorithm for connected-componentlabeling (CCL) that does not follow the classical two-passstrategy. Finally we present an algorithm for collision (oradjacency) detection in static environments. We test theefficiency of CUDB versus existing models with severaldatasets.Peer ReviewedPostprint (published version

    Non-rigid registration of 2-D/3-D dynamic data with feature alignment

    Get PDF
    In this work, we are computing the matching between 2D manifolds and 3D manifolds with temporal constraints, that is we are computing the matching among a time sequence of 2D/3D manifolds. It is solved by mapping all the manifolds to a common domain, then build their matching by composing the forward mapping and the inverse mapping. At first, we solve the matching problem between 2D manifolds with temporal constraints by using mesh-based registration method. We propose a surface parameterization method to compute the mapping between the 2D manifold and the common 2D planar domain. We can compute the matching among the time sequence of deforming geometry data through this common domain. Compared with previous work, our method is independent of the quality of mesh elements and more efficient for the time sequence data. Then we develop a global intensity-based registration method to solve the matching problem between 3D manifolds with temporal constraints. Our method is based on a 4D(3D+T) free-from B-spline deformation model which has both spatial and temporal smoothness. Compared with previous 4D image registration techniques, our method avoids some local minimum. Thus it can be solved faster and achieve better accuracy of landmark point predication. We demonstrate the efficiency of these works on the real applications. The first one is applied to the dynamic face registering and texture mapping. The second one is applied to lung tumor motion tracking in the medical image analysis. In our future work, we are developing more efficient mesh-based 4D registration method. It can be applied to tumor motion estimation and tracking, which can be used to calculate the read dose delivered to the lung and surrounding tissues. Thus this can support the online treatment of lung cancer radiotherapy

    Algorithms to automatically quantify the geometric similarity of anatomical surfaces

    Full text link
    We describe new approaches for distances between pairs of 2-dimensional surfaces (embedded in 3-dimensional space) that use local structures and global information contained in inter-structure geometric relationships. We present algorithms to automatically determine these distances as well as geometric correspondences. This is motivated by the aspiration of students of natural science to understand the continuity of form that unites the diversity of life. At present, scientists using physical traits to study evolutionary relationships among living and extinct animals analyze data extracted from carefully defined anatomical correspondence points (landmarks). Identifying and recording these landmarks is time consuming and can be done accurately only by trained morphologists. This renders these studies inaccessible to non-morphologists, and causes phenomics to lag behind genomics in elucidating evolutionary patterns. Unlike other algorithms presented for morphological correspondences our approach does not require any preliminary marking of special features or landmarks by the user. It also differs from other seminal work in computational geometry in that our algorithms are polynomial in nature and thus faster, making pairwise comparisons feasible for significantly larger numbers of digitized surfaces. We illustrate our approach using three datasets representing teeth and different bones of primates and humans, and show that it leads to highly accurate results.Comment: Changes with respect to v1, v2: an Erratum was added, correcting the references for one of the three datasets. Note that the datasets and code for this paper can be obtained from the Data Conservancy (see Download column on v1, v2
    corecore